Advertisement

Physiome approach for the analysis of vascular flow reserve in the heart and brain

  • Kyung Eun Lee
  • Ah-Jin Ryu
  • Eun-Seok Shin
  • Eun Bo ShimEmail author
Invited Review

Abstract

This work reviews the key aspects of coronary and neurovascular flow reserves with an emphasis on physiomic modeling characteristics by the use of a variety of numerical approaches. First, we explain the definition of fractional flow reserve (FFR) in coronary artery and introduce its clinical significance. Then, computational researches for obtaining FFR are reviewed, and their clinical outcomes are compared. In the case of cerebrovascular reserve (CVR), in spite of substantial progress in the simulation of cerebral hemodynamics, only a few computational studies exist. Thus, we discuss the limitations of CVR simulation study and suggest the challenging issue to overcome these. Also, the future direction of physiomic researches for the flow reserves in coronary arteries and cerebral arteries is described. Also, we introduce a machine learning algorithm trained by the existing physiomic simulation data of flow reserve and suggest a prospective research direction related to this.

Keywords

Flow reserve Coronary artery Cerebrovascular system Physiomic approach 

Notes

Acknowledgements

The authors thank all our lab members for their supports. And we thank the anonymous reviewers and editors for their valuable comments.

Authors’ contributions

KE Lee, AJ Ryu, ES Shin, and EB Shim all participated in the study. All authors read and approved the final manuscript.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The data is deposited in Biosystems Engineering Lab of Kangwon National University. Please contact the correspondence author Eun Bo Shim, ebshim@kangwon.ac.kr, for the usage of data.

Ethics approval and consent to participate

The subjects all gave their written informed consent in accordance with local ethics committee of Kangwon National University.

The data used in this research has been approved by the ethics committee of Kangwon National University.

Funding

This work was supported by the National Research foundation of Korea (NRF) grant (NRF-2015R1A2A1A0100774).

References

  1. 1.
    Adiputra Y, Chen SL (2015) Clinical relevance of coronary fractional flow reserve: art-of-state. Chin Med J 128(10):1399–1406. doi: 10.4103/0366-6999.156805 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alastruey J, Parker KH, Peiró J, Byrd SM, Sherwin SJ (2007) Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech 40(8):1794–1805. doi: 10.1016/j.jbiomech.2006.07.008 CrossRefPubMedGoogle Scholar
  3. 3.
    Berry C, van’t Veer M, Witt N, Kala P, Bocek O, Pyxaras SA, McClure JD, Fearon WF, Barbato E, Tonino PA, De Bruyne B, Pijls NH, Oldroyd KG (2013) VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice): a multicenter study in consecutive patients. J Am Coll Cardiol 61(13):1421–1427. doi: 10.1016/j.jacc.2012.09.065 CrossRefPubMedGoogle Scholar
  4. 4.
    Coenen A, Lubbers MM, Kurata A, Kono A, Dedic A, Chelu RG, Dijkshoorn ML, Gijsen FJ, Ouhlous M, van Geuns RM (2015) Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 274(3):674–683. doi: 10.1148/radiol.14140992 CrossRefPubMedGoogle Scholar
  5. 5.
    Deng SB, Jing XD, Wang J, Huang C, Xia S, Du JL, Liu YJ, She Q (2015) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in coronary artery disease: a systematic review and meta-analysis. Int J Cardiol 184:703–709. doi: 10.1016/j.ijcard.2015.03.025 CrossRefPubMedGoogle Scholar
  6. 6.
    Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G (2015) Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study. Eur Heart J 36(47):3359–3367. doi: 10.1093/eurheartj/ehv444 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Douglas PS, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G, Hink U, Schuchlenz HW, Feuchtner G, Gilard M, Andreini D, Jensen JM, Hadamitzky M, Chiswell K, Cyr D, Wilk A, Wang F, Rogers C, Hlatky MA (2016) 1-Year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study. J Am Coll Cardiol 68(5):435–445. doi: 10.1016/j.jacc.2016.05.057 CrossRefPubMedGoogle Scholar
  8. 8.
    Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33(1):87–94CrossRefPubMedGoogle Scholar
  9. 9.
    Grinberg L, Anor T, Cheever E, Madsen JR, Karniadakis GE (2009) Simulation of the human intracranial arterial tree. Philos Trans A Math Phys Eng Sci 367(1896):2371–2386. doi: 10.1098/rsta.2008.0307 CrossRefPubMedGoogle Scholar
  10. 10.
    Hickman M, Jeetley P, Senior R (2004) Usefulness of myocardial contrast echocardiography derived coronary flow reserve to accurately determine severity of left anterior descending coronary artery stenosis. Am J Cardiol 93(9):1159–1162. doi: 10.1016/j.amjcard.2004.01.047 CrossRefPubMedGoogle Scholar
  11. 11.
    Hlatky MA, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G (2015) Quality-of-life and economic outcomes of assessing fractional flow reserve with computed tomography angiography: PLATFORM. J Am Coll Cardiol 66(21):2315–2323. doi: 10.1016/j.jacc.2015.09.051 CrossRefPubMedGoogle Scholar
  12. 12.
    Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schobinger M, Thomas F, Sharma P, Comaniciu D (2016) A machine learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 121(1):42–52. doi: 10.1152/japplphysiol.00752.2015 CrossRefPubMedGoogle Scholar
  13. 13.
    Kent S, Briggs A, Eckermann S, Berry C (2013) Are value of information methods ready for prime time? An application to alternative treatment strategies for NSTEMI patients. Int J Technol Assess Health Care 29(4):435–442. doi: 10.1017/S0266462313000433 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kim KH, Doh JH, Koo BK, Min JK, Erglis A, Yang HM, Park KW, Lee HY, Kang HJ, Kim YJ (2014) A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve. JACC Cardiovasc Interv. 7(1):72–78. doi: 10.1016/j.jcin.2013.05.024 CrossRefPubMedGoogle Scholar
  15. 15.
    Ko NU, Achrol AS, Chopra M, Saha M, Gupta D, Smith WS, Higashida RT, Young WL (2005) Cerebral blood flow changes after endovascular treatment of cerebrovascular stenoses. AJNR Am J Neuroradiol 26(3):538–542PubMedGoogle Scholar
  16. 16.
    Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58(19):1989–1997. doi: 10.1016/j.jacc.2011.06.066 CrossRefPubMedGoogle Scholar
  17. 17.
    Kruk M, Wardziak Ł, Demkow M, Pleban W, Pręgowski J, Dzielińska Z, Witulski M, Witkowski A, Rużyłło W, Kępka C (2016) Workstation-based calculation of CTA-based FFR for intermediate stenosis. JACC Cardiovasc Imaging. 9(6):690–699. doi: 10.1016/j.jcmg.2015.09.019 CrossRefPubMedGoogle Scholar
  18. 18.
    Kwon SS, Chung EC, Park JS, Kim GT, Kim JW, Kim KH, Shin ES, Shim EB (2014) A novel patient-specific model to compute coronary fractional flow reserve. Prog Biophys Mol Biol 116(1):48–55. doi: 10.1016/j.pbiomolbio.2014.09.003 CrossRefPubMedGoogle Scholar
  19. 19.
    Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, Junejo S, Ahmed N, Lee MM, Shaukat A, O’Donnell A, Nam J, Briggs A, Henderson R, McConnachie A, Berry C (2015) Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: the British Heart Foundation FAMOUS-NSTEMI randomized trial. Eur Heart J 36(2):100–111. doi: 10.1093/eurheartj/ehu338 CrossRefPubMedGoogle Scholar
  20. 20.
    Lee KE, Kwon SS, Ji YC, Shin ES, Choi JH, Kim SJ, Shim EB (2016a) Estimation of the flow resistances exerted in coronary arteries using a vessel length-based method. Pflugers Arch 468(8):1449–1458. doi: 10.1007/s00424-016-1831-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Lee KE, Kim GT, Lee JS, Chung JH, Shin ES, Shim EB (2016b) A patient-specific virtual stenotic model of the coronary artery to analyze the relationship between fractional flow reserve and wall shear stress. Int J Cardiol 222:799–805. doi: 10.1016/j.ijcard.2016.07.153 CrossRefPubMedGoogle Scholar
  22. 22.
    Leipsic J, Yang TH, Thompson A, Koo BK, Mancini GJ, Taylor C, Budoff MJ, Part HB, Berman DS, Min JK (2014) CT angiography (CTA) and diagnostic performance of noninvasive fractional flow reserve: results from the Determination of Fractional Flow Reserve by Anatomic CTA (DeFACTO) study. Am J Roentqenol 202(5):989–994. doi: 10.2214/AJR.13.11441 CrossRefGoogle Scholar
  23. 23.
    Leng X, Scalzo F, Ip HL, Johnson M, Fong AK, Fan FS, Chen X, Soo YO, Miao Z, Liu L, Feldmann E, Leung TW, Liebeskind DS, Wong KS (2014a) Computational fluid dynamics modeling of symptomatic intracranial atherosclerosis may predict risk of stroke recurrence. PLoS One 9(5):e97531CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Leng X, Wong KS, Liebeskind DS (2014b) Evaluating intracranial atherosclerosis rather than intracranial stenosis. Stroke 45(2):645–651CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liebeskind DS, Feldmann E (2013) Fractional flow in cerebrovascular disorders. Interv Neurol 1(2):87–99CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu J, Yan Z, Pu Y, Shiu WS, Wu J, Chen R, Leng X, Qin H, Liu X, Jia B, Song L, Wang Y, Miao Z, Wang Y, Liu L, Cai XC (2016) Functional assessment of cerebral artery stenosis: a pilot study based on computational fluid dynamics. J Cereb Blood Flow Metab 4Google Scholar
  27. 27.
    Magosso E, Ursino M (2001) A mathematical model of CO2 effect on cardiovascular regulation. Am J Physiol Heart Circ Physiol 281(5):H2036–H2052PubMedGoogle Scholar
  28. 28.
    Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Am D, Apruzzese P (2012a) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308(12):1237–1245. doi: 10.1001/2012.jama.11274 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Min JK, Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, Defrance T, Leipsic J (2012b) Effect of image quality on diagnostic accuracy of noninvasive fractional flow reserve: results from the prospective multicenter international DISCOVER-FLOW study. J Cardiovasc Comput Tomogr 6(3):191–199. doi: 10.1016/j.jcct.2012.04.010 CrossRefPubMedGoogle Scholar
  30. 30.
    Min JK, Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning AM, DeFrance T, Lansky A (2012c) Usefulness of noninvasive fractional flow reserve computed from coronary computed tomographic angiograms for intermediate stenoses confirmed by quantitative coronary angiography. Am J Cardiol 110(7):971–976. doi: 10.1016/j.amjcard.2012.05.033 CrossRefPubMedGoogle Scholar
  31. 31.
    Min JK, Taylor CA, Achenbach S, Koo BK, Leipsic J, Nørgaard BL, Pijls NJ, De Bruyne B (2015) Noninvasive fractional flow reserve derived from coronary CT angiography: clinical data and scientific principles. JACC Cardiovasc Imaging 8(10):1209–1222. doi: 10.1016/j.jcmg.2015.08.006 CrossRefPubMedGoogle Scholar
  32. 32.
    Miyoshi T, Osawa K, Hiroshi I, Kanazawa S, Kimura T, Shiomi H, Kuribayashi S, Jinzaki M, Kawamura A, Bezerra H (2014) Non-invasive computed fractional flow reserve from computed tomography (CT) for diagnosing coronary artery disease—Japanese results from NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). Circulation J 79(2):406–412. doi: 10.1253/circj.CJ-14-1051 CrossRefGoogle Scholar
  33. 33.
    Moore S, David T (2006) Auto-regulated blood flow in the cerebral-vasculature. Journal of Biomechanical Science and Engineering 1(1):93–106. doi: 10.1299/jbse.1.93 CrossRefGoogle Scholar
  34. 34.
    Moore SM, Moorhead KT, Chase JG, David T, Fink J (2005) One-dimensional and three-dimensional models of cerebrovascular flow. J Biomech Eng 127(3):440–449CrossRefPubMedGoogle Scholar
  35. 35.
    Morris PD, Ryan D, Morton AC, Lycett R, Lawford PV, Hose DR, Gunn JP (2013) Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study. JACC Cardiovasc Interv. 6(2):149–157. doi: 10.1016/j.jcin.2012.08.024 CrossRefPubMedGoogle Scholar
  36. 36.
    Morris PD, van de Vosse FN, Lawford PV, Hose DR, Gunn JP (2015) “Virtual” (computed) fractional flow reserve: current challenges and limitations. JACC Cardiovasc Interv 8(8):1009–1017. doi: 10.1016/j.jcin.2015.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Moir S, Haluska BA, Jenkins C, McNab D, Marwick TH (2005) Myocardial blood volume and perfusion reserve responses to combined dipyridamole and exercise stress: a quantitative approach to contrast stress echocardiography. J Am Soc Echocardiogr 18(11):1187–1193. doi: 10.1016/j.echo.2005.04.004 CrossRefPubMedGoogle Scholar
  38. 38.
    Nakazato R, Park HB, Berman DS, Gransar H, Koo BK, Erglis A, Lin FY, Dunning AM, Budoff MJ, Malpeso J (2013) Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity results from the DeFACTO study. Circulation: Cardiovascular Imaging 6(6):881–889. doi: 10.1161/CIRCIMAGING.113.000297 PubMedGoogle Scholar
  39. 39.
    Nam J, Briggs A, Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, Junejo S, Eteiba H, Petrie MC, Lindsay M, Watkins S, Corbett S, O’Rourke B, O’Donnell A, Stewart A, Hannah A, McConnachie A, Henderson R, Berry C (2015) Fractional flow reserve (FFR) versus angiography in guiding management to optimise outcomes in non-ST segment elevation myocardial infarction (FAMOUS-NSTEMI) developmental trial: cost-effectiveness using a mixed trial- and model-based methods. Cost Eff Resour Alloc 13:19. doi: 10.1186/s12962-015-0045-9 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nijjer SS, Sen S, Petraco R, Escaned J, Echavarria-Pinto M, Broyd C, Al-Lamee R, Foin N, Foale RA, Malik IS, Mikhail GW, Sethi AS, Al-Bustami M, Kaprielian RR, Khan MA, Baker CS, Bellamy MF, Hughes AD, Mayet J, Francis DP, Di Mario C, Davies JE (2014) Pre-angioplasty instantaneous wave-free ratio pullback provides virtual intervention and predicts hemodynamic outcome for serial lesions and diffuse coronary artery disease. JACC Cardiovasc Interv. 7(12):1386–1396. doi: 10.1016/j.jcin.2014.06.015 CrossRefPubMedGoogle Scholar
  41. 41.
    Nijjer SS, Sen S, Petraco R, Mayet J, Francis DP, Davies JE (2015) The instantaneous wave-free ratio (iFR) pullback: a novel innovation using baseline physiology to optimise coronary angioplasty in tandem lesions. Cardiovasc Revasc Med 16(3):167–171. doi: 10.1016/j.carrev.2015.01.006 CrossRefPubMedGoogle Scholar
  42. 42.
    Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63(12):1145–1155. doi: 10.1016/j.jacc.2013.11.043 CrossRefPubMedGoogle Scholar
  43. 43.
    Papafaklis MI, Muramatsu T, Ishibashi Y, Lakkas LS, Nakatani S, Bourantas CV, Ligthart J, Onuma Y, Echavarria-Pinto M, Tsirka G, Kotsia A, Nikas DN, Mogabgab O, van Geuns RJ, Naka KK, Fotiadis DI, Brilakis ES, Garcia-Garcia HM, Escaned J, Zijlstra F, Michalis LK, Serruys PW (2014) Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire-fractional flow reserve. EuroIntervention. 10(5):574–583. doi: 10.4244/EIJY14M07_01 CrossRefPubMedGoogle Scholar
  44. 44.
    Peiro J, Sherwin S, Parker K, Franke V, Formaggia L, Lamponi D, Quarteroni A. (2003) Numerical simulation of arterial pulse propagation using one-dimensional models. Advances in Computational Bioengineering 6Google Scholar
  45. 45.
    Perdikaris P, Grinberg L, Karniadakis GE (1994) Multiscale modeling and simulation of brain blood flow. Phys Fluids 28(2):021304CrossRefGoogle Scholar
  46. 46.
    Petraco R, Park JJ, Sen S, Nijjer SS, Malik IS, Echavarría-Pinto M, Asrress KN, Nam CW, Macías E, Foale RA, Sethi A, Mikhail GW, Kaprielian R, Baker CS, Lefroy D, Bellamy M, Al-Bustami M, Khan MA, Gonzalo N, Hughes AD, Francis DP, Mayet J, Di Mario C, Redwood S, Escaned J, Koo BK, Davies JE (2013) Hybrid iFR-FFR decision-making strategy: implications for enhancing universal adoption of physiology-guided coronary revascularisation. EuroIntervention 8(10):1157–1165. doi: 10.4244/EIJV8I10A179 CrossRefPubMedGoogle Scholar
  47. 47.
    Pijls NH (2000) De Bruyne B. Coronary pressure Second edition 195:1–448. doi: 10.1007/978-94-015-9564-3 CrossRefGoogle Scholar
  48. 48.
    Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, el Gamal MI (1995) Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92(11):3183–3193CrossRefPubMedGoogle Scholar
  49. 49.
    Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek J, Koolen JJ, Koolen JJ (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334(26):1703–1708. doi: 10.1056/NEJM199606273342604 CrossRefPubMedGoogle Scholar
  50. 50.
    Qi X, Zhou F, Wan J, Zhou L, Xu W, Cheng J, Mao Y, Ma W, Ji W, Yang C (2014) Noninvasive assessment of cerebral artery stenoses from anatomic computed tomography angiography. Postepy Kardiol Interwencyjnej 10(1):18–20PubMedPubMedCentralGoogle Scholar
  51. 51.
    Renker M, Schoepf UJ, Wang R, Meinel FG, Rier JD, Bayer RR, Möllmann H, Hamm CW, Steinberg DH, Baumann S (2014) Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol 114(9):1303–1308. doi: 10.1016/j.amjcard.2014.07.064 CrossRefPubMedGoogle Scholar
  52. 52.
    Sankaran S, Leo G, Taylor CA (2015) Impact of geometric uncertainty on hemodynamic simulations using machine learning. Comput Methods Appl Mech Eng 297:167–190. doi: 10.1016/j.cma.2015.08.014 CrossRefGoogle Scholar
  53. 53.
    Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 59(15):1392–1402. doi: 10.1016/j.jacc.2011.11.003 CrossRefPubMedGoogle Scholar
  54. 54.
    Steiner LA, Andrews PJ (2006) Monitoring the injured brain: ICP and CBF. Br J Anaesth 97(1):26–38. doi: 10.1093/bja/ael110 CrossRefPubMedGoogle Scholar
  55. 55.
    Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61(22):2233–2241. doi: 10.1016/j.jacc.2012.11.083 CrossRefPubMedGoogle Scholar
  56. 56.
    Thompson AG, Raju R, Blanke P, Yang TH, Mancini GBJ, Budoff MJ, Norgaard BL, Min JK, Leipsic JA (2015) Diagnostic accuracy and discrimination of ischemia by fractional flow reserve CT using a clinical use rule: results from the determination of fractional flow reserve by anatomic computed tomographic angiography study. J Cardiovasc Comput Tomogr. 9(2):120–128. doi: 10.1016/j.jcct.2015.01.008 CrossRefPubMedGoogle Scholar
  57. 57.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43(1):151–159CrossRefGoogle Scholar
  58. 58.
    Tu S, Holm NR, Koning G, Huang Z, Reiber JH (2011) Fusion of 3d qca and ivus/oct. Int J Cardiovasc Imaging 27:197–207. doi: 10.1007/s10554-011-9808-2 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR, Tar B, Li Y, Rusinaru D, Wijns W (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc Interv. 7(7):768–777. doi: 10.1016/j.jcin.2014.03.004 CrossRefPubMedGoogle Scholar
  60. 60.
    Ursino M, Ter Minassian A, Lodi CA, Beydon L (2000) Cerebral hemodynamics during arterial and CO2 pressure changes: in vivo prediction by a mathematical model. Am J Physiol Heart Circ Physiol 279(5):H2439–H2455PubMedGoogle Scholar
  61. 61.
    Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M (2009) The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. Am J Neuroradiol 30(5):876–884CrossRefPubMedGoogle Scholar
  62. 62.
    van de Hoef TP, Meuwissen M, Escaned J, Davies JE, Siebes M, Spaan JA, Piek JJ (2013) Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol 10(8):439–452. doi: 10.1038/nrcardio.2013.86 CrossRefPubMedGoogle Scholar
  63. 63.
    Verbeke F, Segers P, Heireman S, Vanholder R, Verdonck P, Van Bortel LM (2005) Noninvasive assessment of local pulse pressure: importance of brachial-to-radial pressure amplification. Hypertension 46(1):244–248CrossRefPubMedGoogle Scholar
  64. 64.
    Willie CK, Tzeng YC, Fisher JA, Ainslie PN (2014) Integrative regulation of human brain blood flow. J Physiol 592(5):841–859. doi: 10.1113/jphysiol.2013.268953 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD (1990) Effects of adenosine on human coronary arterial circulation. Circulation 82:1595–1606CrossRefPubMedGoogle Scholar
  66. 66.
    Zhang Z, Takarada S, Molloi S (2011) Quantification of coronary microvascular resistance using angiographic images for volumetric blood flow measurement: in vivo validation. Am J Physiol Heart Circ Physiol 300(6):H2096–H2104. doi: 10.1152/ajpheart.01123.2010 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Kyung Eun Lee
    • 1
  • Ah-Jin Ryu
    • 1
  • Eun-Seok Shin
    • 2
  • Eun Bo Shim
    • 1
    Email author
  1. 1.Department of Mechanical and Biomedical EngineeringKangwon National UniversityChuncheon-siRepublic of Korea
  2. 2.Department of CardiologyUniversity of Ulsan College of MedicineUlsanSouth Korea

Personalised recommendations