Macrophages in vascular inflammation and atherosclerosis

  • Clement Cochain
  • Alma ZerneckeEmail author
Invited Review


Atherosclerosis is characterized by lipid accumulation and chronic inflammation of the arterial wall, and its main complications—myocardial infarction and ischemic stroke—together constitute the first cause of death worldwide. Accumulation of lipid-laden macrophage foam cells in the intima of inflamed arteries has long been recognized as a hallmark of atherosclerosis. However, in recent years, an unexpected complexity in the mechanisms of macrophage accumulation in lesions, in the protective and pathogenic functions performed by macrophages and how they are regulated has been uncovered. Here, we provide an overview of the latest developments regarding the various mechanisms of macrophage accumulation in lesion, the major functional features of lesion macrophages, and how the plaque microenvironment may affect macrophage phenotype. Finally, we discuss how best to apprehend the heterogeneous ontogeny and functionality of atherosclerotic plaque macrophages and argue that moving away from a rigid nomenclature of arbitrarily defined macrophage subsets would be beneficial for research in the field.


Atherosclerosis Inflammation Macrophages Immune cells 



This work was supported by the Deutsche Forschungsgemeinschaft (SFB688 TPA22).


  1. 1.
    Aarup A, Pedersen TX, Junker N, Christoffersen C, Bartels ED, Madsen M, Nielsen CH, Nielsen LB (2016) Hypoxia-inducible factor-1alpha expression in macrophages promotes development of atherosclerosis. Arterioscler Thromb Vasc Biol 36:1782–1790. doi: 10.1161/ATVBAHA.116.307830 PubMedCrossRefGoogle Scholar
  2. 2.
    Abram CL, Roberge GL, Hu Y, Lowell CA (2014) Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. J Immunol Methods 408:89–100. doi: 10.1016/j.jim.2014.05.009 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Aiello RJ, Bourassa PA, Lindsey S, Weng W, Natoli E, Rollins BJ, Milos PM (1999) Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 19:1518–1525PubMedCrossRefGoogle Scholar
  4. 4.
    Ait-Oufella H, Kinugawa K, Zoll J, Simon T, Boddaert J, Heeneman S, Blanc-Brude O, Barateau V, Potteaux S, Merval R, Esposito B, Teissier E, Daemen MJ, Leseche G, Boulanger C, Tedgui A, Mallat Z (2007) Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115:2168–2177. doi: 10.1161/CIRCULATIONAHA.106.662080 PubMedCrossRefGoogle Scholar
  5. 5.
    Ait-Oufella H, Pouresmail V, Simon T, Blanc-Brude O, Kinugawa K, Merval R, Offenstadt G, Leseche G, Cohen PL, Tedgui A, Mallat Z (2008) Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler Thromb Vasc Biol 28:1429–1431. doi: 10.1161/ATVBAHA.108.169078 PubMedCrossRefGoogle Scholar
  6. 6.
    Ait-Oufella H, Taleb S, Mallat Z, Tedgui A (2011) Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol 31:969–979. doi: 10.1161/ATVBAHA.110.207415 PubMedCrossRefGoogle Scholar
  7. 7.
    Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA (2014) Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129:1551–1559. doi: 10.1161/CIRCULATIONAHA.113.005015 PubMedCrossRefGoogle Scholar
  8. 8.
    Andreeva ER, Pugach IM, Orekhov AN (1997) Subendothelial smooth muscle cells of human aorta express macrophage antigen in situ and in vitro. Atherosclerosis 135:19–27PubMedCrossRefGoogle Scholar
  9. 9.
    Askenase MH, Han SJ, Byrd AL, Morais da Fonseca D, Bouladoux N, Wilhelm C, Konkel JE, Hand TW, Lacerda-Queiroz N, Su XZ, Trinchieri G, Grainger JR, Belkaid Y (2015) Bone-marrow-resident NK cells prime monocytes for regulatory function during infection. Immunity 42:1130–1142. doi: 10.1016/j.immuni.2015.05.011 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Babaev VR, Gleaves LA, Carter KJ, Suzuki H, Kodama T, Fazio S, Linton MF (2000) Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-a. Arterioscler Thromb Vasc Biol 20:2593–2599PubMedCrossRefGoogle Scholar
  11. 11.
    Babaev VR, Ding L, Zhang Y, May JM, Lin PC, Fazio S, Linton MF (2016a) Macrophage IKKalpha deficiency suppresses Akt phosphorylation, reduces cell survival, and decreases early atherosclerosis. Arterioscler Thromb Vasc Biol 36:598–607. doi: 10.1161/ATVBAHA.115.306931 PubMedCrossRefGoogle Scholar
  12. 12.
    Babaev VR, Yeung M, Erbay E, Ding L, Zhang Y, May JM, Fazio S, Hotamisligil GS, Linton MF (2016b) Jnk1 deficiency in hematopoietic cells suppresses macrophage apoptosis and increases atherosclerosis in low-density lipoprotein receptor null mice. Arterioscler Thromb Vasc Biol 36:1122–1131. doi: 10.1161/ATVBAHA.116.307580 PubMedCrossRefGoogle Scholar
  13. 13.
    Bae YS, Lee JH, Choi SH, Kim S, Almazan F, Witztum JL, Miller YI (2009) Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res 104:210–218 . doi: 10.1161/CIRCRESAHA.108.181040221p following 218PubMedCrossRefGoogle Scholar
  14. 14.
    Bhatia VK, Yun S, Leung V, Grimsditch DC, Benson GM, Botto MB, Boyle JJ, Haskard DO (2007) Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice. Am J Pathol 170:416–426. doi: 10.2353/ajpath.2007.060406 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Boshuizen MC, Hoeksema MA, Neele AE, van der Velden S, Hamers AA, Van den Bossche J, Lutgens E, de Winther MP (2016) Interferon-beta promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. Cytokine 77:220–226. doi: 10.1016/j.cyto.2015.09.016 PubMedCrossRefGoogle Scholar
  16. 16.
    Bouchareychas L, Pirault J, Saint-Charles F, Deswaerte V, Le Roy T, Jessup W, Giral P, Le Goff W, Huby T, Gautier EL, Lesnik P (2015) Promoting macrophage survival delays progression of pre-existing atherosclerotic lesions through macrophage-derived apoE. Cardiovasc Res 108:111–123. doi: 10.1093/cvr/cvv177 PubMedCrossRefGoogle Scholar
  17. 17.
    Bradfield PF, Menon A, Miljkovic-Licina M, Lee BP, Fischer N, Fish RJ, Kwak B, Fisher EA, Imhof BA (2016) Divergent JAM-C expression accelerates monocyte-derived cell exit from atherosclerotic plaques. PLoS One 11:e0159679. doi: 10.1371/journal.pone.0159679 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cai B, Thorp EB, Doran AC, Sansbury BE, Daemen MJ, Dorweiler B, Spite M, Fredman G, Tabas I (2017) MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J Clin Invest. doi: 10.1172/JCI90520 PubMedGoogle Scholar
  19. 19.
    Cardilo-Reis L, Gruber S, Schreier SM, Drechsler M, Papac-Milicevic N, Weber C, Wagner O, Stangl H, Soehnlein O, Binder CJ (2012) Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med 4:1072–1086. doi: 10.1002/emmm.201201374 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chappell J, Harman JL, Narasimhan VM, Yu H, Foote K, Simons BD, Bennett MR, Jorgensen HF (2016) Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contribute to Neointimal formation in mouse injury and atherosclerosis models. Circ Res. doi: 10.1161/CIRCRESAHA.116.309799 PubMedGoogle Scholar
  21. 21.
    Chaudhari SM, Sluimer JC, Koch M, Theelen TL, Manthey HD, Busch M, Caballero-Franco C, Vogel F, Cochain C, Pelisek J, Daemen MJ, Lutz MB, Gorlach A, Kissler S, Hermanns HM, Zernecke A (2015) Deficiency of HIF1alpha in antigen-presenting cells aggravates atherosclerosis and type 1 T-helper cell responses in mice. Arterioscler Thromb Vasc Biol 35:2316–2325. doi: 10.1161/ATVBAHA.115.306171 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424–1435. doi: 10.1038/nm.4000 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354:472–477. doi: 10.1126/science.aaf6659 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chinetti-Gbaguidi G, Colin S, Staels B (2015) Macrophage subsets in atherosclerosis. Nat Rev Cardiol 12:10–17. doi: 10.1038/nrcardio.2014.173 PubMedCrossRefGoogle Scholar
  25. 25.
    Chung EY, Kim SJ, Ma XJ (2006) Regulation of cytokine production during phagocytosis of apoptotic cells. Cell Res 16:154–161. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  26. 26.
    Clement M, Basatemur G, Masters L, Baker L, Bruneval P, Iwawaki T, Kneilling M, Yamasaki S, Goodall J, Mallat Z (2016) Necrotic cell sensor Clec4e promotes a Proatherogenic macrophage phenotype through activation of the unfolded protein response. Circulation 134:1039–1051. doi: 10.1161/CIRCULATIONAHA.116.022668 PubMedCrossRefGoogle Scholar
  27. 27.
    Cochain C, Zernecke A (2015) Macrophages and immune cells in atherosclerosis: recent advances and novel concepts. Basic Res Cardiol 110:34. doi: 10.1007/s00395-015-0491-8 PubMedCrossRefGoogle Scholar
  28. 28.
    Cochain C, Koch M, Chaudhari SM, Busch M, Pelisek J, Boon L, Zernecke A (2015) CD8+ T cells regulate Monopoiesis and circulating Ly6C-high monocyte levels in atherosclerosis in mice. Circ Res 117:244–253. doi: 10.1161/CIRCRESAHA.117.304611 PubMedCrossRefGoogle Scholar
  29. 29.
    Colin S, Chinetti-Gbaguidi G, Staels B (2014) Macrophage phenotypes in atherosclerosis. Immunol Rev 262:153–166. doi: 10.1111/imr.12218 PubMedCrossRefGoogle Scholar
  30. 30.
    Combadiere C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B, Merval R, Proudfoot A, Tedgui A, Mallat Z (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117:1649–1657. doi: 10.1161/CIRCULATIONAHA.107.745091 PubMedCrossRefGoogle Scholar
  31. 31.
    Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Di Gregoli K, Johnson JL (2012) Role of colony-stimulating factors in atherosclerosis. Curr Opin Lipidol 23:412–421. doi: 10.1097/MOL.0b013e328357ca6e PubMedCrossRefGoogle Scholar
  33. 33.
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361. doi: 10.1038/nature08938 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dweck MR, Aikawa E, Newby DE, Tarkin JM, Rudd JH, Narula J, Fayad ZA (2016) Noninvasive molecular imaging of disease activity in atherosclerosis. Circ Res 119:330–340. doi: 10.1161/CIRCRESAHA.116.307971 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, Shikatani EA, El-Maklizi M, Williams JW, Robins L, Li C, Lewis B, Yun TJ, Lee JS, Wieghofer P, Khattar R, Farrokhi K, Byrne J, Ouzounian M, Zavitz CC, Levy GA, Bauer CM, Libby P, Husain M, Swirski FK, Cheong C, Prinz M, Hilgendorf I, Randolph GJ, Epelman S, Gramolini AO, Cybulsky MI, Rubin BB, Robbins CS (2016) Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol 17:159–168. doi: 10.1038/ni.3343 PubMedCrossRefGoogle Scholar
  36. 36.
    Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K, Silverstein RL (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 105:1049–1056. doi: 10.1172/JCI9259 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Febbraio M, Guy E, Silverstein RL (2004) Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler Thromb Vasc Biol 24:2333–2338. doi: 10.1161/01.ATV.0000148007.06370.68 PubMedCrossRefGoogle Scholar
  38. 38.
    Feig JE, Pineda-Torra I, Sanson M, Bradley MN, Vengrenyuk Y, Bogunovic D, Gautier EL, Rubinstein D, Hong C, Liu J, Wu C, van Rooijen N, Bhardwaj N, Garabedian M, Tontonoz P, Fisher EA (2010) LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J Clin Invest 120:4415–4424. doi: 10.1172/JCI38911 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Feig JE, Parathath S, Rong JX, Mick SL, Vengrenyuk Y, Grauer L, Young SG, Fisher EA (2011) Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 123:989–998. doi: 10.1161/CIRCULATIONAHA.110.984146 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, Feil R (2014) Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res 115:662–667. doi: 10.1161/CIRCRESAHA.115.304634 PubMedCrossRefGoogle Scholar
  41. 41.
    Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5:781–792. doi: 10.1038/ncb1035 PubMedCrossRefGoogle Scholar
  42. 42.
    Fisher EA (2016) Regression of atherosclerosis: the journey from the liver to the plaque and back. Arterioscler Thromb Vasc Biol 36:226–235. doi: 10.1161/ATVBAHA.115.301926 PubMedCrossRefGoogle Scholar
  43. 43.
    Foks AC, Engelbertsen D, Kuperwaser F, Alberts-Grill N, Gonen A, Witztum JL, Lederer J, Jarolim P, DeKruyff RH, Freeman GJ, Lichtman AH (2016) Blockade of Tim-1 and Tim-4 enhances atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 36:456–465. doi: 10.1161/ATVBAHA.115.306860 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Freigang S, Ampenberger F, Weiss A, Kanneganti TD, Iwakura Y, Hersberger M, Kopf M (2013) Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1alpha and sterile vascular inflammation in atherosclerosis. Nat Immunol 14:1045–1053. doi: 10.1038/ni.2704 PubMedCrossRefGoogle Scholar
  45. 45.
    Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV, Wu C, Pandolfi PP, Mak T, Satija R, Shalek AK, Kuchroo VK, Park H, Regev A (2015) Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163:1400–1412. doi: 10.1016/j.cell.2015.11.009 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gerhardt T, Ley K (2015) Monocyte trafficking across the vessel wall. Cardiovasc Res 107:321–330. doi: 10.1093/cvr/cvv147 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:439–449. doi: 10.1016/j.immuni.2016.02.024 PubMedCrossRefGoogle Scholar
  48. 48.
    Gonzalez-Navarro H, Abu Nabah YN, Vinue A, Andres-Manzano MJ, Collado M, Serrano M, Andres V (2010) p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J Am Coll Cardiol 55:2258–2268. doi: 10.1016/j.jacc.2010.01.026 PubMedCrossRefGoogle Scholar
  49. 49.
    Gordon D, Reidy MA, Benditt EP, Schwartz SM (1990) Cell proliferation in human coronary arteries. Proc Natl Acad Sci U S A 87:4600–4604PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gough PJ, Gomez IG, Wille PT, Raines EW (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 116:59–69. doi: 10.1172/JCI25074 PubMedCrossRefGoogle Scholar
  51. 51.
    Green DR, Oguin TH, Martinez J (2016) The clearance of dying cells: table for two. Cell Death Differ 23:915–926. doi: 10.1038/cdd.2015.172 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Greissel A, Culmes M, Burgkart R, Zimmermann A, Eckstein HH, Zernecke A, Pelisek J (2016) Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques. Cardiovasc Pathol : Off J Soc Cardiovasc Pathol 25:79–86. doi: 10.1016/j.carpath.2015.11.001 CrossRefGoogle Scholar
  53. 53.
    Guilliams M, Dutertre CA, Scott CL, McGovern N, Sichien D, Chakarov S, Van Gassen S, Chen J, Poidinger M, De Prijck S, Tavernier SJ, Low I, Irac SE, Mattar CN, Sumatoh HR, Low GH, Chung TJ, Chan DK, Tan KK, Hon TL, Fossum E, Bogen B, Choolani M, Chan JK, Larbi A, Luche H, Henri S, Saeys Y, Newell EW, Lambrecht BN, Malissen B, Ginhoux F (2016) Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45:669–684. doi: 10.1016/j.immuni.2016.08.015 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Han X, Boisvert WA (2015) Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function. Thromb Haemost 113:505–512. doi: 10.1160/TH14-06-0509 PubMedCrossRefGoogle Scholar
  55. 55.
    Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, Gabel G, Beutner F, Scholz M, Thiery J, Musunuru K, Krohn K, Mann M, Teupser D (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429. doi: 10.1038/ncomms12429 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hotamisligil GS (2010) Endoplasmic reticulum stress and atherosclerosis. Nat Med 16:396–399. doi: 10.1038/nm0410-396 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Im SS, Osborne TF (2011) Liver x receptors in atherosclerosis and inflammation. Circ Res 108:996–1001. doi: 10.1161/CIRCRESAHA.110.226878 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ivanova EA, Orekhov AN (2016) The Role of Endoplasmic Reticulum Stress and Unfolded Protein Response in Atherosclerosis. International journal of molecular sciences 17. doi: 10.3390/ijms17020193
  59. 59.
    Kamari Y, Shaish A, Shemesh S, Vax E, Grosskopf I, Dotan S, White M, Voronov E, Dinarello CA, Apte RN, Harats D (2011) Reduced atherosclerosis and inflammatory cytokines in apolipoprotein-E-deficient mice lacking bone marrow-derived interleukin-1alpha. Biochem Biophys Res Commun 405:197–203. doi: 10.1016/j.bbrc.2011.01.008 PubMedCrossRefGoogle Scholar
  60. 60.
    Karunakaran D, Rayner KJ (2016) Macrophage miRNAs in atherosclerosis. Biochim Biophys Acta 1861:2087–2093. doi: 10.1016/j.bbalip.2016.02.006 PubMedCrossRefGoogle Scholar
  61. 61.
    Knudsen NH, Lee CH (2016) Identity crisis: CD301b(+) mononuclear phagocytes blur the M1-M2 macrophage line. Immunity 45:461–463. doi: 10.1016/j.immuni.2016.09.004 PubMedCrossRefGoogle Scholar
  62. 62.
    Koch M, Zernecke A (2014) The hemostatic system as a regulator of inflammation in atherosclerosis. IUBMB life 66:735–744. doi: 10.1002/iub.1333 PubMedCrossRefGoogle Scholar
  63. 63.
    Kojima Y, Volkmer JP, McKenna K, Civelek M, Lusis AJ, Miller CL, Direnzo D, Nanda V, Ye J, Connolly AJ, Schadt EE, Quertermous T, Betancur P, Maegdefessel L, Matic LP, Hedin U, Weissman IL, Leeper NJ (2016) CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536:86–90. doi: 10.1038/nature18935 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Koltsova EK, Garcia Z, Chodaczek G, Landau M, McArdle S, Scott SR, von Vietinghoff S, Galkina E, Miller YI, Acton ST, Ley K (2012) Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. J Clin Invest 122:3114–3126. doi: 10.1172/JCI61758 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kumamoto Y, Camporez JP, Jurczak MJ, Shanabrough M, Horvath T, Shulman GI, Iwasaki A (2016) CD301b(+) mononuclear phagocytes maintain positive energy balance through secretion of Resistin-like molecule alpha. Immunity 45:583–596. doi: 10.1016/j.immuni.2016.08.002 PubMedCrossRefGoogle Scholar
  66. 66.
    Kyaw T, Winship A, Tay C, Kanellakis P, Hosseini H, Cao A, Li P, Tipping P, Bobik A, Toh BH (2013) Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-deficient mice. Circulation 127:1028–1039. doi: 10.1161/CIRCULATIONAHA.112.001347 PubMedCrossRefGoogle Scholar
  67. 67.
    Lee TS, Yen HC, Pan CC, Chau LY (1999) The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 19:734–742PubMedCrossRefGoogle Scholar
  68. 68.
    Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ, Berliner JA (2012) Role of phospholipid oxidation products in atherosclerosis. Circ Res 111:778–799. doi: 10.1161/CIRCRESAHA.111.256859 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lhotak S, Gyulay G, Cutz JC, Al-Hashimi A, Trigatti BL, Richards CD, Igdoura SA, Steinberg GR, Bramson J, Ask K, Austin RC (2016) Characterization of proliferating lesion-resident cells during all stages of atherosclerotic growth. J Am Heart Assoc 5. doi: 10.1161/JAHA.116.003945
  70. 70.
    Li J, Fu Q, Cui H, Qu B, Pan W, Shen N, Bao C (2011) Interferon-alpha priming promotes lipid uptake and macrophage-derived foam cell formation: a novel link between interferon-alpha and atherosclerosis in lupus. Arthritis Rheum 63:492–502. doi: 10.1002/art.30165 PubMedCrossRefGoogle Scholar
  71. 71.
    Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J, Tabas I (2012) Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 15:545–553. doi: 10.1016/j.cmet.2012.01.022 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lillis AP, Muratoglu SC, Au DT, Migliorini M, Lee MJ, Fried SK, Mikhailenko I, Strickland DK (2015) LDL receptor-related protein-1 (LRP1) regulates cholesterol accumulation in macrophages. PLoS One 10:e0128903. doi: 10.1371/journal.pone.0128903 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, Feng J, Yang D, Qin Z, Yan X (2017) Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. doi: 10.1038/cr.2017.8 PubMedCentralGoogle Scholar
  74. 74.
    Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, Parker RA, Suttles J, Fazio S, Hotamisligil GS, Linton MF (2001) Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7:699–705. doi: 10.1038/89076 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, Tedgui A (2001) Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104:1598–1603PubMedCrossRefGoogle Scholar
  76. 76.
    Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000 Prime Rep 6:13. doi: 10.12703/P6-13 CrossRefGoogle Scholar
  77. 77.
    McLaren JE, Michael DR, Salter RC, Ashlin TG, Calder CJ, Miller AM, Liew FY, Ramji DP (2010) IL-33 reduces macrophage foam cell formation. J Immunol 185:1222–1229. doi: 10.4049/jimmunol.1000520 PubMedCrossRefGoogle Scholar
  78. 78.
    Mellak S, Ait-Oufella H, Esposito B, Loyer X, Poirier M, Tedder TF, Tedgui A, Mallat Z, Potteaux S (2015) Angiotensin II mobilizes spleen monocytes to promote the development of abdominal aortic aneurysm in apoe−/− mice. Arterioscler Thromb Vasc Biol 35:378–388. doi: 10.1161/ATVBAHA.114.304389 PubMedCrossRefGoogle Scholar
  79. 79.
    Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM, McKee M, Freeman MW (2005) Loss of receptor-mediated lipid uptake via scavenger receptor a or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest 115:2192–2201. doi: 10.1172/JCI24061 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20. doi: 10.1016/j.immuni.2014.06.008 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Nagareddy PR, Murphy AJ, Stirzaker RA, Hu Y, Yu S, Miller RG, Ramkhelawon B, Distel E, Westerterp M, Huang LS, Schmidt AM, Orchard TJ, Fisher EA, Tall AR, Goldberg IJ (2013) Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab 17:695–708. doi: 10.1016/j.cmet.2013.04.001 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Nahrendorf M, Swirski FK (2016) Abandoning M1/M2 for a network model of macrophage function. Circ Res 119:414–417. doi: 10.1161/CIRCRESAHA.116.309194 PubMedCrossRefGoogle Scholar
  83. 83.
    Noelia AG, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Diaz M, Gallardo G, de Galarreta CR, Salazar J, Lopez F, Edwards P, Parks J, Andujar M, Tontonoz P, Castrillo A (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31:245–258. doi: 10.1016/j.immuni.2009.06.018 CrossRefGoogle Scholar
  84. 84.
    Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H, Saito K, Sekikawa K, Seishima M (2005) Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 180:11–17. doi: 10.1016/j.atherosclerosis.2004.11.016 PubMedCrossRefGoogle Scholar
  85. 85.
    Palazon A, Goldrath AW, Nizet V, Johnson RS (2014) HIF transcription factors, inflammation, and immunity. Immunity 41:518–528. doi: 10.1016/j.immuni.2014.09.008 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Paulson KE, Zhu SN, Chen M, Nurmohamed S, Jongstra-Bilen J, Cybulsky MI (2010) Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res 106:383–390. doi: 10.1161/CIRCRESAHA.109.210781 PubMedCrossRefGoogle Scholar
  87. 87.
    Perdiguero EG, Geissmann F (2016) The development and maintenance of resident macrophages. Nat Immunol 17:2–8. doi: 10.1038/ni.3341 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Potteaux S, Esposito B, van Oostrom O, Brun V, Ardouin P, Groux H, Tedgui A, Mallat Z (2004) Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 24:1474–1478. doi: 10.1161/ PubMedCrossRefGoogle Scholar
  89. 89.
    Potteaux S, Gautier EL, Hutchison SB, van Rooijen N, Rader DJ, Thomas MJ, Sorci-Thomas MG, Randolph GJ (2011) Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of apoe−/− mice during disease regression. J Clin Invest 121:2025–2036. doi: 10.1172/JCI43802 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Psaltis PJ, Harbuzariu A, Delacroix S, Witt TA, Holroyd EW, Spoon DB, Hoffman SJ, Pan S, Kleppe LS, Mueske CS, Gulati R, Sandhu GS, Simari RD (2012) Identification of a monocyte-predisposed hierarchy of hematopoietic progenitor cells in the adventitia of postnatal murine aorta. Circulation 125:592–603. doi: 10.1161/CIRCULATIONAHA.111.059360 PubMedCrossRefGoogle Scholar
  91. 91.
    Psaltis PJ, Puranik AS, Spoon DB, Chue CD, Hoffman SJ, Witt TA, Delacroix S, Kleppe LS, Mueske CS, Pan S, Gulati R, Simari RD (2014) Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature. Circ Res 115:364–375. doi: 10.1161/CIRCRESAHA.115.303299 PubMedCrossRefGoogle Scholar
  92. 92.
    Quillard T, Croce K, Jaffer FA, Weissleder R, Libby P (2011) Molecular imaging of macrophage protease activity in cardiovascular inflammation in vivo. Thromb Haemost 105:828–836. doi: 10.1160/TH10-09-0589 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ramji DP, Davies TS (2015) Cytokines in atherosclerosis: key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev 26:673–685. doi: 10.1016/j.cytogfr.2015.04.003 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ramkhelawon B, Yang Y, van Gils JM, Hewing B, Rayner KJ, Parathath S, Guo L, Oldebeken S, Feig JL, Fisher EA, Moore KJ (2013) Hypoxia induces netrin-1 and Unc5b in atherosclerotic plaques: mechanism for macrophage retention and survival. Arterioscler Thromb Vasc Biol 33:1180–1188. doi: 10.1161/ATVBAHA.112.301008 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Rekhter MD, Gordon D (1995) Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques. Am J Pathol 147:668–677PubMedPubMedCentralGoogle Scholar
  96. 96.
    Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453:807–811. doi: 10.1038/nature06905 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Robbins CS, Chudnovskiy A, Rauch PJ, Figueiredo JL, Iwamoto Y, Gorbatov R, Etzrodt M, Weber GF, Ueno T, van Rooijen N, Mulligan-Kehoe MJ, Libby P, Nahrendorf M, Pittet MJ, Weissleder R, Swirski FK (2012) Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 125:364–374. doi: 10.1161/CIRCULATIONAHA.111.061986 PubMedCrossRefGoogle Scholar
  98. 98.
    Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, Gorbatov R, Sukhova GK, Gerhardt LM, Smyth D, Zavitz CC, Shikatani EA, Parsons M, van Rooijen N, Lin HY, Husain M, Libby P, Nahrendorf M, Weissleder R, Swirski FK (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19:1166–1172. doi: 10.1038/nm.3258 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Rock KL, Kono H (2008) The inflammatory response to cell death. Annu Rev Pathol 3:99–126. doi: 10.1146/annurev.pathmechdis.3.121806.151456 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Rock KL, Lai JJ, Kono H (2011) Innate and adaptive immune responses to cell death. Immunol Rev 243:191–205. doi: 10.1111/j.1600-065X.2011.01040.x PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Rong JX, Shapiro M, Trogan E, Fisher EA (2003) Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A 100:13531–13536. doi: 10.1073/pnas.1735526100 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Rosenfeld ME, Ross R (1990) Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 10:680–687PubMedCrossRefGoogle Scholar
  103. 103.
    Saeys Y, Gassen SV, Lambrecht BN (2016) Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol 16:449–462. doi: 10.1038/nri.2016.56 PubMedCrossRefGoogle Scholar
  104. 104.
    Sarrazy V, Sore S, Viaud M, Rignol G, Westerterp M, Ceppo F, Tanti JF, Guinamard R, Gautier EL, Yvan-Charvet L (2015) Maintenance of macrophage redox status by ChREBP limits inflammation and apoptosis and protects against advanced atherosclerotic lesion formation. Cell Rep 13:132–144. doi: 10.1016/j.celrep.2015.08.068 PubMedCrossRefGoogle Scholar
  105. 105.
    Schneider F, Sukhova GK, Aikawa M, Canner J, Gerdes N, Tang SM, Shi GP, Apte SS, Libby P (2008) Matrix-metalloproteinase-14 deficiency in bone-marrow-derived cells promotes collagen accumulation in mouse atherosclerotic plaques. Circulation 117:931–939. doi: 10.1161/CIRCULATIONAHA.107.707448 PubMedCrossRefGoogle Scholar
  106. 106.
    Seijkens T, Hoeksema MA, Beckers L, Smeets E, Meiler S, Levels J, Tjwa M, de Winther MP, Lutgens E (2014) Hypercholesterolemia-induced priming of hematopoietic stem and progenitor cells aggravates atherosclerosis. FASEB J: Off Publ Fed Am Soc Exp Biol 28:2202–2213. doi: 10.1096/fj.13-243105 CrossRefGoogle Scholar
  107. 107.
    Serbina NV, Pamer EG (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7:311–317. doi: 10.1038/ni1309 PubMedCrossRefGoogle Scholar
  108. 108.
    Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101. doi: 10.1038/nature13479 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene ES, Straub AC, Isakson B, Randolph GJ, Owens GK (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21:628–637. doi: 10.1038/nm.3866 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT, Stuart LM, Latz E, Fitzgerald KA, Moore KJ (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14:812–820. doi: 10.1038/ni.2639 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. doi: 10.1172/JCI59643 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Silvestre-Roig C, de Winther MP, Weber C, Daemen MJ, Lutgens E, Soehnlein O (2014) Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Circ Res 114:214–226. doi: 10.1161/CIRCRESAHA.114.302355 PubMedCrossRefGoogle Scholar
  113. 113.
    Simsekyilmaz S, Cabrera-Fuentes HA, Meiler S, Kostin S, Baumer Y, Liehn EA, Weber C, Boisvert WA, Preissner KT, Zernecke A (2014) Role of extracellular RNA in atherosclerotic plaque formation in mice. Circulation 129:598–606. doi: 10.1161/CIRCULATIONAHA.113.002562 PubMedCrossRefGoogle Scholar
  114. 114.
    Soehnlein O, Swirski FK (2013) Hypercholesterolemia links hematopoiesis with atherosclerosis. Trends Endocrinol Metab: TEM 24:129–136. doi: 10.1016/j.tem.2012.10.008 PubMedCrossRefGoogle Scholar
  115. 115.
    Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, Raetz CR, Wang EW, Kelly SL, Sullards MC, Murphy RC, Merrill AH Jr, Brown HA, Dennis EA, Li AC, Ley K, Tsimikas S, Fahy E, Subramaniam S, Quehenberger O, Russell DW, Glass CK (2012) Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151:138–152. doi: 10.1016/j.cell.2012.06.054 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ (2010) CD36 ligands promote sterile inflammation through assembly of a toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161. doi: 10.1038/ni.1836 PubMedCrossRefGoogle Scholar
  117. 117.
    Subramanian M, Thorp E, Tabas I (2015) Identification of a non-growth factor role for GM-CSF in advanced atherosclerosis: promotion of macrophage apoptosis and plaque necrosis through IL-23 signaling. Circ Res 116:e13–e24. doi: 10.1161/CIRCRESAHA.116.304794 PubMedCrossRefGoogle Scholar
  118. 118.
    Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Kodama T et al (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296. doi: 10.1038/386292a0 PubMedCrossRefGoogle Scholar
  119. 119.
    Swirski FK, Pittet MJ, Kircher MF, Aikawa E, Jaffer FA, Libby P, Weissleder R (2006) Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc Natl Acad Sci U S A 103:10340–10345. doi: 10.1073/pnas.0604260103 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, Pittet MJ (2007) Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 117:195–205. doi: 10.1172/JCI29950 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616. doi: 10.1126/science.1175202 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Tabas I, Bornfeldt KE (2016) Macrophage phenotype and function in different stages of atherosclerosis. Circ Res 118:653–667. doi: 10.1161/CIRCRESAHA.115.306256 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194. doi: 10.1172/JCI28549 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581. doi: 10.1152/physrev.00024.2005 PubMedCrossRefGoogle Scholar
  125. 125.
    Thomas MR, Lip GY (2017) Novel risk markers and risk assessments for cardiovascular disease. Circ Res 120:133–149. doi: 10.1161/CIRCRESAHA.116.309955 PubMedCrossRefGoogle Scholar
  126. 126.
    Thorp E, Cui D, Schrijvers DM, Kuriakose G, Tabas I (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler Thromb Vasc Biol 28:1421–1428. doi: 10.1161/ATVBAHA.108.167197 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Thorp E, Li G, Seimon TA, Kuriakose G, Ron D, Tabas I (2009) Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of apoe−/− and Ldlr−/− mice lacking CHOP. Cell Metab 9:474–481. doi: 10.1016/j.cmet.2009.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    van der Vorst EP, Theodorou K, Wu Y, Hoeksema MA, Goossens P, Bursill CA, Aliyev T, Huitema LF, Tas SW, Wolfs IM, Kuijpers MJ, Gijbels MJ, Schalkwijk CG, Koonen DP, Abdollahi-Roodsaz S, McDaniels K, Wang CC, Leitges M, Lawrence T, Plat J, Van Eck M, Rye KA, Touqui L, de Winther MP, Biessen EA, Donners MM (2016) High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-kappaB/STAT1-IRF1 signaling. Cell Metab. doi: 10.1016/j.cmet.2016.10.013 PubMedGoogle Scholar
  129. 129.
    van Gils JM, Derby MC, Fernandes LR, Ramkhelawon B, Ray TD, Rayner KJ, Parathath S, Distel E, Feig JL, Alvarez-Leite JI, Rayner AJ, McDonald TO, O’Brien KD, Stuart LM, Fisher EA, Lacy-Hulbert A, Moore KJ (2012) The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat Immunol 13:136–143. doi: 10.1038/ni.2205 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Van Vre EA, Ait-Oufella H, Tedgui A, Mallat Z (2012) Apoptotic cell death and efferocytosis in atherosclerosis. Arterioscler Thromb Vasc Biol 32:887–893. doi: 10.1161/ATVBAHA.111.224873 PubMedCrossRefGoogle Scholar
  131. 131.
    Vengrenyuk Y, Nishi H, Long X, Ouimet M, Savji N, Martinez FO, Cassella CP, Moore KJ, Ramsey SA, Miano JM, Fisher EA (2015) Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol 35:535–546. doi: 10.1161/ATVBAHA.114.304029 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Viola JR, Lemnitzer P, Jansen Y, Csaba G, Winter C, Neideck C, Silvestre-Roig C, Dittmar G, Doring Y, Drechsler M, Weber C, Zimmer R, Cenac N, Soehnlein O (2016) Resolving lipid mediators Maresin 1 and Resolvin D2 prevent Atheroprogression in mice. Circ Res 119:1030–1038. doi: 10.1161/CIRCRESAHA.116.309492 PubMedGoogle Scholar
  133. 133.
    Vorlova S, Koch M, Manthey HD, Cochain C, Busch M, Chaudhari SM, Stegner D, Yepes M, Lorenz K, Nolte MW, Nieswandt B, Zernecke A (2016) Coagulation factor XII induces pro-inflammatory cytokine responses in macrophages and promotes atherosclerosis in mice. Thromb Haemost. doi: 10.1160/TH16-06-0466 PubMedGoogle Scholar
  134. 134.
    Wang JC, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111:245–259. doi: 10.1161/CIRCRESAHA.111.261388 PubMedCrossRefGoogle Scholar
  135. 135.
    Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V (2015) Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349:316–320. doi: 10.1126/science.aaa8064 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Westerterp M, Gourion-Arsiquaud S, Murphy AJ, Shih A, Cremers S, Levine RL, Tall AR, Yvan-Charvet L (2012) Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11:195–206. doi: 10.1016/j.stem.2012.04.024 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Westerterp M, Murphy AJ, Wang M, Pagler TA, Vengrenyuk Y, Kappus MS, Gorman DJ, Nagareddy PR, Zhu X, Abramowicz S, Parks JS, Welch C, Fisher EA, Wang N, Yvan-Charvet L, Tall AR (2013) Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice. Circ Res 112:1456–1465. doi: 10.1161/CIRCRESAHA.113.301086 PubMedCrossRefGoogle Scholar
  138. 138.
    Whitman SC, Ravisankar P, Daugherty A (2002) Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circ Res 90:E34–E38PubMedCrossRefGoogle Scholar
  139. 139.
    Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, Welch C, Tall AR (2007) Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 117:3900–3908. doi: 10.1172/JCI33372 PubMedPubMedCentralGoogle Scholar
  140. 140.
    Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL, Han S, Welch CL, Wang N, Randolph GJ, Snoeck HW, Tall AR (2010a) ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328:1689–1693. doi: 10.1126/science.1189731 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Yvan-Charvet L, Wang N, Tall AR (2010b) Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 30:139–143. doi: 10.1161/ATVBAHA.108.179283 PubMedCrossRefGoogle Scholar
  142. 142.
    Zheng Y, Gardner SE, Clarke MC (2011) Cell death, damage-associated molecular patterns, and sterile inflammation in cardiovascular disease. Arterioscler Thromb Vasc Biol 31:2781–2786. doi: 10.1161/ATVBAHA.111.224907 PubMedCrossRefGoogle Scholar
  143. 143.
    Zhong W, Pan G, Wang L, Li S, Ou J, Xu M, Li J, Zhu B, Cao X, Ma H, Li C, Xu J, Olkkonen VM, Staels B, Yan D (2016) ORP4L facilitates macrophage survival via G-protein-coupled signaling: ORP4L−/− mice display a reduction of atherosclerosis. Circ Res. doi: 10.1161/CIRCRESAHA.116.309603 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Experimental BiomedicineUniversity Hospital WürzburgWürzburgGermany

Personalised recommendations