Skip to main content

Advertisement

Log in

Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Body temperature regulation is a fundamental homeostatic function in homeothermic animals. It is governed by the central nervous system that integrates temperature signals from internal body structures and the skin and provides efferent responses to adjust heat-exchange rates with the environment. Thermoregulation has a major influence on energy balance by regulating food intake as well as heat production and energy expenditure. Surprisingly, although almost 50% of our energy expenditure is dedicated to maintaining homeothermy, very little is yet known about the molecular aspects and the neural wiring involved in the intimate interrelationship between these two critical homeostatic systems. Some non-selective cation channels of the transient receptor potential (TRP) family work as molecular thermal sensors in sensory neurons and other cells. In this review, we discuss recent advances in our understanding of the basic mechanisms responsible for thermoregulation in the cold. We have focused our attention on the role of two cold-activated TRP channels (transient receptor potential melastatin 8 and transient receptor potential ankyrin 1) in body temperature regulation as well as their impact on energy balance and metabolism. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis, including the involvement of thermosensitive TRPs, may uncover additional mechanisms underlying the pathogenesis of obesity and its metabolic consequences in humans, opening new strategies for the diagnosis, treatment, and prevention of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

BAT:

Brown adipose tissue

BDNF:

Brain-derived neurotrophic factor

BMR:

Basal metabolic rate

cAMP:

Cyclic adenosine monophosphate

CGRP:

Calcitonin gene-related peptide

COX:

Cyclooxygenase

Cryo-EM:

Cryo-electron microscopy

DM:

Dorsomedial

HFD:

High-fat diet

KO:

Knockout

PKA:

Protein kinase A

POA:

Preoptic area

ROS:

Reactive oxygen species

Tc:

Core body temperature

TH:

Tyrosine hydroxylase

TNZ:

Thermoneutral zone

TRP:

Transient receptor potential

TRPA1:

Transient receptor potential ankyrin 1

TRPM2:

Transient receptor potential melastatin 2

TRPM8:

Transient receptor potential melastatin 8

UCP1:

Uncoupling protein 1

WAT:

White adipose tissue

References

  1. Abreu-Vieira G, Xiao C, Gavrilova O, Reitman ML (2015) Integration of body temperature into the analysis of energy expenditure in the mouse. Mol Metab 4:461–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Almaraz L, Manenschijn JA, de la Pena E, Viana F (2014) Trpm8. Handb Exp Pharmacol 222:547–579

    Article  PubMed  CAS  Google Scholar 

  3. Almeida MC, Hew-Butler T, Soriano RN, Rao S, Wang W, Wang J, Tamayo N, Oliveira DL, Nucci TB, Aryal P, Garami A, Bautista D, Gavva NR, Romanovsky AA (2012) Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J Neurosci 32:2086–2099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Asuthkar S, Demirkhanyan L, Sun X, Elustondo PA, Krishnan V, Baskaran P, Velpula KK, Thyagarajan B, Pavlov EV, Zakharian E (2015) The TRPM8 protein is a testosterone receptor: II. Functional evidence for an ionotropic effect of testosterone on TRPM8. J Biol Chem 290:2670–2688

    Article  PubMed  CAS  Google Scholar 

  5. Aubdool AA, Graepel R, Kodji X, Alawi KM, Bodkin JV, Srivastava S, Gentry C, Heads R, Grant AD, Fernandes ES, Bevan S, Brain SD (2014) TRPA1 is essential for the vascular response to environmental cold exposure. Nat Commun 5:5732

    Article  PubMed  CAS  Google Scholar 

  6. Babes A, Fischer MJ, Filipovic M, Engel MA, Flonta ML, Reeh PW (2013) The anti-diabetic drug glibenclamide is an agonist of the transient receptor potential Ankyrin 1 (TRPA1) ion channel. Eur J Pharmacol 704:15–22

    Article  PubMed  CAS  Google Scholar 

  7. Bailey SR, Eid AH, Mitra S, Flavahan S, Flavahan NA (2004) Rho kinase mediates cold-induced constriction of cutaneous arteries: role of alpha2C-adrenoceptor translocation. Circ Res 94:1367–1374

    Article  PubMed  CAS  Google Scholar 

  8. Bautista DM, Pellegrino M, Tsunozaki M (2013) TRPA1: a gatekeeper for inflammation. Annu Rev Physiol 75:181–200

    Article  PubMed  CAS  Google Scholar 

  9. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208

    Article  PubMed  CAS  Google Scholar 

  10. Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O’Donnell TA, Brierley SM, Ingraham HA, Julius D (2017) Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170:185–198.e116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Belmonte C, Brock JA, Viana F (2009) Converting cold into pain. Exp Brain Res 196:13–30

    Article  PubMed  Google Scholar 

  12. Bergersen TK, Eriksen M, Walloe L (1997) Local constriction of arteriovenous anastomoses in the cooled finger. Am J Phys 273:R880–R886

    CAS  Google Scholar 

  13. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Boulant JA (2006) Counterpoint: heat-induced membrane depolarization of hypothalamic neurons: an unlikely mechanism of central thermosensitivity. Am J Physiol Regul Integr Comp Physiol 290:R1481–R1484; discussion R1484

    PubMed  CAS  Google Scholar 

  15. Boulant JA (1998) Hypothalamic neurons. Mechanisms of sensitivity to temperature. Ann N Y Acad Sci 856:108–115

    Article  PubMed  CAS  Google Scholar 

  16. Boulant JA, Hardy JD (1974) The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J Physiol 240:639–660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Brock JA, McAllen RM (2016) Spinal cord thermosensitivity: an afferent phenomenon? Temperature (Austin) 3:232–239

    Article  Google Scholar 

  18. Camacho S, Michlig S, de Senarclens-Bezencon C, Meylan J, Meystre J, Pezzoli M, Markram H, le Coutre J (2015) Anti-obesity and anti-hyperglycemic effects of cinnamaldehyde via altered ghrelin secretion and functional impact on food intake and gastric emptying. Sci Rep 5:7919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  20. Cannon B, Nedergaard J (2011) Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol 214:242–253

    Article  PubMed  Google Scholar 

  21. Cannon B, Nedergaard J (2009) Thermogenesis challenges the adipostat hypothesis for body-weight control. Proc Nutr Soc 68:401–407

    Article  PubMed  Google Scholar 

  22. Cao DS, Zhong L, Hsieh TH, Abooj M, Bishnoi M, Hughes L, Premkumar LS (2012) Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells. PLoS One 7:e38005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Carrasquel-Ursulaez W, Moldenhauer H, Castillo JP, Latorre R, Alvarez O (2015) Biophysical analysis of thermosensitive TRP channels with a special focus on the cold receptor TRPM8. Temperature (Austin) 2:188–200

    Article  Google Scholar 

  24. Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F, Latorre R (2018) Thermally activated TRP channels: molecular sensors for temperature detection. Phys Biol 15:021001

    Article  PubMed  Google Scholar 

  25. Caterina MJ (2007) Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol 292:R64–R76

    Article  PubMed  CAS  Google Scholar 

  26. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  27. Chen J, Joshi SK, DiDomenico S, Perner RJ, Mikusa JP, Gauvin DM, Segreti JA, Han P, Zhang XF, Niforatos W, Bianchi BR, Baker SJ, Zhong C, Simler GH, McDonald HA, Schmidt RG, McGaraughty SP, Chu KL, Faltynek CR, Kort ME, Reilly RM, Kym PR (2011) Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain 152:1165–1172

    Article  PubMed  CAS  Google Scholar 

  28. Chen XM, Hosono T, Yoda T, Fukuda Y, Kanosue K (1998) Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J Physiol 512(Pt 3):883–892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chowdhury S, Jarecki BW, Chanda B (2014) A molecular framework for temperature-dependent gating of ion channels. Cell 158:1148–1158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  31. Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386

    Article  PubMed  CAS  Google Scholar 

  32. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    Article  PubMed  CAS  Google Scholar 

  33. de la Pena E, Malkia A, Cabedo H, Belmonte C, Viana F (2005) The contribution of TRPM8 channels to cold sensing in mammalian neurones. J Physiol 567:415–426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. de Oliveira C, Garami A, Lehto SG, Pakai E, Tekus V, Pohoczky K, Youngblood BD, Wang W, Kort ME, Kym PR, Pinter E, Gavva NR, Romanovsky AA (2014) Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents. J Neurosci 34:4445–4452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, Petrus MJ, Zhao M, D’Amours M, Deering N, Brenner GJ, Costigan M, Hayward NJ, Chong JA, Fanger CM, Woolf CJ, Patapoutian A, Moran MM (2010) TRPA1 contributes to cold hypersensitivity. J Neurosci 30:15165–15174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Derbenev AV, Zsombok A (2016) Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity. Semin Immunopathol 38:397–406

    Article  PubMed  CAS  Google Scholar 

  37. Dhaka A, Earley TJ, Watson J, Patapoutian A (2008) Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci 28:566–575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378

    Article  PubMed  CAS  Google Scholar 

  39. Dhaka A, Viswanath V, Patapoutian A (2006) Trp ion channels and temperature sensation. Annu Rev Neurosci 29:135–161

    Article  PubMed  CAS  Google Scholar 

  40. Diaz-Franulic I, Poblete H, Mino-Galaz G, Gonzalez C, Latorre R (2016) Allosterism and structure in thermally activated transient receptor potential channels. Annu Rev Biophys 45:371–398

    Article  PubMed  CAS  Google Scholar 

  41. Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94

    Article  PubMed  CAS  Google Scholar 

  42. Everaerts W, Gees M, Alpizar YA, Farre R, Leten C, Apetrei A, Dewachter I, van Leuven F, Vennekens R, De Ridder D, Nilius B, Voets T, Talavera K (2011) The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr Biol 21:316–321

    Article  PubMed  CAS  Google Scholar 

  43. Fajardo O, Meseguer V, Belmonte C, Viana F (2008) TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J Neurosci 28:7863–7875

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Feketa VV, Balasubramanian A, Flores CM, Player MR, Marrelli SP (2013) Shivering and tachycardic responses to external cooling in mice are substantially suppressed by TRPV1 activation but not by TRPM8 inhibition. Am J Physiol Regul Integr Comp Physiol 305:R1040–R1050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Fischer AW, Cannon B, Nedergaard J (2018) Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol Metab 7:161–170

    Article  PubMed  CAS  Google Scholar 

  46. Flavahan NA (2015) A vascular mechanistic approach to understanding Raynaud phenomenon. Nat Rev Rheumatol 11:146–158

    Article  PubMed  Google Scholar 

  47. Galgani J, Ravussin E (2008) Energy metabolism, fuel selection and body weight regulation. Int J Obes 32(Suppl 7):S109–S119

    Article  CAS  Google Scholar 

  48. Garami A, Pakai E, Oliveira DL, Steiner AA, Wanner SP, Almeida MC, Lesnikov VA, Gavva NR, Romanovsky AA (2011) Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis. J Neurosci 31:1721–1733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gavva NR, Davis C, Lehto SG, Rao S, Wang W, Zhu DX (2012) Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation. Mol Pain 8(36):1744-8069-8-36

    Article  CAS  Google Scholar 

  50. Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  PubMed  CAS  Google Scholar 

  51. Gentry C, Andersson DA, Bevan S (2015) TRPA1 mediates the hypothermic action of acetaminophen. Sci Rep 5:12771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gluck ME, Venti CA, Salbe AD, Votruba SB, Krakoff J (2011) Higher 24-h respiratory quotient and higher spontaneous physical activity in nighttime eaters. Obesity (Silver Spring, MD) 19:319–323

    Article  Google Scholar 

  53. Gordon CJ (1993) Temperature regulation in laboratory rodents. Cambridge University Press

  54. Grant AD, Pinter E, Salmon AM, Brain SD (2005) An examination of neurogenic mechanisms involved in mustard oil-induced inflammation in the mouse. Eur J Pharmacol 507:273–280

    Article  PubMed  CAS  Google Scholar 

  55. Green BG (1992) The sensory effects of l-menthol on human skin. Somatosens Mot Res 9:235–244

    Article  PubMed  CAS  Google Scholar 

  56. Hammel HT, Elsner RW, Messurier DHL, Andersen HT, Milan FA (1959) Thermal and metabolic responses of the Australian aborigine exposed to moderate cold in summer. J Appl Physiol 14:605–615

    Article  Google Scholar 

  57. Hibi M, Masumoto A, Naito Y, Kiuchi K, Yoshimoto Y, Matsumoto M, Katashima M, Oka J, Ikemoto S (2013) Nighttime snacking reduces whole body fat oxidation and increases LDL cholesterol in healthy young women. Am J Physiol Regul Integr Comp Physiol 304:R94–r101

    Article  PubMed  CAS  Google Scholar 

  58. Hoffstaetter LJ, Bagriantsev SN, Gracheva EO (2018) TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflugers Arch

  59. Huynh KW, Cohen MR, Jiang J, Samanta A, Lodowski DT, Zhou ZH, Moiseenkova-Bell VY (2016) Structure of the full-length TRPV2 channel by cryo-EM. Nat Commun 7:11130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ivanov KP (2006) The development of the concepts of homeothermy and thermoregulation. J Therm Biol 31:24–29

    Article  Google Scholar 

  61. Jankowski MP, Rau KK, Koerber HR (2017) Cutaneous TRPM8-expressing sensory afferents are a small population of neurons with unique firing properties. Physiol Rep 5:e13234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P, Zholos AV (2009) Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol Heart Circ Physiol 296:H1868–H1877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Johnson MS, Speakman JR (2001) Limits to sustained energy intake. V. Effect of cold-exposure during lactation in Mus musculus. J Exp Biol 204:1967–1977

    PubMed  CAS  Google Scholar 

  64. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  PubMed  CAS  Google Scholar 

  65. Jordt SE, McKemy DD, Julius D (2003) Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 13:487–492

    Article  PubMed  CAS  Google Scholar 

  66. Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 106:1273–1278

    Article  PubMed  PubMed Central  Google Scholar 

  67. Keipert S, Jastroch M (2014) Brite/beige fat and UCP1—is it thermogenesis? Biochim Biophys Acta 1837:1075–1082

    Article  PubMed  CAS  Google Scholar 

  68. Kiefer FW (2017) The significance of beige and brown fat in humans. Endocr Connect 6:R70–R79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kirkup AJ, Brunsden AM, Grundy D (2001) Receptors and transmission in the brain-gut axis: potential for novel therapies. I. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol 280:G787–G794

    Article  PubMed  CAS  Google Scholar 

  70. Knowlton WM, Bifolck-Fisher A, Bautista DM, McKemy DD (2010) TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 150:340–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Knowlton WM, Daniels RL, Palkar R, McCoy DD, McKemy DD (2011) Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS One 6:e25894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Knowlton WM, Palkar R, Lippoldt EK, McCoy DD, Baluch F, Chen J, McKemy DD (2013) A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J Neurosci 33:2837–2848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kobayashi S, Hori A, Matsumura K, Point HH (2006) Heat-induced membrane depolarization of hypothalamic neurons: a putative mechanism of central thermosensitivity. Am J Physiol Regul Integr Comp Physiol 290:R1479–R1480; discussion R1484

    Article  PubMed  CAS  Google Scholar 

  74. Krol E, Speakman JR (2003) Limits to sustained energy intake. VI. Energetics of lactation in laboratory mice at thermoneutrality. J Exp Biol 206:4255–4266

    Article  PubMed  CAS  Google Scholar 

  75. Kwan KY, Corey DP (2009) Burning cold: involvement of TRPA1 in noxious cold sensation. J Gen Physiol 133:251–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Laing RJ, Dhaka A (2016) ThermoTRPs and pain. Neuroscientist 22:171–187

    Article  PubMed  CAS  Google Scholar 

  77. Landsberg L (2012) Core temperature: a forgotten variable in energy expenditure and obesity? Obes Rev 13(Suppl 2):97–104

    Article  PubMed  Google Scholar 

  78. Lewis T (1930) Observations upon the reactions of the vessels of the human skin to cold. Heart 15:177–208

    Google Scholar 

  79. Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, Woodbury CJ, Ginty DD (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147:1615–1627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Li S, Dou W, Tang Y, Goorha S, Ballou LR, Blatteis CM (2008) Acetaminophen: antipyretic or hypothermic in mice? In either case, PGHS-1b (COX-3) is irrelevant. Prostaglandins Other Lipid Mediat 85:89–99

    Article  PubMed  CAS  Google Scholar 

  81. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Lidell ME, Enerback S (2010) Brown adipose tissue—a new role in humans? Nat Rev Endocrinol 6:319–325

    Article  PubMed  Google Scholar 

  83. Lim S, Honek J, Xue Y, Seki T, Cao Z, Andersson P, Yang X, Hosaka K, Cao Y (2012) Cold-induced activation of brown adipose tissue and adipose angiogenesis in mice. Nat Protoc 7:606–615

    Article  PubMed  CAS  Google Scholar 

  84. Lolignier S, Gkika D, Andersson D, Leipold E, Vetter I, Viana F, Noel J, Busserolles J (2016) New insight in cold pain: role of ion channels, modulation, and clinical perspectives. J Neurosci 36:11435–11439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Ma S, Yu H, Zhao Z, Luo Z, Chen J, Ni Y, Jin R, Ma L, Wang P, Zhu Z, Li L, Zhong J, Liu D, Nilius B, Zhu Z (2012) Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. J Mol Cell Biol 4:88–96

    Article  PubMed  CAS  Google Scholar 

  86. Madej MG, Ziegler CM (2018) Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflugers Arch 470:213–225

    Article  PubMed  CAS  Google Scholar 

  87. Madrid R, de la Pena E, Donovan-Rodriguez T, Belmonte C, Viana F (2009) Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels. J Neurosci 29:3120–3131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Maloney SK, Fuller A, Mitchell D, Gordon C, Overton JM (2014) Translating animal model research: does it matter that our rodents are cold? Physiology (Bethesda) 29:413–420

    CAS  Google Scholar 

  89. Matos-Cruz V, Schneider ER, Mastrotto M, Merriman DK, Bagriantsev SN, Gracheva EO (2017) Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters. Cell Rep 21:3329–3337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. McCarthy HD, Kilpatrick AP, Trayhurn P, Williams G (1993) Widespread increases in regional hypothalamic neuropeptide Y levels in acute cold-exposed rats. Neuroscience 54:127–132

    Article  PubMed  CAS  Google Scholar 

  91. McCoy DD, Zhou L, Nguyen AK, Watts AG, Donovan CM, McKemy DD (2013) Enhanced insulin clearance in mice lacking TRPM8 channels. Am J Physiol Endocrinol Metab 305:E78–E88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. McKemy DD (2013) The molecular and cellular basis of cold sensation. ACS Chem Neurosci 4:238–247

    Article  PubMed  CAS  Google Scholar 

  93. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  94. Michlig S, Merlini JM, Beaumont M, Ledda M, Tavenard A, Mukherjee R, Camacho S, le Coutre J (2016) Effects of TRP channel agonist ingestion on metabolism and autonomic nervous system in a randomized clinical trial of healthy subjects. Sci Rep 6:20795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Mishra SK, Tisel SM, Orestes P, Bhangoo SK, Hoon MA (2011) TRPV1-lineage neurons are required for thermal sensation. EMBO J 30:582–593

    Article  PubMed  CAS  Google Scholar 

  96. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  PubMed  CAS  Google Scholar 

  97. Morenilla-Palao C, Luis E, Fernandez-Pena C, Quintero E, Weaver JL, Bayliss DA, Viana F (2014) Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation. Cell Rep 8:1571–1582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mori N, Kurata M, Yamazaki H, Hosokawa H, Nadamoto T, Inoue K, Fushiki T (2013) Intragastric administration of allyl isothiocyanate reduces hyperglycemia in intraperitoneal glucose tolerance test (IPGTT) by enhancing blood glucose consumption in mice. J Nutr Sci Vitaminol (Tokyo) 59:56–63

    Article  CAS  Google Scholar 

  99. Morrison SF (2016) Central neural control of thermoregulation and brown adipose tissue. Auton Neurosci 196:14–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Morrison SF, Nakamura K (2011) Central neural pathways for thermoregulation. Front Biosci (Landmark Ed) 16:74–104

    Article  CAS  Google Scholar 

  101. Morrison SF, Nakamura K, Madden CJ (2008) Central control of thermogenesis in mammals. Exp Physiol 93:773–797

    Article  PubMed  PubMed Central  Google Scholar 

  102. Munns C, AlQatari M, Koltzenburg M (2007) Many cold sensitive peripheral neurons of the mouse do not express TRPM8 or TRPA1. Cell Calcium 41:331–342

    Article  PubMed  CAS  Google Scholar 

  103. Nagashima K, Nakai S, Tanaka M, Kanosue K (2000) Neuronal circuitries involved in thermoregulation. Auton Neurosci 85:18–25

    Article  PubMed  CAS  Google Scholar 

  104. Nakamura K, Morrison SF (2011) Central efferent pathways for cold-defensive and febrile shivering. J Physiol 589:3641–3658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Nakamura K, Morrison SF (2008) A thermosensory pathway that controls body temperature. Nat Neurosci 11:62–71

    Article  PubMed  CAS  Google Scholar 

  106. Nakayama T, Eisenman JS, Hardy JD (1961) Single unit activity of anterior hypothalamus during local heating. Science 134:560–561

    Article  PubMed  CAS  Google Scholar 

  107. Nassini R, Gees M, Harrison S, De Siena G, Materazzi S, Moretto N, Failli P, Preti D, Marchetti N, Cavazzini A, Mancini F, Pedretti P, Nilius B, Patacchini R, Geppetti P (2011) Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152:1621–1631

    Article  PubMed  CAS  Google Scholar 

  108. Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, Sano Y, Inamura K, Matsushime H, Koizumi T, Yokoyama T, Ito H (2009) TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci U S A 106:3408–3413

    Article  PubMed  PubMed Central  Google Scholar 

  109. Pan Y, Thapa D, Baldissera L Jr, Argunhan F, Aubdool AA, Brain SD (2017) Relevance of TRPA1 and TRPM8 channels as vascular sensors of cold in the cutaneous microvasculature. Pflugers Arch

  110. Pappenheimer JR, Fregly MJ, Blatties CM, and Society AP (1996) Handbook of physiology: environmental physiology. Oxford University Press

  111. Parra A, Madrid R, Echevarria D, del Olmo S, Morenilla-Palao C, Acosta MC, Gallar J, Dhaka A, Viana F, Belmonte C (2010) Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat Med 16:1396–1399

    Article  PubMed  CAS  Google Scholar 

  112. Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 525:552

    Article  PubMed  CAS  Google Scholar 

  113. Pecze L, Pelsoczi P, Kecskes M, Winter Z, Papp A, Kaszas K, Letoha T, Vizler C, Olah Z (2009) Resiniferatoxin mediated ablation of TRPV1+ neurons removes TRPA1 as well. Can J Neurol Sci 36:234–241

    Article  PubMed  Google Scholar 

  114. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  PubMed  CAS  Google Scholar 

  115. Pereira-da-Silva M, Torsoni MA, Nourani HV, Augusto VD, Souza CT, Gasparetti AL, Carvalheira JB, Ventrucci G, Marcondes MC, Cruz-Neto AP, Saad MJ, Boschero AC, Carneiro EM, Velloso LA (2003) Hypothalamic melanin-concentrating hormone is induced by cold exposure and participates in the control of energy expenditure in rats. Endocrinology 144:4831–4840

    Article  PubMed  CAS  Google Scholar 

  116. Perello M, Stuart RC, Vaslet CA, Nillni EA (2007) Cold exposure increases the biosynthesis and proteolytic processing of prothyrotropin-releasing hormone in the hypothalamic paraventricular nucleus via beta-adrenoreceptors. Endocrinology 148:4952–4964

    Article  PubMed  CAS  Google Scholar 

  117. Pogorzala LA, Mishra SK, Hoon MA (2013) The cellular code for mammalian thermosensation. J Neurosci 33:5533–5541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Polderman KH (2009) Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med 37:S186–S202

    Article  PubMed  Google Scholar 

  119. Poole DP, Pelayo JC, Cattaruzza F, Kuo YM, Gai G, Chiu JV, Bron R, Furness JB, Grady EF, Bunnett NW (2011) Transient receptor potential ankyrin 1 is expressed by inhibitory motoneurons of the mouse intestine. Gastroenterology 141:565–575, 575.e561–564

    Article  PubMed  CAS  Google Scholar 

  120. Ramachandran R, Hyun E, Zhao L, Lapointe TK, Chapman K, Hirota CL, Ghosh S, McKemy DD, Vergnolle N, Beck PL, Altier C, Hollenberg MD (2013) TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc Natl Acad Sci U S A 110:7476–7481

    Article  PubMed  PubMed Central  Google Scholar 

  121. Rand RP, Burton AC, Ing T (1965) The tail of the rat, in temperature regulation and acclimatization. Can J Physiol Pharmacol 43:257–267

    Article  PubMed  CAS  Google Scholar 

  122. Reid G (2005) ThermoTRP channels and cold sensing: what are they really up to? Pflugers Arch 451:250–263

    Article  PubMed  CAS  Google Scholar 

  123. Reid G, Babes A, Pluteanu F (2002) A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol 545:595–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Reid G, Flonta ML (2001) Physiology. Cold current in thermoreceptive neurons. Nature 413:480

    Article  PubMed  CAS  Google Scholar 

  125. Reimúndez A, Fernández-Peña C, García G, Fernández R, Ordás P, Gallego R, Pardo-Vazquez JL, Arce V, Viana F, Señaris R (2018) Deletion of the cold thermoreceptor TRPM8 increases heat loss and food intake leading to reduced body temperature and obesity in mice. J Neurosci 38:3643-3656

  126. Romanovsky AA (2014) Skin temperature: its role in thermoregulation. Acta Physiol (Oxf) 210:498–507

    Article  CAS  Google Scholar 

  127. Romanovsky AA (2007) Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 292:R37–R46

    Article  PubMed  CAS  Google Scholar 

  128. Rossato M, Granzotto M, Macchi V, Porzionato A, Petrelli L, Calcagno A, Vencato J, De Stefani D, Silvestrin V, Rizzuto R, Bassetto F, De Caro R, Vettor R (2014) Human white adipocytes express the cold receptor TRPM8 which activation induces UCP1 expression, mitochondrial activation and heat production. Mol Cell Endocrinol 383:137–146

    Article  PubMed  CAS  Google Scholar 

  129. Sanchez E, Fekete C, Lechan RM, Joseph-Bravo P (2007) Cocaine- and amphetamine-regulated transcript (CART) expression is differentially regulated in the hypothalamic paraventricular nucleus of lactating rats exposed to suckling or cold stimulation. Brain Res 1132:120–128

    Article  PubMed  CAS  Google Scholar 

  130. Schafer K, Braun HA, Isenberg C (1986) Effect of menthol on cold receptor activity. Analysis of receptor processes. J Gen Physiol 88:757–776

    Article  PubMed  CAS  Google Scholar 

  131. Seal RP, Wang X, Guan Y, Raja SN, Woodbury CJ, Basbaum AI, Edwards RH (2009) Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 462:651–655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Seidell JC, Muller DC, Sorkin JD, Andres R (1992) Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain: the Baltimore Longitudinal Study on Aging. J Int Assoc Study Obes 16:667–674

    CAS  Google Scholar 

  133. Siemens J, Kamm GB (2018) Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center. Pflugers Arch

  134. Silva JE (2006) Thermogenic mechanisms and their hormonal regulation. Physiol Rev 86:435–464

    Article  PubMed  CAS  Google Scholar 

  135. Song K, Wang H, Kamm GB, Pohle J, Reis FC, Heppenstall P, Wende H, Siemens J (2016) The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353:1393–1398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  136. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  PubMed  CAS  Google Scholar 

  137. Tajino K, Hosokawa H, Maegawa S, Matsumura K, Dhaka A, Kobayashi S (2011) Cooling-sensitive TRPM8 is thermostat of skin temperature against cooling. PLoS One 6:e17504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Tajino K, Matsumura K, Kosada K, Shibakusa T, Inoue K, Fushiki T, Hosokawa H, Kobayashi S (2007) Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses. Am J Physiol Regul Integr Comp Physiol 293:R2128–R2135

    Article  PubMed  CAS  Google Scholar 

  139. Takashima Y, Daniels RL, Knowlton W, Teng J, Liman ER, McKemy DD (2007) Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci 27:14147–14157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Talavera K, Nilius B, Voets T (2008) Neuronal TRP channels: thermometers, pathfinders and life-savers. Trends Neurosci 31:287–295

    Article  PubMed  CAS  Google Scholar 

  141. Tamura Y, Iwasaki Y, Narukawa M, Watanabe T (2012) Ingestion of cinnamaldehyde, a TRPA1 agonist, reduces visceral fats in mice fed a high-fat and high-sucrose diet. J Nutr Sci Vitaminol (Tokyo) 58:9–13

    Article  CAS  Google Scholar 

  142. Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA (2016) Warm-sensitive neurons that control body temperature. Cell 167:47–59 e15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK (2012) Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr Physiol 2:2151–2202

    PubMed  Google Scholar 

  144. Tupone D, Madden CJ, Morrison SF (2014) Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis. Front Neurosci 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  145. Viana F (2016) TRPA1 channels: molecular sentinels of cellular stress and tissue damage. J Physiol 594:4151–4169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Vriens J, Nilius B, Voets T (2014) Peripheral thermosensation in mammals. Nat Rev Neurosci 15:573–589

    Article  PubMed  CAS  Google Scholar 

  147. Vriens J, Voets T (2018) Sensing the heat with TRPM3. Pflugers Arch

  148. Winter Z, Gruschwitz P, Eger S, Touska F, Zimmermann K (2017) Cold temperature encoding by cutaneous TRPA1 and TRPM8-carrying fibers in the mouse. Front Mol Neurosci 10:209

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Xing H, Chen M, Ling J, Tan W, Gu JG (2007) TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 27:13680–13690

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  151. Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, Cohen P, Khandekar MJ, Bostrom P, Mepani RJ, Laznik D, Kamenecka TM, Song X, Liedtke W, Mootha VK, Puigserver P, Griffin PR, Clapham DE, Spiegelman BM (2012) TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151:96–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Ye L, Wu J, Cohen P, Kazak L, Khandekar MJ, Jedrychowski MP, Zeng X, Gygi SP, Spiegelman BM (2013) Fat cells directly sense temperature to activate thermogenesis. Proc Natl Acad Sci U S A 110:12480–12485

    Article  PubMed  PubMed Central  Google Scholar 

  153. Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, Lee SY (2018) Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359:237–241

    Article  PubMed  CAS  Google Scholar 

  154. Zhang YH, Yanase-Fujiwara M, Hosono T, Kanosue K (1995) Warm and cold signals from the preoptic area: which contribute more to the control of shivering in rats? J Physiol 485(Pt 1):195–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Zimmermann K, Lennerz JK, Hein A, Link AS, Kaczmarek JS, Delling M, Uysal S, Pfeifer JD, Riccio A, Clapham DE (2011) Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc Natl Acad Sci U S A 108:18114–18119

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba BL, Raz I, Saad MF, Swinburn BA, Knowler WC, Bogardus C, Ravussin E (1990) Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Phys 259:E650–E657

    CAS  Google Scholar 

  157. Zygmunt PM, Hogestatt ED (2014) Trpa1. Handb Exp Pharmacol 222:583–630

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stuart Ingham for the help with the illustrations, and the members of our laboratories for contributing to the experimental work and participating in fruitful discussions.

Conflict of interest

The authors declare that they have no competing interests.

Funding

The study was supported by projects MINECO SAF2009-11175 (RS) and SAF2016-77233-R (FV) and by the Instituto de Salud Carlos III PI12/0058 (RS) and was cofinanced by the European Regional Development Fund (ERDF) and the Severo Ochoa Programme for Centres of Excellence in R&D (ref. SEV-2013-0317). PO held a predoctoral fellowship MINECO (BES-2011-047063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Viana.

Additional information

This article is part of the special issue on Thermal Biology in Pflügers Archiv - European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Señarís, R., Ordás, P., Reimúndez, A. et al. Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis. Pflugers Arch - Eur J Physiol 470, 761–777 (2018). https://doi.org/10.1007/s00424-018-2145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2145-9

Keywords

Navigation