Pflügers Archiv - European Journal of Physiology

, Volume 469, Issue 12, pp 1567–1577 | Cite as

TRPC6 channels modulate the response of pancreatic stellate cells to hypoxia

  • Nikolaj Nielsen
  • Kateryna Kondratska
  • Tobias Ruck
  • Benedikt Hild
  • Ilya Kovalenko
  • Sandra Schimmelpfennig
  • Jana Welzig
  • Sarah Sargin
  • Otto Lindemann
  • Sven Christian
  • Sven G. Meuth
  • Natalia Prevarskaya
  • Albrecht SchwabEmail author
Ion channels, receptors and transporters
Part of the following topical collections:
  1. Ion channels, receptors and transporters


Pancreatic cancer is characterized by a massive fibrosis (desmoplasia), which is primarily caused by activated pancreatic stellate cells (PSCs). This leads to a hypoxic tumor microenvironment further reinforcing the activation of PSCs by stimulating their secretion of growth factors and chemokines. Since many of them elicit their effects via G-protein-coupled receptors (GPCRs), we tested whether TRPC6 channels, effector proteins of many G-protein-coupled receptor pathways, are required for the hypoxic activation of PSCs. Thus far, the function of ion channels in PSCs is virtually unexplored. qPCR revealed TRPC6 channels to be one of the most abundant TRPC channels in primary cultures of murine PSCs. TRPC6 channel function was assessed by comparing PSCs from TRPC6−/− mice and wildtype (wt) littermates. Cell migration, Ca2+ signaling, and cytokine secretion were analyzed as readout for PSC activation. Hypoxia was induced by incubating PSCs for 24 h in 1% O2 or chemically with dimethyloxalylglycine (DMOG). PSCs migrate faster in response to hypoxia. Due to reduced autocrine stimulation, TRPC6−/− PSCs fail to increase their rate of migration to the same level as wt PSCs under hypoxic conditions. This defect could not be overcome by the stimulation with platelet-derived growth factor. In line with these results, calcium influx is increased in wt but not TRPC6−/− PSCs under hypoxia. We conclude that TRPC6 channels of PSCs are major effector proteins in an autocrine stimulation pathway triggered by hypoxia.


TRPC6 channel Pancreatic stellate cell Migration Tumor microenvironment Hypoxia 



This work was supported by the Marie Curie Initial Training Network IonTraC (FP7-PEOPLE-2011-ITN grant agreement no. 289648) and Deutsche Forschungsgemeinschaft, Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, Germany, and DFG SCHW 407/17-1.

Compliance with Ethical Standards

Conflicts of Interest

At the time of the project SC and IK were employees of Bayer Pharma AG. It did not impact the study design nor data interpretation. Other authors do not have a conflict of interest.


  1. 1.
    Ansari D, Carvajo M, Bauden M, Andersson R (2017) Pancreatic cancer stroma: controversies and current insights. Scand J Gastroenterol 52:641–646CrossRefPubMedGoogle Scholar
  2. 2.
    Apte M, Pirola RC, Wilson JS (2015) Pancreatic stellate cell: physiologic role, role in fibrosis and cancer. Curr Opin Gastroenterol 31:416–423CrossRefPubMedGoogle Scholar
  3. 3.
    Bijlsma MF, van Laarhoven HW (2015) The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: a systematic review and critical appraisal. Cancer Metastasis Rev 34:97–114CrossRefPubMedGoogle Scholar
  4. 4.
    Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, Reddy DN, Talukdar R (2017) Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J Gastroenterol 23:382–405CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, Pattisapu JV, Kyriazis GA, Sugaya K, Bushnev S, Lathia JD, Rich JN, Chan SL (2010) Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res 70:418–427CrossRefPubMedGoogle Scholar
  6. 6.
    Couvelard A, O'Toole D, Leek R, Turley H, Sauvanet A, Degott C, Ruszniewski P, Belghiti J, Harris AL, Gatter K, Pezzella F (2005) Expression of hypoxia-inducible factors is correlated with the presence of a fibrotic focus and angiogenesis in pancreatic ductal adenocarcinomas. Histopathology 46:668–676CrossRefPubMedGoogle Scholar
  7. 7.
    Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol Cell Biol 25:6980–6989CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dietrich A, Gudermann T (2014) TRPC6: physiological function and pathophysiological relevance. Handb Exp Pharmacol 222:157–188CrossRefPubMedGoogle Scholar
  9. 9.
    Djamgoz MB, Coombes RC, Schwab A (2014) Ion transport and cancer: from initiation to metastasis. Philos Trans R Soc Lond Ser B Biol Sci 369:20130092CrossRefGoogle Scholar
  10. 10.
    Eguchi D, Ikenaga N, Ohuchida K, Kozono S, Cui L, Fujiwara K, Fujino M, Ohtsuka T, Mizumoto K, Tanaka M (2013) Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor. J Surg Res 181:225–233CrossRefPubMedGoogle Scholar
  11. 11.
    Elvidge GP, Glenny L, Appelhoff RJ, Ratcliffe PJ, Ragoussis J, Gleadle JM (2006) Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J Biol Chem 281:15215–15226CrossRefPubMedGoogle Scholar
  12. 12.
    Erkan M, Reiser-Erkan C, Michalski CW, Kong B, Esposito I, Friess H, Kleeff J (2012) The impact of the activated stroma on pancreatic ductal adenocarcinoma biology and therapy resistance. Curr Mol Med 12:288–303CrossRefPubMedGoogle Scholar
  13. 13.
    Fabian A, Fortmann T, Bulk E, Bomben VC, Sontheimer H, Schwab A (2011) Chemotaxis of MDCK-F cells toward fibroblast growth factor-2 depends on transient receptor potential canonical channel 1. Pflugers Arch 461:295–306CrossRefPubMedGoogle Scholar
  14. 14.
    Fabian A, Bertrand J, Lindemann O, Pap T, Schwab A (2012) Transient receptor potential canonical channel 1 impacts on mechanosignaling during cell migration. Pflugers Arch 464:623–630CrossRefPubMedGoogle Scholar
  15. 15.
    Fels B, Nielsen N, Schwab A (2016) Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. Eur Biophys J 45:657–670CrossRefPubMedGoogle Scholar
  16. 16.
    Ferdek PE, Jakubowska MA, Gerasimenko JV, Gerasimenko OV, Petersen OH (2016) Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake. J Physiol 594:6147–6164CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ferdek PE, Jakubowska MA (2017) Biology of pancreatic stellate cells-more than just pancreatic cancer. Pflugers ArchGoogle Scholar
  18. 18.
    Haanes KA, Schwab A, Novak I (2012) The P2X7 receptor supports both life and death in fibrogenic pancreatic stellate cells. PLoS One 7:e51164CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  20. 20.
    Haugk B (2010) Pancreatic intraepithelial neoplasia-can we detect early pancreatic cancer? Histopathology 57:503–514CrossRefPubMedGoogle Scholar
  21. 21.
    Hill C, Wurfel A, Heger J, Meyering B, Schluter KD, Weber M, Ferdinandy P, Aronheim A, Schulz R, Euler G (2013) Inhibition of AP-1 signaling by JDP2 overexpression protects cardiomyocytes against hypertrophy and apoptosis induction. Cardiovasc Res 99:121–128CrossRefPubMedGoogle Scholar
  22. 22.
    Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263CrossRefPubMedGoogle Scholar
  23. 23.
    Iyer SC, Kannan A, Gopal A, Devaraj N, Halagowder D (2015) Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition. Exp Cell Res 336:66–75CrossRefPubMedGoogle Scholar
  24. 24.
    Jakubowska MA, Ferdek PE, Gerasimenko OV, Gerasimenko JV, Petersen OH (2016) Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation. Open Biol 6Google Scholar
  25. 25.
    Johnsen IK, Slawik M, Shapiro I, Hartmann MF, Wudy SA, Looyenga BD, Hammer GD, Reincke M, Beuschlein F (2006) Gonadectomy in mice of the inbred strain CE/J induces proliferation of sub-capsular adrenal cells expressing gonadal marker genes. J Endocrinol 190:47–57CrossRefPubMedGoogle Scholar
  26. 26.
    Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48:919–922CrossRefPubMedGoogle Scholar
  27. 27.
    Li S, Wang J, Wei Y, Liu Y, Ding X, Dong B, Xu Y, Wang Y (2015) Crucial role of TRPC6 in maintaining the stability of HIF-1alpha in glioma cells under hypoxia. J Cell Sci 128:3317–3329CrossRefPubMedGoogle Scholar
  28. 28.
    Lindemann O, Umlauf D, Frank S, Schimmelpfennig S, Bertrand J, Pap T, Hanley PJ, Fabian A, Dietrich A, Schwab A (2013) TRPC6 regulates CXCR2-mediated chemotaxis of murine neutrophils. J Immunol 190:5496–5505CrossRefPubMedGoogle Scholar
  29. 29.
    Liu X, Cheng KT, Bandyopadhyay BC, Pani B, Dietrich A, Paria BC, Swaim WD, Beech D, Yildrim E, Singh BB, Birnbaumer L, Ambudkar IS (2007) Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1−/− mice. Proc Natl Acad Sci U S A 104:17542–17547Google Scholar
  30. 30.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT Method. Methods 25:402–408Google Scholar
  31. 31.
    Lunardi S, Muschel RJ, Brunner TB (2014) The stromal compartments in pancreatic cancer: are there any therapeutic targets? Cancer Lett 343:147–155CrossRefPubMedGoogle Scholar
  32. 32.
    Masamune A, Shimosegawa T (2015) Pancreatic stellate cells: a dynamic player of the intercellular communication in pancreatic cancer. Clin Res Hepatol Gastroenterol 39(Suppl 1):S98–103CrossRefPubMedGoogle Scholar
  33. 33.
    Nielsen N, Lindemann O, Schwab A (2014) TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 171:5524–5540CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74:2913–2921CrossRefPubMedGoogle Scholar
  35. 35.
    Raykov Z, Grekova SP, Bour G, Lehn JM, Giese NA, Nicolau C, Aprahamian M (2014) Myo-inositol trispyrophosphate-mediated hypoxia reversion controls pancreatic cancer in rodents and enhances gemcitabine efficacy. Int J Cancer 134:2572–2582CrossRefPubMedGoogle Scholar
  36. 36.
    Rebours V, Albuquerque M, Sauvanet A, Ruszniewski P, Levy P, Paradis V, Bedossa P, Couvelard A (2013) Hypoxia pathways and cellular stress activate pancreatic stellate cells: development of an organotypic culture model of thick slices of normal human pancreas. PLoS One 8:e76229CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sada M, Ohuchida K, Horioka K, Okumura T, Moriyama T, Miyasaka Y, Ohtsuka T, Mizumoto K, Oda Y, Nakamura M (2016) Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility. Cancer Lett 372:210–218CrossRefPubMedGoogle Scholar
  38. 38.
    Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A (2005) Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 567:225–238CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Storch U, Forst AL, Philipp M, Gudermann T, Mederos y Schnitzler M (2012) Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J Biol Chem 287:3530–3540CrossRefPubMedGoogle Scholar
  40. 40.
    Storck H, Hild B, Schimmelpfennig S, Sargin S, Nielsen N, Zaccagnino A, Budde T, Novak I, Kalthoff H, Schwab A (2017) Ion channels in control of pancreatic stellate cell migration. Oncotarget 8:769–784PubMedGoogle Scholar
  41. 41.
    Varga-Szabo D, Authi KS, Braun A, Bender M, Ambily A, Hassock SR, Gudermann T, Dietrich A, Nieswandt B (2008) Store-operated Ca2+ entry in platelets occurs independently of transient receptor potential (TRP) C1. Pflugers Arch 457:377–387CrossRefPubMedGoogle Scholar
  42. 42.
    Watanabe S, Nagashio Y, Asaumi H, Nomiyama Y, Taguchi M, Tashiro M, Kihara Y, Nakamura H, Otsuki M (2004) Pressure activates rat pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 287:G1175–G1181CrossRefPubMedGoogle Scholar
  43. 43.
    Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Mederos y Schnitzler M, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T (2006) Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci U S A 103:19093–19098CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Weissmann N, Sydykov A, Kalwa H, Storch U, Fuchs B, Mederos y Schnitzler M, Brandes RP, Grimminger F, Meissner M, Freichel M, Offermanns S, Veit F, Pak O, Krause KH, Schermuly RT, Brewer AC, Schmidt HH, Seeger W, Shah AM, Gudermann T, Ghofrani HA, Dietrich A (2012) Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat Commun 3:649CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Won JH, Zhang Y, Ji B, Logsdon CD, Yule DI (2011) Phenotypic changes in mouse pancreatic stellate cell Ca2+ signaling events following activation in culture and in a disease model of pancreatitis. Mol Biol Cell 22:421–436CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhou X, Ye Y, Sun Y, Li X, Wang W, Privratsky B, Tan S, Zhou Z, Huang C, Wei YQ, Birnbaumer L, Singh BB, Wu M (2015) Transient receptor potential channel 1 deficiency impairs host defense and proinflammatory responses to bacterial infection by regulating protein kinase C alpha signaling. Mol Cell Biol 35:2729–2739CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Nikolaj Nielsen
    • 1
  • Kateryna Kondratska
    • 2
  • Tobias Ruck
    • 3
  • Benedikt Hild
    • 1
  • Ilya Kovalenko
    • 4
    • 5
  • Sandra Schimmelpfennig
    • 1
  • Jana Welzig
    • 1
  • Sarah Sargin
    • 1
  • Otto Lindemann
    • 1
  • Sven Christian
    • 4
  • Sven G. Meuth
    • 3
  • Natalia Prevarskaya
    • 2
  • Albrecht Schwab
    • 1
    Email author
  1. 1.Institute of Physiology IIWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and TherapeuticsUniversité Lille 1Villeneuve-d’AscqFrance
  3. 3.Department of Neurology, Albert-Schweitzer-Campus 1, Building A10Westfälische Wilhelms-Universität MünsterMünsterGermany
  4. 4.Bayer-Pharma AGBerlinGermany
  5. 5.Cancer CenterUniversity of MichiganAnn ArborUSA

Personalised recommendations