Caveolar remodeling is a critical mechanotransduction mechanism of the stretch-induced L-type Ca2+ channel activation in vascular myocytes

  • Sang Woong Park
  • Kyung Chul Shin
  • Hyun Ji Park
  • Soon-Kyu Yoou
  • Jin-Yeon Park
  • Young-Sun Kang
  • Dong Jun Sung
  • Jae Gon Kim
  • Seung Hwa Park
  • BoKyung Kim
  • Hana Cho
  • Young Min BaeEmail author
Signaling and cell physiology
Part of the following topical collections:
  1. Signaling and cell physiology


Activation of L-type voltage-dependent Ca2+ channels (VDCCL) by membrane stretch contributes to many biological responses such as myogenic contraction of arteries. However, mechanism for the stretch-induced VDCCL activation is unclear. In this study, we examined the hypothesis that caveolar remodeling and its related signaling cascade contribute to the stretch-induced activation of VDCCL in rat mesenteric arterial smooth muscle cells. The VDCCL currents were recorded with nystatin-perforated or with conventional whole-cell patch-clamp technique. Hypotonic (~230 mOsm) swelling-induced membrane stretch reversibly increased the VDCCL currents. Electron microscope and confocal imaging analysis revealed that both hypotonic swelling and cholesterol depletion by methyl-β-cychlodextrin (MβCD) similarly disrupted the caveolae structure and translocated caveolin-1 (Cav-1) from membrane to cytosolic space. Accordingly, MβCD also increased VDCCL currents. Moreover, subsequent hypotonic swelling after MβCD treatment failed to increase the VDCCL currents further. Western blotting experiments revealed that hypotonic swelling phosphorylated Cav-1 and JNK. Inhibitors of tyrosine kinases (genistein) and JNK (SP00125) prevented the swelling-induced facilitation of VDCCL currents. Knockdown of Cav-1 by small interfering RNA blocked both the VDCCL current facilitation by stretch and the related phosphorylation of JNK. Taken together, the results suggest that membrane stretch is transduced to the facilitation of VDCCL currents via caveolar structure-dependent tyrosine phosphorylation of Cav-1 and subsequent activation of JNK in rat mesenteric arterial myocytes.


Caveolae Stretch Voltage-dependent calcium channel Caveolin C-Jun N-terminal kinase 



This research was supported by the Pioneer Research Center Program (2011-0027921) and by Basic Science Research Programs (2015R1C1A1A02036887, 2016R1A2B4014795 and NRF-2009-0071242) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning.

Compliance with ethical standards

All experiments were conducted in accordance with the National Institutes of Health guidelines for the care and use of animals, and the institutional animal care and use committee of Konkuk University approved this study

Supplementary material

424_2017_1957_MOESM1_ESM.pdf (385 kb)
ESM 1 (PDF 384 kb)


  1. 1.
    Amano S, Ishikawa T, Nakayama K (2005) Facilitation of L-type Ca2+ currents by fluid flow in rabbit cerebral artery myocytes. J Pharmacol Sci 98:425–429CrossRefPubMedGoogle Scholar
  2. 2.
    Aronson D, Dufresne SD, Goodyear LJ (1997) Contractile activity stimulates the c-Jun NH2-terminal kinase pathway in rat skeletal muscle. J Biol Chem 272:25636–25640CrossRefPubMedGoogle Scholar
  3. 3.
    Azuma N, Duzgun SA, Ikeda M, Kito H, Akasaka N, Sasajima T, Sumpio BE (2000) Endothelial cell response to different mechanical forces. J Vasc Surg 32:789–794. doi: 10.1067/mva.2000.107989 CrossRefPubMedGoogle Scholar
  4. 4.
    Bourinet E, Fournier F, Lory P, Charnet P, Nargeot J (1992) Protein kinase C regulation of cardiac calcium channels expressed in Xenopus oocytes. Pflugers Arch 421:247–255CrossRefPubMedGoogle Scholar
  5. 5.
    Dreja K, Voldstedlund M, Vinten J, Tranum-Jensen J, Hellstrand P, Sward K (2002) Cholesterol depletion disrupts caveolae and differentially impairs agonist-induced arterial contraction. Arterioscler Thromb Vasc Biol 22:1267–1272CrossRefPubMedGoogle Scholar
  6. 6.
    Dulhunty AF, Franzini-Armstrong C (1975) The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J Physiol 250:513–539CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fouchs A, Ollivier H, Haond C, Roy S, Calves P, Pichavant-Rafini K (2010) Activation of the MAPKs ERK1/2 by cell swelling in turbot hepatocytes. Biol Cell 102:447–456. doi: 10.1042/BC20090154 CrossRefPubMedGoogle Scholar
  8. 8.
    Gervasio OL, Phillips WD, Cole L, Allen DG (2011) Caveolae respond to cell stretch and contribute to stretch-induced signaling. J Cell Sci 124:3581–3590. doi: 10.1242/jcs.084376 CrossRefPubMedGoogle Scholar
  9. 9.
    Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740PubMedGoogle Scholar
  10. 10.
    Hess P, Lansman JB, Tsien RW (1986) Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol 88:293–319CrossRefPubMedGoogle Scholar
  11. 11.
    Kawamura S, Miyamoto S, Brown JH (2003) Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J Biol Chem 278:31111–31117. doi: 10.1074/jbc.M300725200 CrossRefPubMedGoogle Scholar
  12. 12.
    Kozera L, White E, Calaghan S (2009) Caveolae act as membrane reserves which limit mechanosensitive I (Cl,swell) channel activation during swelling in the rat ventricular myocyte. PLoS One 4:e8312. doi: 10.1371/journal.pone.0008312 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kraichely RE, Strege PR, Sarr MG, Kendrick ML, Farrugia G (2009) Lysophosphatidyl choline modulates mechanosensitive L-type Ca2+ current in circular smooth muscle cells from human jejunum. Am J Physiol Gastrointest Liver Physiol 296:G833–G839. doi: 10.1152/ajpgi.90610.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lal H, Verma SK, Smith M, Guleria RS, Lu G, Foster DM, Dostal DE (2007) Stretch-induced MAP kinase activation in cardiac myocytes: differential regulation through beta1-integrin and focal adhesion kinase. J Mol Cell Cardiol 43:137–147. doi: 10.1016/j.yjmcc.2007.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lyford GL, Strege PR, Shepard A, Ou Y, Ermilov L, Miller SM, Gibbons SJ, Rae JL, Szurszewski JH, Farrugia G (2002) alpha(1C) (Ca(V)1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am J Physiol Cell Physiol 283:C1001–C1008. doi: 10.1152/ajpcell.00140.2002 CrossRefPubMedGoogle Scholar
  16. 16.
    McFarland MJ, Barker EL (2005) Lipid rafts: a nexus for endocannabinoid signaling? Life Sci 77:1640–1650. doi: 10.1016/j.lfs.2005.05.010 CrossRefPubMedGoogle Scholar
  17. 17.
    McHugh D, Beech DJ (1996) Modulation of Ca2+ channel activity by ATP metabolism and internal Mg2+ in guinea-pig basilar artery smooth muscle cells. J Physiol 492(Pt 2):359–376CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103. doi: 10.1038/emboj.2008.233 CrossRefPubMedGoogle Scholar
  19. 19.
    Moo EK, Herzog W (2016) Unfolding of membrane ruffles of in situ chondrocytes under compressive loads. J Orthop Res. doi: 10.1002/jor.23260 PubMedGoogle Scholar
  20. 20.
    Ok SH, Jeong YS, Kim JG, Lee SM, Sung HJ, Kim HJ, Chang KC, Kwon SC, Sohn JT (2011) c-Jun NH(2)-terminal kinase contributes to dexmedetomidine-induced contraction in isolated rat aortic smooth muscle. Yonsei Med J 52:420–428. doi: 10.3349/ymj.2011.52.3.420 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ok SH, Byon HJ, Jin H, Kim HJ, Kim W, Nam IK, Eun SY, Sohn JT (2014) Dexmedetomidine-induced contraction involves c-Jun NH2 -terminal kinase phosphorylation through activation of the 5-lipoxygenase pathway in the isolated endothelium-denuded rat aorta. Clin Exp Pharmacol Physiol 41:1014–1022. doi: 10.1111/1440-1681.12307 CrossRefPubMedGoogle Scholar
  22. 22.
    Park SW, Byun D, Bae YM, Choi BH, Park SH, Kim B, Cho SI (2007) Effects of fluid flow on voltage-dependent calcium channels in rat vascular myocytes: fluid flow as a shear stress and a source of artifacts during patch-clamp studies. Biochem Biophys Res Commun 358:1021–1027. doi: 10.1016/j.bbrc.2007.05.024 CrossRefPubMedGoogle Scholar
  23. 23.
    Park SW, Noh HJ, Sung DJ, Kim JG, Kim JM, Ryu SY, Kang K, Kim B, Bae YM, Cho H (2015) Hydrogen peroxide induces vasorelaxation by enhancing 4-aminopyridine-sensitive Kv currents through S-glutathionylation. Pflugers Arch 467:285–297. doi: 10.1007/s00424-014-1513-3 CrossRefPubMedGoogle Scholar
  24. 24.
    Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112. doi: 10.1038/nrm3512 CrossRefPubMedGoogle Scholar
  25. 25.
    Sbaa E, Frerart F, Feron O (2005) The double regulation of endothelial nitric oxide synthase by caveolae and caveolin: a paradox solved through the study of angiogenesis. Trends Cardiovasc Med 15:157–162. doi: 10.1016/j.tcm.2005.05.006 CrossRefPubMedGoogle Scholar
  26. 26.
    Shihata WA, Michell DL, Andrews KL, Chin-Dusting JP (2016) Caveolae: a role in endothelial inflammation and mechanotransduction? Front Physiol 7:628. doi: 10.3389/fphys.2016.00628 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sinha B, Koster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:402–413. doi: 10.1016/j.cell.2010.12.031 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Streicher JM, Ren S, Herschman H, Wang Y (2010) MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ Res 106:1434–1443. doi: 10.1161/CIRCRESAHA.109.213199 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yu J, Ok SH, Kim WH, Cho H, Park J, Shin IW, Lee HK, Chung YK, Choi MJ, Kwon SC, Sohn JT (2015) Dexmedetomidine-induced contraction in the isolated endothelium-denuded rat aorta involves PKC-delta-mediated JNK phosphorylation. Int J Med Sci 12:727–736. doi: 10.7150/ijms.11952 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhao YY, Liu Y, Stan RV, Fan L, Gu Y, Dalton N, Chu PH, Peterson K, Ross J Jr, Chien KR (2002) Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci U S A 99:11375–11380. doi: 10.1073/pnas.172360799 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sang Woong Park
    • 1
  • Kyung Chul Shin
    • 2
  • Hyun Ji Park
    • 2
  • Soon-Kyu Yoou
    • 1
  • Jin-Yeon Park
    • 3
  • Young-Sun Kang
    • 3
  • Dong Jun Sung
    • 4
  • Jae Gon Kim
    • 2
  • Seung Hwa Park
    • 5
  • BoKyung Kim
    • 2
  • Hana Cho
    • 6
  • Young Min Bae
    • 2
    Email author
  1. 1.Department of Emergency Medical ServicesEulji UniversitySeongnamSouth Korea
  2. 2.Department of Physiology, KU Open Innovation Center, Research Institute of Medical ScienceKonkuk University School of MedicineChungjuSouth Korea
  3. 3.Colleage of Veterinary Medicine, Department of Biomedical Science & Technology (DBST)Konkuk UniversitySeoulSouth Korea
  4. 4.Division of Sport Science, College of Science and TechnologyKonkuk UniversityChungjuSouth Korea
  5. 5.Department of Anatomy, Research Institute of Medical ScienceKonkuk University School of MedicineChungjuSouth Korea
  6. 6.Department of Physiology and Samsung Biomedical Research InstituteSungkyunkwan University School of MedicineSuwonSouth Korea

Personalised recommendations