Pflügers Archiv - European Journal of Physiology

, Volume 470, Issue 2, pp 355–365 | Cite as

Deletion of T-type calcium channels Cav3.1 or Cav3.2 attenuates endothelial dysfunction in aging mice

  • Anne D. Thuesen
  • Kenneth Andersen
  • Kristina S. Lyngsø
  • Mark Burton
  • Charlotte Brasch-Andersen
  • Paul M. Vanhoutte
  • Pernille B. L. HansenEmail author
Molecular and Cellular Mechanisms of Disease
Part of the following topical collections:
  1. Molecular and cellular mechanisms of disease


Impairment of endothelial function with aging is accompanied by reduced nitric oxide (NO) production. T-type Cav3.1 channels augment nitric oxide and co-localize with eNOS. Therefore, the hypothesis was that T-type channels contribute to the endothelial dysfunction of aging. Endothelial function was determined in mesenteric arteries (perfusion) and aortae (isometric contraction) of young and old wild-type (WT), Cav3.1, and Cav3.2 knockout mice. NO production was measured by fluorescence imaging in mesenteric arteries. With age, endothelium-dependent subsequent dilatation (following depolarization with KCl) of mesenteric arteries was diminished in the arteries of WT mice, unchanged in Cav3.2−/− preparations but increased in those of Cav3.1−/− mice. NO synthase inhibition abolished the subsequent dilatation in mesenteric arteries and acetylcholine-induced relaxations in aortae. NO levels were significantly reduced in mesenteric arteries of old compared to young WT mice. In Cav3.1−/− and Cav3.2−/− preparations, NO levels increased significantly with age. Relaxations to acetylcholine were significantly smaller in the aortae of old compared to young WT mice, while such responses were comparable in preparations of young and old Cav3.1−/− and Cav3.2−/− mice. The expression of Cav3.1 was significantly reduced in aortae from aged compared to young WT mice. The level of phosphorylated eNOS was significantly increased in aortae from aged Cav3.1−/− mice. In conclusion, T-type calcium channel-deficient mice develop less age-dependent endothelial dysfunction. Changes in NO levels are involved in this phenomenon in WT and Cav3.1−/− mice. These findings suggest that T-type channels play an important role in age-induced endothelial dysfunction.


Endothelial dysfunction NO T-type calcium channels Vasodilatation 



We would like to thank Vivi Monrad and Mie Rytz for expert technical assistance. Also, we thank Hee-Sup Shin, Center for Cognition and Sociality, Korea, for the Cav3.1−/− mice and Philippe Lory, University de Montpellier, France.


This work was supported by grants from the Danish Medical Research Council (11-107552), The Danish Heart Foundation (11-04-R84-A3492-22663), and Novo Nordic Foundation (13273).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

424_2017_2068_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18 kb)
424_2017_2068_MOESM2_ESM.pptx (278 kb)
ESM 2 (PPTX 278 kb)


  1. 1.
    Abd El-Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, Welsh DG (2013) Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development. Am J Phys Heart Circ Phys 304:H58–H71. Google Scholar
  2. 2.
    Alp NJ, Channon KM (2004) Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol 24:413–420. CrossRefPubMedGoogle Scholar
  3. 3.
    Andersen H, Jaff MG, Hogh D, Vanhoutte P, Hansen PB (2011) Adenosine elicits an eNOS-independent reduction in arterial blood pressure in conscious mice that involves adenosine A2A receptors. Acta Physiol 203:197–207. CrossRefGoogle Scholar
  4. 4.
    Ball CJ, Wilson DP, Turner SP, Saint DA, Beltrame JF (2009) Heterogeneity of L- and T-channels in the vasculature: rationale for the efficacy of combined L- and T-blockade. Hypertension 53:654–660. CrossRefPubMedGoogle Scholar
  5. 5.
    Bjorling K, Morita H, Olsen MF, Prodan A, Hansen PB, Lory P, Holstein-Rathlou NH, Jensen LJ (2013) Myogenic tone is impaired at low arterial pressure in mice deficient in the low-voltage-activated CaV 3.1 T-type Ca(2+) channel. Acta Physiologica (Oxford, England) 207:709–720. CrossRefGoogle Scholar
  6. 6.
    Boittin FX, Gribi F, Serir K, Beny JL (2008) Ca2+-independent PLA2 controls endothelial store-operated Ca2+ entry and vascular tone in intact aorta. Am J Phys Heart Circ Phys 295:H2466–H2474. Google Scholar
  7. 7.
    Boulanger CM, Desta B, Clozel JP, Vanhoutte PM (1994) Chronic treatment with the CA2+ channel inhibitor RO 40-5967 potentiates endothelium-dependent relaxations in the aorta of the hypertensive salt sensitive Dahl rat. Blood Press 3:193–196CrossRefPubMedGoogle Scholar
  8. 8.
    Boulanger CM, Nakashima M, Olmos L, Joly G, Vanhoutte PM (1994) Effects of the Ca2+ antagonist RO 40-5967 on endothelium-dependent responses of isolated arteries. J Cardiovasc Pharmacol 23:869–876CrossRefPubMedGoogle Scholar
  9. 9.
    Braunstein TH, Inoue R, Cribbs L, Oike M, Ito Y, Holstein-Rathlou NH, Jensen LJ (2009) The role of L- and T-type calcium channels in local and remote calcium responses in rat mesenteric terminal arterioles. J Vasc Res 46:138–151. CrossRefPubMedGoogle Scholar
  10. 10.
    Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844CrossRefPubMedGoogle Scholar
  11. 11.
    Cazade M, Bidaud I, Hansen PB, Lory P, Chemin J (2014) 5,6-EET potently inhibits T-type calcium channels: implication in the regulation of the vascular tone. Pflugers Archiv : Eur J Physiol 466:1759–1768. CrossRefGoogle Scholar
  12. 12.
    Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, Williamson RA, Hill JA, Campbell KP (2003) Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science (New York, NY) 302:1416–1418. CrossRefGoogle Scholar
  13. 13.
    Davidge ST, Ojimba J, McLaughlin MK (1998) Vascular function in the vitamin E-deprived rat: an interaction between nitric oxide and superoxide anions. Hypertension 31:830–835CrossRefPubMedGoogle Scholar
  14. 14.
    Deacon K, Knox AJ (2010) Endothelin-1 (ET-1) increases the expression of remodeling genes in vascular smooth muscle through linked calcium and cAMP pathways: role of a phospholipase A(2)(cPLA(2))/cyclooxygenase-2 (COX-2)/prostacyclin receptor-dependent autocrine loop. J Biol Chem 285:25913–25927. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Feletou M, Kohler R, Vanhoutte PM (2012) Nitric oxide: orchestrator of endothelium-dependent responses. Ann Med 44:694–716. CrossRefPubMedGoogle Scholar
  16. 16.
    Fujii K, Ohmori S, Tominaga M, Abe I, Takata Y, Ohya Y, Kobayashi K, Fujishima M (1993) Age-related changes in endothelium-dependent hyperpolarization in the rat mesenteric artery. Am J Phys 265:H509–H516Google Scholar
  17. 17.
    Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J : Off Publ Fed Am Soc Exp Biol 3:2007–2018CrossRefGoogle Scholar
  18. 18.
    Hansen PB, Jensen BL, Andreasen D, Skott O (2001) Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels. Circ Res 89:630–638CrossRefPubMedGoogle Scholar
  19. 19.
    Hansen PB, Poulsen CB, Walter S, Marcussen N, Cribbs LL, Skott O, Jensen BL (2011) Functional importance of L- and P/Q-type voltage-gated calcium channels in human renal vasculature. Hypertension 58:464–470. CrossRefPubMedGoogle Scholar
  20. 20.
    Harraz OF, Abd El-Rahman RR, Bigdely-Shamloo K, Wilson SM, Brett SE, Romero M, Gonzales AL, Earley S, Vigmond EJ, Nygren A, Menon BK, Mufti RE, Watson T, Starreveld Y, Furstenhaupt T, Muellerleile PR, Kurjiaka DT, Kyle BD, Braun AP, Welsh DG (2014) Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res 115:650–661. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Howitt L, Kuo IY, Ellis A, Chaston DJ, Shin HS, Hansen PB, Hill CE (2013) Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles. Cardiovasc Res 98:449–457. CrossRefPubMedGoogle Scholar
  22. 22.
    Howitt L, Matthaei KI, Drummond GR, Hill CE (2014) Nox1 upregulates the function of vascular T-type calcium channels following chronic nitric oxide deficit. Pflugers Archiv : Eur J Physiol.
  23. 23.
    Imaoka Y, Osanai T, Kamada T, Mio Y, Satoh K, Okumura K (1999) Nitric oxide-dependent vasodilator mechanism is not impaired by hypertension but is diminished with aging in the rat aorta. J Cardiovasc Pharmacol 33:756–761CrossRefPubMedGoogle Scholar
  24. 24.
    Kluge MA, Fetterman JL, Vita JA (2013) Mitochondria and endothelial function. Circ Res 112:1171–1188. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Koga T, Takata Y, Kobayashi K, Takishita S, Yamashita Y, Fujishima M (1988) Ageing suppresses endothelium-dependent relaxation and generates contraction mediated by the muscarinic receptors in vascular smooth muscle of normotensive Wistar-Kyoto and spontaneously hypertensive rats. J Hypertens Suppl : Off J Int Soc Hypertens 6:S243–S245CrossRefGoogle Scholar
  26. 26.
    Koh KK, Quon MJ, Lee SJ, Han SH, Ahn JY, Kim JA, Chung WJ, Lee Y, Shin EK (2007) Efonidipine simultaneously improves blood pressure, endothelial function, and metabolic parameters in nondiabetic patients with hypertension. Diabetes Care 30:1605–1607. CrossRefPubMedGoogle Scholar
  27. 27.
    Kung CF, Moreau P, Takase H, Luscher TF (1995) L-NAME hypertension alters endothelial and smooth muscle function in rat aorta. Prevention by trandolapril and verapamil. Hypertens 26:744–751CrossRefGoogle Scholar
  28. 28.
    Lee J, Kim D, Shin HS (2004) Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha1G-subunit of T-type calcium channels. Proc Natl Acad Sci U S A 101:18195–18199. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liu S, Premont RT, Rockey DC (2014) Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein. J Biol Chem 289:18163–18174. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Luscher TF, Vanhoutte PM (1986) Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertens 8:344–348CrossRefGoogle Scholar
  31. 31.
    Matz RL, Schott C, Stoclet JC, Andriantsitohaina R (2000) Age-related endothelial dysfunction with respect to nitric oxide, endothelium-derived hyperpolarizing factor and cyclooxygenase products. Physiol Res / Academia Scientiarum Bohemoslovaca 49:11–18Google Scholar
  32. 32.
    Miller VM, Vanhoutte PM (1985) Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase. Am J Phys 248:H432–H437Google Scholar
  33. 33.
    Mombouli JV, Vanhoutte PM (1993) Purinergic endothelium-dependent and -independent contractions in rat aorta. Hypertension 22:577–583CrossRefPubMedGoogle Scholar
  34. 34.
    Oshima T, Ozono R, Yano Y, Higashi Y, Teragawa H, Miho N, Ishida T, Ishida M, Yoshizumi M, Kambe M (2005) Beneficial effect of T-type calcium channel blockers on endothelial function in patients with essential hypertension. Hypertens Res : Off J Jpn Soc Hypertens 28:889–894. CrossRefGoogle Scholar
  35. 35.
    Pearson PJ, Vanhoutte PM (1993) Vasodilator and vasoconstrictor substances produced by the endothelium. Rev Physiol Biochem Pharmacol 122:1–67CrossRefPubMedGoogle Scholar
  36. 36.
    Poulsen CB, Al-Mashhadi RH, Cribbs LL, Skott O, Hansen PB (2011) T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles. Kidney Int 79:443–451. CrossRefPubMedGoogle Scholar
  37. 37.
    Rapoport RM, Williams SP (1996) Role of prostaglandins in acetylcholine-induced contraction of aorta from spontaneously hypertensive and Wistar-Kyoto rats. Hypertens 28:64–75CrossRefGoogle Scholar
  38. 38.
    Rubanyi GM, Vanhoutte PM (1988) Potassium-induced release of endothelium-derived relaxing factor from canine femoral arteries. Circ Res 62:1098–1103CrossRefPubMedGoogle Scholar
  39. 39.
    Santhanam L, Christianson DW, Nyhan D, Berkowitz DE (2008) Arginase and vascular aging. J Appl Physiol (Bethesda, Md : 1985) 105:1632–1642. CrossRefGoogle Scholar
  40. 40.
    Schjerning J, Uhrenholt TR, Svenningsen P, Vanhoutte PM, Skott O, Jensen BL, Hansen PB (2013) Histamine-dependent prolongation by aldosterone of vasoconstriction in isolated small mesenteric arteries of the mouse. Am J Phys Heart Circ Phys 304:H1094–H1102. Google Scholar
  41. 41.
    Seegers HC, Gross RW, Boyle WA (2002) Calcium-independent phospholipase A(2)-derived arachidonic acid is essential for endothelium-dependent relaxation by acetylcholine. J Pharmacol Exp Ther 302:918–923CrossRefPubMedGoogle Scholar
  42. 42.
    Shi Y, Feletou M, Ku DD, Man RY, Vanhoutte PM (2007) The calcium ionophore A23187 induces endothelium-dependent contractions in femoral arteries from rats with streptozotocin-induced diabetes. Br J Pharmacol 150:624–632. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Shi Y, Man RY, Vanhoutte PM (2008) Two isoforms of cyclooxygenase contribute to augmented endothelium-dependent contractions in femoral arteries of 1-year-old rats. Acta Pharmacol Sin 29:185–192. CrossRefPubMedGoogle Scholar
  44. 44.
    Shi Y, So KF, Man RY, Vanhoutte PM (2007) Oxygen-derived free radicals mediate endothelium-dependent contractions in femoral arteries of rats with streptozotocin-induced diabetes. Br J Pharmacol 152:1033–1041. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shimizu I, Toda N (1986) Alterations with age of the response to vasodilator agents in isolated mesenteric arteries of the beagle. Br J Pharmacol 89:769–778CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sobey CG (2001) Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol 21:28–38CrossRefPubMedGoogle Scholar
  47. 47.
    Svenningsen P, Andersen K, Thuesen AD, Shin HS, Vanhoutte PM, Skott O, Jensen BL, Hill C, Hansen PB (2014) T-type Ca(2+) channels facilitate NO-formation, vasodilatation and NO-mediated modulation of blood pressure. Pflugers Archiv : Eur J Physiol 466:2205–2214. CrossRefGoogle Scholar
  48. 48.
    Tang EH, Leung FP, Huang Y, Feletou M, So KF, Man RY, Vanhoutte PM (2007) Calcium and reactive oxygen species increase in endothelial cells in response to releasers of endothelium-derived contracting factor. Br J Pharmacol 151:15–23. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Thors B, Halldorsson H, Thorgeirsson G (2004) Thrombin and histamine stimulate endothelial nitric-oxide synthase phosphorylation at Ser1177 via an AMPK mediated pathway independent of PI3K-Akt. FEBS Lett 573:175–180. CrossRefPubMedGoogle Scholar
  50. 50.
    van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-Callender M, Erusalimsky JD, Quaschning T, Malinski T, Gygi D, Ullrich V, Luscher TF (2000) Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 192:1731–1744CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Vanhoutte PM (2013) One or two, does it matter as long as the arterial wall is coxygenated? Hypertens 62:244–246. CrossRefGoogle Scholar
  52. 52.
    Wang L, Yin J, Nickles HT, Ranke H, Tabuchi A, Hoffmann J, Tabeling C, Barbosa-Sicard E, Chanson M, Kwak BR, Shin HS, Wu S, Isakson BE, Witzenrath M, de Wit C, Fleming I, Kuppe H, Kuebler WM (2012) Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest 122:4218–4230. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Widlansky ME, Gutterman DD (2011) Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 15:1517–1530. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wong MS, Man RY, Vanhoutte PM (2010) Calcium-independent phospholipase A(2) plays a key role in the endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Am J Phys Heart Circ Phys 298:H1260–H1266. Google Scholar
  55. 55.
    Yang D, Feletou M, Boulanger CM, Wu HF, Levens N, Zhang JN, Vanhoutte PM (2002) Oxygen-derived free radicals mediate endothelium-dependent contractions to acetylcholine in aortas from spontaneously hypertensive rats. Br J Pharmacol 136:104–110. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhou E, Qing D, Li J (2010) Age-associated endothelial dysfunction in rat mesenteric arteries: roles of calcium-activated K(+) channels (K(ca)). Physiol Res / Academia Scientiarum Bohemoslovaca 59:499–508Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Anne D. Thuesen
    • 1
  • Kenneth Andersen
    • 1
  • Kristina S. Lyngsø
    • 1
  • Mark Burton
    • 3
  • Charlotte Brasch-Andersen
    • 3
  • Paul M. Vanhoutte
    • 2
  • Pernille B. L. Hansen
    • 1
    • 4
    Email author
  1. 1.Cardiovascular and Renal ResearchUniversity of Southern DenmarkOdense CDenmark
  2. 2.State Key Laboratory for Biopharmaceutical Technology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineUniversity of Hong KongHong KongChina
  3. 3.Department of Clinical GeneticOdense University HospitalOdenseDenmark
  4. 4.Cardiovascular and Metabolic Disease Innovative MedicinesAstraZenecaGothenburgSweden

Personalised recommendations