Pflügers Archiv - European Journal of Physiology

, Volume 468, Issue 10, pp 1725–1740 | Cite as

Determination and compensation of series resistances during whole-cell patch-clamp recordings using an active bridge circuit and the phase-sensitive technique

  • Therese Riedemann
  • Hans Reiner Polder
  • Bernd SutorEmail author


We present a technique which combines two methods in order to measure the series resistance (R S) during whole-cell patch-clamp recordings from excitable and non-excitable cells. R S is determined in the amplifier’s current-clamp mode by means of an active bridge circuit. The correct neutralization of the electrode capacitance and the adjustment of the bridge circuit is achieved by the so-called phase-sensitive method: Short sine wave currents with frequencies between 3 and 7 kHz are injected into the cells. Complete capacitance neutralization is indicated by the disappearance of the phase lag between current and voltage, and correct bridge balance is indicated by a minimized voltage response to the sine wave current. The R S value determined in the current-clamp mode then provides the basis for R S compensation in the voltage-clamp recording mode. The accuracy of the procedure has been confirmed on single-compartment cell models where the error amounted to 2–3 %. Similar errors were observed during dual patch clamp recordings from single neocortical layer 5 pyramidal cells where one electrode was connected to the bridge amplifier and the other one to a time-sharing, single-electrode current- and voltage-clamp amplifier with negligible R S. The technique presented here allows R S compensation for up to 80–90 %, even in cells with low input resistances (e.g., astrocytes). In addition, the present study underlines the importance of correct R S compensation by showing that significant series resistances directly affect the determination of membrane conductances as well as the kinetic properties of spontaneous synaptic currents with small amplitudes.


Series resistance Bridge amplifier Whole-cell patch-clamp Neurons Astrocytes 



We thank F. Rucker for mathematical support, G. Horn for technical assistance, R. Kurtz for valuable comments on the manuscript, and M. Sutor-Gauß for editing the manuscript.

BS would like to dedicate this manuscript to the 80th birthday of Prof. Dr. Gerrit ten Bruggencate.

Compliance with ethical standards

Conflicts of interest

HRP is an employee of npi electronic GmbH. TR and BS declare no conflicts of interest.

Supplementary material

424_2016_1868_MOESM1_ESM.pdf (448 kb)
ESM 1 (PDF 448 kb)


  1. 1.
    Armstrong CM, Chow RH (1987) Supercharging: a method for improving patch-clamp performance. Biophys J 52:133–136. doi: 10.1016/S0006-3495(87)83198-3 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Armstrong CM, Gilly WF (1992) Access resistance and space clamp problems associated with whole-cell patch clamping. In: Rudy B, Iverson LE (eds) Methods in enzymology, Ion channels, vol 207. Academic Press, San Diego, pp. 100–122. doi: 10.1016/0076-6879(92)07007-B Google Scholar
  3. 3.
    Bar-Yehuda D, Korngreen A (2008) Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances. J Neurophysiol 99:1127–1136. doi: 10.1152/jn.01232.2007 CrossRefPubMedGoogle Scholar
  4. 4.
    Binstock L, Adelman WJ Jr, Senft JP, Lecar H (1975) Determination of the resistance in series with the membranes of giant axons. J Membrane Biol 21:25–47CrossRefGoogle Scholar
  5. 5.
    Brette R, Piwkowska Z, Rudolph M, Bal T, Destexhe A (2007) A non-parametric electrode model for intracellular recording. Neurocomputing 70:1597–1601. doi: 10.1016/j.neucom.2006.10.039 CrossRefGoogle Scholar
  6. 6.
    Brette R, Piwkowska Z, Monier C, Rudolph-Lilith M, Fournier J, Levy M, Frégnac Y, Bal T, Destexhe A (2008) High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron 59:379–391. doi: 10.1016/j.neuron.2008.06.021 CrossRefPubMedGoogle Scholar
  7. 7.
    de Sa VR, MacKay DJC (2001) Model fitting as an aid to bridge balancing in neuronal recording. Neurocomputing 38-40:1651–1656. doi: 10.1016/S0925-2312(01)00525-2 CrossRefGoogle Scholar
  8. 8.
    Engel E, Barcilon V, Eisenberg RS (1972) The interpretation of current-voltage relations recorded from a spherical cell with a single microelectrode. Biophys J 12:384–403. doi: 10.1016/S0006-3495(72)86091-0 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F (2009) Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons. J Neurophysiol 102:2161–2175. doi: 10.1152/jn.00160.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222. doi: 10.1016/S0166-2236(00)01547-2 CrossRefPubMedGoogle Scholar
  11. 11.
    Ito M (1957) The electrical activity of spinal ganglion cells investigated with intracellular microelectrodes. Jap J Physiol 7:297–323CrossRefGoogle Scholar
  12. 12.
    Major G (1993) Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems. Biophys J 65:469–491. doi: 10.1016/S0006-3495(93)81039-7 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Marty A, Neher E (1995) Tight-seal whole-cell recording. In: Sakmann B, Neher E (eds) Single channel recording, 2nd edn. Plenum Press, NewYork and London, pp. 31–52CrossRefGoogle Scholar
  14. 14.
    Moore JW, Hines M, Harris EM (1984) Compensation for resistance in series with excitable membranes. Biophys J 46:507–514. doi: 10.1016/S0006-3495(84)84048-5 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nadeau H, Lester HA (2000) Two-compartment model for whole-cell data analysis and transient compensation. J Neurosci Meth 99:25–35. doi: 10.1016/S0165-0270(00)00210-7 CrossRefGoogle Scholar
  16. 16.
    Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2006) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368Google Scholar
  17. 17.
    Pandey S, White MH (2002) Parameter-extraction of a two-compartment model for whole-cell data analysis. J Neurosci Meth 120:131–143. doi: 10.1016/S0165-0270(02)00198-X CrossRefGoogle Scholar
  18. 18.
    Park MR, Kita H, Klee MR, Oomura Y (1983) Bridge balance in intracellular recording: introduction of the phase-sensitive method. J Neurosci Meth 8:105–125. doi: 10.1016/0165-0270(83)90112-7 CrossRefGoogle Scholar
  19. 19.
    Poleg-Polsky A, Diamond JS (2011) Imperfect space clamp permits electrotonic interactions between inhibitory and excitatory synaptic conductances, distorting voltage clamp recordings. PLoS One 6:e19463. doi: 10.1371/journal.pone0019463 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rossant C, Fontaine B, Magnusson AK, Brette R (2012) A calibration-free electrode compensation method. J Neurophysiol 108:2629–2639. doi: 10.1152/jn.01122.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sala F, Sala S (1994) Sources of errors in different single-electrode voltage-clamp techniques: a computer simulation study. J Neurosci Meth 53:189–197. doi: 10.1016/0165-0270(94)90176-7 CrossRefGoogle Scholar
  22. 22.
    Sherman AJ, Shrier A, Cooper E (1999) Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator. Biophys J 77:2590–2601. doi: 10.1016/S0006-3495(99)77093-1 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sigworth FJ (1995) Electronic design of the patch clamp. In: Sakmann B, Neher E (eds) Single channel recording, 2nd edn. Plenum Press, NewYork and London, pp. 95–128CrossRefGoogle Scholar
  24. 24.
    Strickholm A (1995) A single electrode voltage, current- and patch-clamp amplifier with complete stable series resistance compensation. J Neurosci Meth 61:53–66. doi: 10.1016/0165-0270(95)00021-L CrossRefGoogle Scholar
  25. 25.
    Sutor B, Grimm C, Polder HR (2003) Voltage-clamp-controlled current-clamp recordings from neurons: an electrophysiological technique enabling the detection of fast potential changes at preset holding potentials. Pflügers Arch – Eur J Physiol 446:133–141. doi: 10.1007/s00424-003-1008-0 CrossRefGoogle Scholar
  26. 26.
    Taylor AL (2012) What we talk about when we talk about capacitance measured with the voltage-clamp step method. J Comput Neurosci 32:167–175. doi: 10.1007/s10827-011-0346-8 CrossRefPubMedGoogle Scholar
  27. 27.
    Taylor JR (1997) An introduction to error analysis. University Science Books, SausalitoGoogle Scholar
  28. 28.
    Traynelis SF (1998) Software-based correction of single compartment series resistance errors. J Neurosci Meth 86:25–34. doi: 10.1016/S0165-0270(98)00140-X CrossRefGoogle Scholar
  29. 29.
    White WE, Hooper SL (2013) Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena. J Neurophysiol 110:257–268. doi: 10.1152/jn.00993.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Williams SR, Mitchell SJ (2008) Direct measurement of somatic voltage clamp errors in central neurons. Nature Neurosci 11:790–798. doi: 10.1038/nn.2137 CrossRefPubMedGoogle Scholar
  31. 31.
    Wilson CJ, Park MR (1989) Capacitance compensation and bridge balance adjustment in intracellular recording from dendritic neurons. J Neurosci Meth 27:51–75. doi: 10.1016/0165-0270(89)90052-6 CrossRefGoogle Scholar
  32. 32.
    Zhou L, Sun B, Zhang CL, Fine A, Chiu SY, Messing A (1997) Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol 187:36–42. doi: 10.1006/dbio.1997.8601 CrossRefGoogle Scholar
  33. 33.
    Zolles G, Wagner E, Lampert A, Sutor B (2009) Functional expression of nicotinic acetylcholine receptors in rat neocortical layer 5 pyramidal cells. Cereb Cortex 19:1079–1091. doi: 10.1093/cercor/bhn158 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.BioMedizinisches Centrum (BMC)Ludwig-Maximilians-University (LMU), Physiological Genomics, Physiological InstitutePlaneggGermany
  2. 2.npi electronic GmbHTammGermany

Personalised recommendations