Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression

  • Joanna Lazniewska
  • Yuriy Rzhepetskyy
  • Fang-Xiong Zhang
  • Gerald W. Zamponi
  • Norbert WeissEmail author
Ion channels, receptors and transporters


T-type calcium channels are key contributors to neuronal physiology where they shape electrical activity of nerve cells and contribute to the release of neurotransmitters. Enhanced T-type channel expression has been causally linked to a number of pathological conditions including peripheral painful diabetic neuropathy. Recently, it was demonstrated that asparagine-linked glycosylation not only plays an essential role in regulating cell surface expression of Cav3.2 channels, but may also support glucose-dependent potentiation of T-type currents. However, the underlying mechanisms by which N-glycosylation and glucose levels modulate the expression of T-type channels remain elusive. In the present study, we show that site-specific N-glycosylation of Cav3.2 is essential to stabilize expression of the channel at the plasma membrane. In contrast, elevated external glucose concentration appears to potentiate intracellular forward trafficking of the channel to the cell surface, resulting in an increased steady-state expression of the channel protein at the plasma membrane. Collectively, our study indicates that glucose and N-glycosylation act in concert to control the expression of Cav3.2 channels, and that alteration of these mechanisms may contribute to the altered expression of T-type channels in pathological conditions.


Calcium channel T-type channel Cav3.2 Glucose N-glycosylation Trafficking 



We are grateful to Drs. Michael E. Daily and Steven H. Green (University of Iowa) for providing the LcK-GFP construct.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Financial support

Work in the Weiss laboratory is supported by the Czech Science Foundation (grant 15-13556S), the Czech Ministry of Education Youth and Sports (grant 7AMB15FR015), and the Institute of Organic Chemistry and Biochemistry (IOCB). Y.R. and J.L. are supported by an IOCB postdoctoral fellowship.


  1. 1.
    Anagnostou SH, Shepherd PR (2008) Glucose induces an autocrine activation of the Wnt/beta-catenin pathway in macrophage cell lines. Biochem J 416(2):211–218CrossRefPubMedGoogle Scholar
  2. 2.
    Bar-On H, Nesher G, Teitelbaum A, Ziv E (1997) Dolichol-mediated enhanced protein N-glycosylation in experimental diabetes—a possible additional deleterious effect of hyperglycemia. J Diabetes Complicat 11(4):236–242CrossRefPubMedGoogle Scholar
  3. 3.
    Beurrier C, Congar P, Bioulac B, Hammond C (1999) Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J Neurosci 19(2):599–609PubMedGoogle Scholar
  4. 4.
    Cain SM, Snutch TP (2013) T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim Biophys Acta 1828(7):1572–1578CrossRefPubMedGoogle Scholar
  5. 5.
    Campos C (2012) Chronic hyperglycemia and glucose toxicity: pathology and clinical sequelae. Postgrad Med 124(6):90–97CrossRefPubMedGoogle Scholar
  6. 6.
    Crunelli V, Cope DW, Hughes SW (2006) Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 40(2):175–190CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dubel SJ, Altier C, Chaumont S, Lory P, Bourinet E, Nargeot J (2004) Plasma membrane expression of T-type calcium channel alpha(1) subunits is modulated by high voltage-activated auxiliary subunits. J Biol Chem 279(28):29263–29269CrossRefPubMedGoogle Scholar
  8. 8.
    Duzhyy DE, Viatchenko-Karpinski VY, Khomula EV, Voitenko NV, Belan PV (2015) Upregulation of T-type Ca2+ channels in long-term diabetes determines increased excitability of a specific type of capsaicin-insensitive DRG neurons. Mol Pain 11:29CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    García-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, Bladen C, Chen L, Hamid J, Pizzoccaro A, Deage M, François A, Bourinet E, Zamponi GW (2014) The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron 83(5):1144–1158CrossRefPubMedGoogle Scholar
  10. 10.
    Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, Su P, Jevtovic-Todorovic V, Todorovic SM (2008) Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 99(6):3151–3156CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, Bayliss DA, Jevtovic-Todorovic V, Todorovic SM (2007) Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci 27(12):3305–3316CrossRefPubMedGoogle Scholar
  12. 12.
    Latham JR, Pathirathna S, Jagodic MM, Choe WJ, Levin ME, Nelson MT, Lee WY, Krishnan K, Covey DF, Todorovic SM, Jevtovic-Todorovic V (2009) Selective T-type calcium channel blockade alleviates hyperalgesia in Ob/Ob mice. Diabetes 58(11):2656–2665CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134CrossRefPubMedGoogle Scholar
  14. 14.
    Lazniewska J, Weiss N (2014) The “sweet” side of ion channels. Rev Physiol Biochem Pharmacol 167:67–114PubMedGoogle Scholar
  15. 15.
    Leunissen EH, Nair AV, Büll C, Lefeber DJ, van Delft FL, Bindels RJ, Hoenderop JG (2013) The epithelial calcium channel TRPV5 is regulated differentially by klotho and sialidase. J Biol Chem 288(41):29238–29246CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu B, Spearman M, Doering J, Lattová E, Perreault H, Butler M (2014) The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody. J Biotechnol 170:17–27CrossRefPubMedGoogle Scholar
  17. 17.
    Mant A, Williams S, Roncoroni L, Lowry E, Johnson D, O’Kelly I (2013) N-glycosylation-dependent control of functional expression of background potassium channels K2P3.1 and K2P9.1. J Biol Chem 288(5):3251–3264CrossRefPubMedGoogle Scholar
  18. 18.
    Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Morenilla-Palao C, Pertusa M, Meseguer V, Cabedo H, Viana F (2009) Lipid raft segregation modulates TRPM8 channel activity. J Biol Chem 284(14):9215–9224CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ohtsubo K, Takamatsu S, Gao C, Korekane H, Kurosawa TM, Taniguchi N (2013) N-glycosylation modulates the membrane sub-domain distribution and activity of glucose transporter 2 in pancreatic beta cells. Biochem Biophys Res Commun 434(2):346–351CrossRefPubMedGoogle Scholar
  21. 21.
    Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD (2005) Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123(7):1307–1321CrossRefPubMedGoogle Scholar
  22. 22.
    Ondacova K, Karmazinova M, Lazniewska J, Weiss N, Lacinova L (2016) Modulation of Cav3.2 T-type calcium channel permeability by asparagine-linked glycosylation. Channels (Austin) 10(3):175–184CrossRefGoogle Scholar
  23. 23.
    Orestes P, Osuru HP, McIntire WE, Jacus MO, Salajegheh R, Jagodic MM, Choe W, Lee J, Lee SS, Rose KE, Poiro N, Digruccio MR, Krishnan K, Covey DF, Lee JH, Barrett PQ, Jevtovic-Todorovic V, Todorovic SM (2013) Reversal of neuropathic pain in diabetes by targeting glycosylation of Ca (V)3.2 T-type calcium channels. Diabetes 62(11):3828–3838CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83(1):117–161CrossRefPubMedGoogle Scholar
  25. 25.
    Rellier N, Ruggiero-Lopez D, Lecomte M, Lagarde M, Wiernsperger N (1999) In vitro and in vivo alterations of enzymatic glycosylation in diabetes. Life Sci 64(17):1571–1583CrossRefPubMedGoogle Scholar
  26. 26.
    Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30(6):497–506CrossRefPubMedGoogle Scholar
  27. 27.
    Rzhepetskyy Y, Lazniewska J, Proft J, Campiglio M, Flucher BE, Weiss N (2016) A Cav3.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane. Channels (Austin):1–9Google Scholar
  28. 28.
    Sano M, Korekane H, Ohtsubo K, Yamaguchi Y, Kato M, Shibukawa Y, Tajiri M, Adachi H, Wada Y, Asahi M, Taniguchi N (2012) N-glycans of SREC-I (scavenger receptor expressed by endothelial cells): essential role for ligand binding, trafficking and stability. Glycobiology 22(5):714–724CrossRefPubMedGoogle Scholar
  29. 29.
    Schleicher ED, Weigert C (2000) Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int Suppl 77:S13–S18CrossRefPubMedGoogle Scholar
  30. 30.
    Schmieder S, Bogliolo S, Ehrenfeld J (2007) N-glycosylation of the Xenopus laevis ClC-5 protein plays a role in cell surface expression, affecting transport activity at the plasma membrane. J Cell Physiol 210(2):479–488CrossRefPubMedGoogle Scholar
  31. 31.
    Senatore A, Guan W, Spafford JD (2014) Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity. Pflugers Arch 466(4):645–660CrossRefPubMedGoogle Scholar
  32. 32.
    Senatore A & Spafford JD (2015). Physiology and pathology of voltage-gated T-type calcium channels. In T-type Calcium Channels in Basic and Clinical Science pp. 3–17. Springer,Google Scholar
  33. 33.
    Tomlinson DR, Gardiner NJ (2008) Glucose neurotoxicity. Nat Rev Neurosci 9(1):36–45CrossRefPubMedGoogle Scholar
  34. 34.
    Turner RW, Zamponi GW (2014) T-type channels buddy up. Pflugers Arch 466(4):661–675CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Villacrés C, Tayi VS, Lattová E, Perreault H, Butler M (2015) Low glucose depletes glycan precursors, reduces site occupancy and galactosylation of a monoclonal antibody in CHO cell culture. Biotechnol J 10(7):1051–1066CrossRefPubMedGoogle Scholar
  36. 36.
    Watanabe M, Ueda T, Shibata Y, Kumamoto N, Shimada S, Ugawa S (2015) Expression and regulation of Cav3.2 T-type calcium channels during inflammatory hyperalgesia in mouse dorsal root ganglion neurons. PLoS One 10(5):e0127572CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Weiss N, Black SA, Bladen C, Chen L, Zamponi GW (2013) Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch 465(8):1159–1170CrossRefPubMedGoogle Scholar
  38. 38.
    Weiss N, Hameed S, Fernández-Fernández JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M (2012) A Ca (v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 287(4):2810–2818CrossRefPubMedGoogle Scholar
  39. 39.
    Weiss N, Zamponi GW (2013) Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta 1828(7):1579–1586CrossRefPubMedGoogle Scholar
  40. 40.
    Weiss N, Zamponi GW, De Waard M (2012) How do T-type calcium channels control low-threshold exocytosis. Commun Integr Biol 5(4):377–380CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wolf MT, An SW, Nie M, Bal MS, Huang CL (2014) Klotho up-regulates renal calcium channel transient receptor potential vanilloid 5 (TRPV5) by intra- and extracellular N-glycosylation-dependent mechanisms. J Biol Chem 289(52):35849–35857CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yue J, Liu L, Liu Z, Shu B, Zhang Y (2013) Upregulation of T-type Ca2+ channels in primary sensory neurons in spinal nerve injury. Spine (Phila Pa 1976) 38(6):463–470CrossRefGoogle Scholar
  43. 43.
    Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67(4):821–870CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhu J, Yan J, Thornhill WB (2012) N-glycosylation promotes the cell surface expression of Kv1.3 potassium channels. FEBS J 279(15):2632–2644CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joanna Lazniewska
    • 1
  • Yuriy Rzhepetskyy
    • 1
  • Fang-Xiong Zhang
    • 2
  • Gerald W. Zamponi
    • 2
  • Norbert Weiss
    • 1
    Email author
  1. 1.Institute of Organic Chemistry and Biochemistry, Ion Channels and Diseases groupAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Department of Physiology and Pharmacology, Cumming School of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations