Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders

  • N. Coll-Bonfill
  • B. de la Cruz-Thea
  • M. V. Pisano
  • M. M. MusriEmail author
Invited Review


Vascular smooth muscle cells (SMC) are a highly specialized cell type that exhibit extraordinary plasticity in adult animals in response to a number of environmental cues. Upon vascular injury, SMC undergo phenotypic switch from a contractile-differentiated to a proliferative/migratory-dedifferentiated phenotype. This process plays a major role in vascular lesion formation and during the development of vascular remodeling. Vascular remodeling comprises the accumulation of dedifferentiated SMC in the intima of arteries and is central to a number of vascular diseases such as arteriosclerosis, chronic obstructive pulmonary disease or pulmonary hypertension. Therefore, it is critical to understand the molecular mechanisms that govern SMC phenotype. In the last decade, a number of new classes of noncoding RNAs have been described. These molecules have emerged as key factors controlling tissue homeostasis during physiological and pathological conditions. In this review, we will discuss the role of noncoding RNAs, including microRNAs and long noncoding RNAs, in the regulation of SMC plasticity.


Smooth muscle cells Phenotypic change Noncoding RNAs miRNAs lncRNAs 



smooth muscle cells


endothelial cells


noncoding RNAs




long noncoding RNAs


serum response factor


serum response element




myocardin-related transcription factor


transforming growth factor β


platelet-derived growth factor


Smad-binding elements


basic helix-loop-helix


Krüppel-like zinc finger


natural antisense ncRNA


competing endogenous RNAs


smooth muscle and endothelial cell enriched migration/differentiation-associated


single nucleotide polymorphism



This study is supported by grants SEPAR-2009, PRH-2012-0003. BCT is a recipient of a pre-doctoral contract from CONICET. MVP is a recipient of a postdoctoral contract from CONICET.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Ackers-Johnson M, Talasila A, Sage AP, Long X, Bot I, Morrell NW, Bennett MR, Miano JM, Sinha S (2015) Myocardin regulates vascular smooth muscle cell inflammatory activation and disease. Arterioscler Thromb Vasc Biol 35:817–828. doi: 10.1161/ATVBAHA.114.305218 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Albinsson S, Skoura A, Yu J, DiLorenzo A, Fernandez-Hernando C, Offermanns S, Miano JM, Sessa WC (2011) Smooth muscle miRNAs are critical for post-natal regulation of blood pressure and vascular function. PLoS One 6:e18869. doi: 10.1371/journal.pone.0018869 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Albinsson S, Suarez Y, Skoura A, Offermanns S, Miano JM, Sessa WC (2010) MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler Thromb Vasc Biol 30:1118–1126. doi: 10.1161/ATVBAHA.109.200873 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Alexander MR, Owens GK (2012) Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol 74:13–40. doi: 10.1146/annurev-physiol-012110-142315 PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, Olson EN (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160:595–606. doi: 10.1016/j.cell.2015.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Badorff C, Seeger FH, Zeiher AM, Dimmeler S (2005) Glycogen synthase kinase 3beta inhibits myocardin-dependent transcription and hypertrophy induction through site-specific phosphorylation. Circ Res 97:645–654. doi: 10.1161/01.RES.0000184684.88750.FE PubMedCrossRefGoogle Scholar
  7. 7.
    Balderman JA, Lee HY, Mahoney CE, Handy DE, White K, Annis S, Lebeche D, Hajjar RJ, Loscalzo J, Leopold JA (2012) Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification. J Am Heart Assoc 1:e003905. doi: 10.1161/JAHA.112.003905 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 6 doi: 10.1101/cshperspect.a018382
  9. 9.
    Barrett TB, Benditt EP (1987) sis (platelet-derived growth factor B chain) gene transcript levels are elevated in human atherosclerotic lesions compared to normal artery. Proc Natl Acad Sci U S A 84:1099–1103PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi: 10.1016/j.cell.2009.01.002 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155. doi: 10.1038/351153a0 PubMedCrossRefGoogle Scholar
  12. 12.
    Bell RD, Long X, Lin M, Bergmann JH, Nanda V, Cowan SL, Zhou Q, Han Y, Spector DL, Zheng D, Miano JM (2014) Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol 34:1249–1259. doi: 10.1161/ATVBAHA.114.303240 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217. doi: 10.1038/ng1253 PubMedCrossRefGoogle Scholar
  14. 14.
    Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336. doi: 10.1146/annurev.biochem.72.121801.161720 PubMedCrossRefGoogle Scholar
  15. 15.
    Blakaj A, Lin H (2008) Piecing together the mosaic of early mammalian development through microRNAs. J Biol Chem 283:9505–9508. doi: 10.1074/jbc.R800002200 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Boettger T, Beetz N, Kostin S, Schneider J, Kruger M, Hein L, Braun T (2009) Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest 119:2634–2647. doi: 10.1172/JCI38864 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bonasio R, Shiekhattar R (2014) Regulation of transcription by long noncoding RNAs. Annu Rev Genet 48:433–455. doi: 10.1146/annurev-genet-120213-092323 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Boucher JM, Peterson SM, Urs S, Zhang C, Liaw L (2011) The miR-143/145 cluster is a novel transcriptional target of Jagged-1/Notch signaling in vascular smooth muscle cells. J Biol Chem 286:28312–28321. doi: 10.1074/jbc.M111.221945 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10:28–36PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bretschneider M, Busch B, Mueller D, Nolze A, Schreier B, Gekle M, Grossmann C (2016) Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells. FASEB J. doi: 10.1096/fj.15-271254 PubMedGoogle Scholar
  21. 21.
    Cao H, Hu X, Zhang Q, Wang J, Li J, Liu B, Shao Y, Li X, Zhang J, Xin S (2014) Upregulation of let-7a inhibits vascular smooth muscle cell proliferation in vitro and in vein graft intimal hyperplasia in rats. J Surg Res 192:223–233. doi: 10.1016/j.jss.2014.05.045 PubMedCrossRefGoogle Scholar
  22. 22.
    Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L, Lu R, White K, Mair KM, McClure JD, Southwood M, Upton P, Xin M, van Rooij E, Olson EN, Morrell NW, MacLean MR, Baker AH (2012) A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res 111:290–300. doi: 10.1161/CIRCRESAHA.112.267591 PubMedCrossRefGoogle Scholar
  23. 23.
    Castel D, Mourikis P, Bartels SJ, Brinkman AB, Tajbakhsh S, Stunnenberg HG (2013) Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev 27:1059–1071. doi: 10.1101/gad.211912.112 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94. doi: 10.1016/j.cell.2014.03.008 PubMedCrossRefGoogle Scholar
  25. 25.
    Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369. doi: 10.1016/j.cell.2011.09.028 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, Lieberman J, Lagna G, Hata A (2010) Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J 29:559–573. doi: 10.1038/emboj.2009.370 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chan MC, Nguyen PH, Davis BN, Ohoka N, Hayashi H, Du K, Lagna G, Hata A (2007) A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type II receptor. Mol Cell Biol 27:5776–5789. doi: 10.1128/MCB.00218-07 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chen CN, Li YS, Yeh YT, Lee PL, Usami S, Chien S, Chiu JJ (2006) Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells. Proc Natl Acad Sci U S A 103:2665–2670. doi: 10.1073/pnas.0510973103 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chen J, Yin H, Jiang Y, Radhakrishnan SK, Huang ZP, Li J, Shi Z, Kilsdonk EP, Gui Y, Wang DZ, Zheng XL (2011) Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol 31:368–375. doi: 10.1161/ATVBAHA.110.218149 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chen Q, Yang F, Guo M, Wen G, Zhang C, le Luong A, Zhu J, Xiao Q, Zhang L (2015) miRNA-34a reduces neointima formation through inhibiting smooth muscle cell proliferation and migration. J Mol Cell Cardiol 89:75–86. doi: 10.1016/j.yjmcc.2015.10.017 PubMedCrossRefGoogle Scholar
  31. 31.
    Chen X, Talati M, Fessel JP, Hemnes AR, Gladson S, French J, Shay S, Trammell A, Phillips JA, Hamid R, Cogan JD, Dawson EP, Womble KE, Hedges LK, Martinez EG, Wheeler LA, Loyd JE, Majka SJ, West J, Austin ED (2016) Estrogen metabolite 16alpha-hydroxyestrone exacerbates bone morphogenetic protein receptor type II-associated pulmonary arterial hypertension through MicroRNA-29-mediated modulation of cellular metabolism. Circulation 133:82–97. doi: 10.1161/CIRCULATIONAHA.115.016133 PubMedCrossRefGoogle Scholar
  32. 32.
    Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C (2009) MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 105:158–166. doi: 10.1161/CIRCRESAHA.109.197517 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Choe N, Kwon JS, Kim JR, Eom GH, Kim Y, Nam KI, Ahn Y, Kee HJ, Kook H (2013) The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis 229:348–355. doi: 10.1016/j.atherosclerosis.2013.05.009 PubMedCrossRefGoogle Scholar
  34. 34.
    Climent M, Quintavalle M, Miragoli M, Chen J, Condorelli G, Elia L (2015) TGFbeta triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circ Res 116:1753–1764. doi: 10.1161/CIRCRESAHA.116.305178 PubMedCrossRefGoogle Scholar
  35. 35.
    Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi: 10.1038/nature11247 CrossRefGoogle Scholar
  36. 36.
    Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460:705–710. doi: 10.1038/nature08195 PubMedPubMedCentralGoogle Scholar
  37. 37.
    Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, Simard MJ, Bonnet S (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208:535–548. doi: 10.1084/jem.20101812 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Danielson LS, Menendez S, Attolini CS, Guijarro MV, Bisogna M, Wei J, Socci ND, Levine DA, Michor F, Hernando E (2010) A differentiation-based microRNA signature identifies leiomyosarcoma as a mesenchymal stem cell-related malignancy. Am J Pathol 177:908–917. doi: 10.2353/ajpath.2010.091150 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61. doi: 10.1038/nature07086 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2009) Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem 284:3728–3738. doi: 10.1074/jbc.M808788200 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Davis-Dusenbery BN, Wu C, Hata A (2011) Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol 31:2370–2377. doi: 10.1161/ATVBAHA.111.226670 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Deaton RA, Gan Q, Owens GK (2009) Sp1-dependent activation of KLF4 is required for PDGF-BB-induced phenotypic modulation of smooth muscle. Am J Physiol Heart Circ Physiol 296:H1027–1037. doi: 10.1152/ajpheart.01230.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311. doi: 10.1126/science.1067799 PubMedCrossRefGoogle Scholar
  44. 44.
    Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584. doi: 10.1038/nature02006 PubMedCrossRefGoogle Scholar
  45. 45.
    Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489:101–108. doi: 10.1038/nature11233 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Doi H, Iso T, Sato H, Yamazaki M, Matsui H, Tanaka T, Manabe I, Arai M, Nagai R, Kurabayashi M (2006) Jagged1-selective notch signaling induces smooth muscle differentiation via a RBP-Jkappa-dependent pathway. J Biol Chem 281:28555–28564. doi: 10.1074/jbc.M602749200 PubMedCrossRefGoogle Scholar
  47. 47.
    Dueck A, Meister G (2014) Assembly and function of small RNA—argonaute protein complexes. Biol Chem 395:611–629. doi: 10.1515/hsz-2014-0116 PubMedCrossRefGoogle Scholar
  48. 48.
    Durocher D, Nemer M (1998) Combinatorial interactions regulating cardiac transcription. Dev Genet 22:250–262. doi: 10.1002/(SICI)1520-6408(1998)22:3<250::AID-DVG7>3.0.CO;2-5 PubMedCrossRefGoogle Scholar
  49. 49.
    Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G (2009) The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ 16:1590–1598. doi: 10.1038/cdd.2009.153 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973. doi: 10.1126/science.1237973 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. doi: 10.1038/nrg3074 PubMedCrossRefGoogle Scholar
  52. 52.
    Francastel C, Schubeler D, Martin DI, Groudine M (2000) Nuclear compartmentalization and gene activity. Nat Rev Mol Cell Biol 1:137–143. doi: 10.1038/35040083 PubMedCrossRefGoogle Scholar
  53. 53.
    Giege R (2008) Toward a more complete view of tRNA biology. Nat Struct Mol Biol 15:1007–1014. doi: 10.1038/nsmb.1498 PubMedCrossRefGoogle Scholar
  54. 54.
    Goto Y, Kojima S, Nishikawa R, Enokida H, Chiyomaru T, Kinoshita T, Nakagawa M, Naya Y, Ichikawa T, Seki N (2014) The microRNA-23b/27b/24-1 cluster is a disease progression marker and tumor suppressor in prostate cancer. Oncotarget 5:7748–7759. doi: 10.18632/oncotarget.2294 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gou D, Ramchandran R, Peng X, Yao L, Kang K, Sarkar J, Wang Z, Zhou G, Raj JU (2012) miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia. Am J Physiol Lung Cell Mol Physiol 303:L682–691. doi: 10.1152/ajplung.00344.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Green DE, Murphy TC, Kang BY, Searles CD, Hart CM (2015) PPARgamma ligands attenuate hypoxia-induced proliferation in human pulmonary artery smooth muscle cells through modulation of MicroRNA-21. PLoS One 10:e0133391. doi: 10.1371/journal.pone.0133391 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gridley T (2010) Notch signaling in the vasculature. Curr Top Dev Biol 92:277–309. doi: 10.1016/S0070-2153(10)92009-7 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Grosshans H, Filipowicz W (2008) Molecular biology: the expanding world of small RNAs. Nature 451:414–416. doi: 10.1038/451414a PubMedCrossRefGoogle Scholar
  59. 59.
    Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300. doi: 10.1038/nature10398 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR, Morse M, Engreitz J, Lander ES, Guttman M, Lodish HF, Flavell R, Raj A, Rinn JL (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21:198–206. doi: 10.1038/nsmb.2764 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Han DK, Khaing ZZ, Pollock RA, Haudenschild CC, Liau G (1996) H19, a marker of developmental transition, is reexpressed in human atherosclerotic plaques and is regulated by the insulin family of growth factors in cultured rabbit smooth muscle cells. J Clin Invest 97:1276–1285. doi: 10.1172/JCI118543 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Han DK, Liau G (1992) Identification and characterization of developmentally regulated genes in vascular smooth muscle cells. Circ Res 71:711–719PubMedCrossRefGoogle Scholar
  63. 63.
    Han Y, Slivano OJ, Christie CK, Cheng AW, Miano JM (2015) CRISPR-Cas9 genome editing of a single regulatory element nearly abolishes target gene expression in mice—brief report. Arterioscler Thromb Vasc Biol 35:312–315. doi: 10.1161/ATVBAHA.114.305017 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9:e1003569. doi: 10.1371/journal.pgen.1003569 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388. doi: 10.1038/nature11993 PubMedCrossRefGoogle Scholar
  66. 66.
    Hautmann MB, Madsen CS, Owens GK (1997) A transforming growth factor beta (TGFbeta) control element drives TGFbeta-induced stimulation of smooth muscle alpha-actin gene expression in concert with two CArG elements. J Biol Chem 272:10948–10956PubMedCrossRefGoogle Scholar
  67. 67.
    Hayashi K, Nakamura S, Nishida W, Sobue K (2006) Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription. Mol Cell Biol 26:9456–9470. doi: 10.1128/MCB.00759-06 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Heidersbach A, Saxby C, Carver-Moore K, Huang Y, Ang YS, de Jong PJ, Ivey KN, Srivastava D (2013) microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. Elife 2:e01323. doi: 10.7554/eLife.01323 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665. doi: 10.1016/j.cell.2013.03.043 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256. doi: 10.1038/ncb2441 PubMedCrossRefGoogle Scholar
  71. 71.
    Herring BP, Hoggatt AM, Burlak C, Offermanns S (2014) Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury. Vasc Cell 6:21. doi: 10.1186/2045-824X-6-21 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Herzing LB, Romer JT, Horn JM, Ashworth A (1997) Xist has properties of the X-chromosome inactivation centre. Nature 386:272–275. doi: 10.1038/386272a0 PubMedCrossRefGoogle Scholar
  73. 73.
    Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170PubMedCrossRefGoogle Scholar
  74. 74.
    Hinson JS, Medlin MD, Taylor JM, Mack CP (2008) Regulation of myocardin factor protein stability by the LIM-only protein FHL2. Am J Physiol Heart Circ Physiol 295:H1067–H1075. doi: 10.1152/ajpheart.91421.2007 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hirschi KK, Lai L, Belaguli NS, Dean DA, Schwartz RJ, Zimmer WE (2002) Transforming growth factor-beta induction of smooth muscle cell phenotpye requires transcriptional and post-transcriptional control of serum response factor. J Biol Chem 277:6287–6295. doi: 10.1074/jbc.M106649200 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Huang H, Xie C, Sun X, Ritchie RP, Zhang J, Chen YE (2010) miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem 285:9383–9389. doi: 10.1074/jbc.M109.095612 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8:39. doi: 10.1186/1471-2164-8-39 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Iaconetti C, De Rosa S, Polimeni A, Sorrentino S, Gareri C, Carino A, Sabatino J, Colangelo M, Curcio A, Indolfi C (2015) Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc Res 107:522–533. doi: 10.1093/cvr/cvv141 PubMedCrossRefGoogle Scholar
  79. 79.
    Ilagan RM, Genheimer CW, Quinlan SF, Guthrie KI, Sangha N, Ramachandrannair S, Kelley RW, Presnell SC, Basu J, Ludlow JW (2011) Smooth muscle phenotypic diversity is mediated through alterations in myocardin gene splicing. J Cell Physiol 226:2702–2711. doi: 10.1002/jcp.22622 PubMedCrossRefGoogle Scholar
  80. 80.
    Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y, Tanaka T (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51:1087–1099. doi: 10.1007/s10038-006-0070-9 PubMedCrossRefGoogle Scholar
  81. 81.
    Jalali S, Ramanathan GK, Parthasarathy PT, Aljubran S, Galam L, Yunus A, Garcia S, Cox RR Jr, Lockey RF, Kolliputi N (2012) Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One 7:e46808. doi: 10.1371/journal.pone.0046808 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461. doi: 10.1038/nbt.2890 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100:1579–1588. doi: 10.1161/CIRCRESAHA.106.141986 PubMedCrossRefGoogle Scholar
  84. 84.
    Jiang Y, Yin H, Zheng XL (2010) MicroRNA-1 inhibits myocardin-induced contractility of human vascular smooth muscle cells. J Cell Physiol 225:506–511. doi: 10.1002/jcp.22230 PubMedCrossRefGoogle Scholar
  85. 85.
    Johnson AD, Owens GK (1999) Differential activation of the SMalphaA promoter in smooth vs. skeletal muscle cells by bHLH factors. Am J Phys 276:C1420–1431Google Scholar
  86. 86.
    Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y, Huang Y (2013) The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 52:101–112. doi: 10.1016/j.molcel.2013.08.027 PubMedCrossRefGoogle Scholar
  87. 87.
    Kang H, Davis-Dusenbery BN, Nguyen PH, Lal A, Lieberman J, Van Aelst L, Lagna G, Hata A (2012) Bone morphogenetic protein 4 promotes vascular smooth muscle contractility by activating microRNA-21 (miR-21), which down-regulates expression of family of dedicator of cytokinesis (DOCK) proteins. J Biol Chem 287:3976–3986. doi: 10.1074/jbc.M111.303156 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kang K, Peng X, Zhang X, Wang Y, Zhang L, Gao L, Weng T, Zhang H, Ramchandran R, Raj JU, Gou D, Liu L (2013) MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J Biol Chem 288:25414–25427. doi: 10.1074/jbc.M113.460287 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665. doi: 10.1038/ncb2521 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kim DK, Zhang L, Dzau VJ, Pratt RE (1994) H19, a developmentally regulated gene, is reexpressed in rat vascular smooth muscle cells after injury. J Clin Invest 93:355–360. doi: 10.1172/JCI116967 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kim MH, Ham O, Lee SY, Choi E, Lee CY, Park JH, Lee J, Seo HH, Seung M, Choi E, Min PK, Hwang KC (2014) MicroRNA-365 inhibits the proliferation of vascular smooth muscle cells by targeting cyclin D1. J Cell Biochem 115:1752–1761. doi: 10.1002/jcb.24841 PubMedCrossRefGoogle Scholar
  92. 92.
    Kim S, Hata A, Kang H (2014) Down-regulation of miR-96 by bone morphogenetic protein signaling is critical for vascular smooth muscle cell phenotype modulation. J Cell Biochem 115:889–895. doi: 10.1002/jcb.24730 PubMedCrossRefGoogle Scholar
  93. 93.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139. doi: 10.1038/nrm2632 PubMedCrossRefGoogle Scholar
  94. 94.
    Kiss T (2001) Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20:3617–3622. doi: 10.1093/emboj/20.14.3617 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kohn M, Pazaitis N, Huttelmaier S (2013) Why YRNAs? About versatile RNAs and their functions. Biomolecules 3:143–156. doi: 10.3390/biom3010143 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kosak ST, Groudine M (2002) The undiscovered country: chromosome territories and the organization of transcription. Dev Cell 2:690–692PubMedCrossRefGoogle Scholar
  97. 97.
    Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GX, Aiyer S, Raj A, Rinn JL, Chang HY, Khavari PA (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235. doi: 10.1038/nature11661 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kumar MS, Owens GK (2003) Combinatorial control of smooth muscle-specific gene expression. Arterioscler Thromb Vasc Biol 23:737–747. doi: 10.1161/01.ATV.0000065197.07635.BA PubMedCrossRefGoogle Scholar
  99. 99.
    Lagna G, Ku MM, Nguyen PH, Neuman NA, Davis BN, Hata A (2007) Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors. J Biol Chem 282:37244–37255. doi: 10.1074/jbc.M708137200 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM (2011) MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 226:1035–1043. doi: 10.1002/jcp.22422 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Leung A, Trac C, Jin W, Lanting L, Akbany A, Saetrom P, Schones DE, Natarajan R (2013) Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 113:266–278. doi: 10.1161/CIRCRESAHA.112.300849 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Li L, Li X, The E, Wang LJ, Yuan TY, Wang SY, Feng J, Wang J, Liu Y, Wu YH, Ma XE, Ge J, Cui YY, Jiang XY (2015) Low expression of lncRNA-GAS5 is implicated in human primary varicose great saphenous veins. PLoS One 10:e0120550. doi: 10.1371/journal.pone.0120550 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Li P, Liu Y, Yi B, Wang G, You X, Zhao X, Summer R, Qin Y, Sun J (2013) MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1. Cardiovasc Res 99:185–193. doi: 10.1093/cvr/cvt082 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Li P, Zhu N, Yi B, Wang N, Chen M, You X, Zhao X, Solomides CC, Qin Y, Sun J (2013) MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Circ Res 113:1117–1127. doi: 10.1161/CIRCRESAHA.113.301306 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Li S, Ran Y, Zhang D, Chen J, Li S, Zhu D (2013) MicroRNA-138 plays a role in hypoxic pulmonary vascular remodelling by targeting Mst1. Biochem J 452:281–291. doi: 10.1042/BJ20120680 PubMedCrossRefGoogle Scholar
  106. 106.
    Li X, Jiang XY, Ge J, Wang J, Chen GJ, Xu L, Xie DY, Yuan TY, Zhang DS, Zhang H, Chen YH (2014) Aberrantly expressed lncRNAs in primary varicose great saphenous veins. PLoS One 9:e86156. doi: 10.1371/journal.pone.0086156 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Liao G, Panettieri RA, Tang DD (2015) MicroRNA-203 negatively regulates c-Abl, ERK1/2 phosphorylation, and proliferation in smooth muscle cells. Physiol Rep 3 doi:  10.14814/phy2.12541
  108. 108.
    Lin Y, Liu X, Cheng Y, Yang J, Huo Y, Zhang C (2009) Involvement of microRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem 284:7903–7913. doi: 10.1074/jbc.M806920200 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22:3242–3254. doi: 10.1101/gad.1738708 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Liu X, Cheng Y, Chen X, Yang J, Xu L, Zhang C (2011) MicroRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2. J Biol Chem 286:42371–42380. doi: 10.1074/jbc.M111.261065 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C (2009) A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 104:476–487. doi: 10.1161/CIRCRESAHA.108.185363 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH, Owens GK (2005) Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem 280:9719–9727. doi: 10.1074/jbc.M412862200 PubMedCrossRefGoogle Scholar
  113. 113.
    Liu Y, Yang K, Shi H, Xu J, Zhang D, Wu Y, Zhou S, Sun X (2015) MiR-21 modulates human airway smooth muscle cell proliferation and migration in asthma through regulation of PTEN expression. Exp Lung Res 41:535–545. doi: 10.3109/01902148.2015.1090501 PubMedCrossRefGoogle Scholar
  114. 114.
    Liu ZP, Wang Z, Yanagisawa H, Olson EN (2005) Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin. Dev Cell 9:261–270. doi: 10.1016/j.devcel.2005.05.017 PubMedCrossRefGoogle Scholar
  115. 115.
    Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, Hatzimichael E, Kirino Y, Honda S, Lally M, Ramratnam B, Comstock CE, Knudsen KE, Gomella L, Spaeth GL, Hark L, Katz LJ, Witkiewicz A, Rostami A, Jimenez SA, Hollingsworth MA, Yeh JJ, Shaw CA, McKenzie SE, Bray P, Nelson PT, Zupo S, Van Roosbroeck K, Keating MJ, Calin GA, Yeo C, Jimbo M, Cozzitorto J, Brody JR, Delgrosso K, Mattick JS, Fortina P, Rigoutsos I (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A 112:E1106–1115. doi: 10.1073/pnas.1420955112 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Long X, Bell RD, Gerthoffer WT, Zlokovic BV, Miano JM (2008) Myocardin is sufficient for a smooth muscle-like contractile phenotype. Arterioscler Thromb Vasc Biol 28:1505–1510. doi: 10.1161/ATVBAHA.108.166066 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Long X, Miano JM (2011) Transforming growth factor-beta1 (TGF-beta1) utilizes distinct pathways for the transcriptional activation of microRNA 143/145 in human coronary artery smooth muscle cells. J Biol Chem 286:30119–30129. doi: 10.1074/jbc.M111.258814 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Long X, Slivano OJ, Cowan SL, Georger MA, Lee TH, Miano JM (2011) Smooth muscle calponin: an unconventional CArG-dependent gene that antagonizes neointimal formation. Arterioscler Thromb Vasc Biol 31:2172–2180. doi: 10.1161/ATVBAHA.111.232785 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N, Steer BM, Ingram AJ, Gupta M, Al-Omran M, Teoh H, Marsden PA, Verma S (2012) MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation 126:S81–90. doi: 10.1161/CIRCULATIONAHA.111.084186 PubMedCrossRefGoogle Scholar
  120. 120.
    Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK (2001) Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem 276:341–347. doi: 10.1074/jbc.M005505200 PubMedCrossRefGoogle Scholar
  121. 121.
    Madsen CS, Regan CP, Owens GK (1997) Interaction of CArG elements and a GC-rich repressor element in transcriptional regulation of the smooth muscle myosin heavy chain gene in vascular smooth muscle cells. J Biol Chem 272:29842–29851PubMedCrossRefGoogle Scholar
  122. 122.
    Maegdefessel L, Spin JM, Raaz U, Eken SM, Toh R, Azuma J, Adam M, Nakagami F, Heymann HM, Chernogubova E, Jin H, Roy J, Hultgren R, Caidahl K, Schrepfer S, Hamsten A, Eriksson P, McConnell MV, Dalman RL, Tsao PS (2014) miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat Commun 5:5214. doi: 10.1038/ncomms6214 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Manabe I, Owens GK (2001) CArG elements control smooth muscle subtype-specific expression of smooth muscle myosin in vivo. J Clin Invest 107:823–834. doi: 10.1172/JCI11385 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Mano T, Luo Z, Malendowicz SL, Evans T, Walsh K (1999) Reversal of GATA-6 downregulation promotes smooth muscle differentiation and inhibits intimal hyperplasia in balloon-injured rat carotid artery. Circ Res 84:647–654PubMedCrossRefGoogle Scholar
  125. 125.
    Martin-Garrido A, Williams HC, Lee M, Seidel-Rogol B, Ci X, Dong JT, Lassegue B, Martin AS, Griendling KK (2013) Transforming growth factor beta inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation. PLoS One 8:e79657. doi: 10.1371/journal.pone.0079657 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810. doi: 10.1101/gad.1350705 PubMedCrossRefGoogle Scholar
  127. 127.
    McDonald RA, Halliday CA, Miller AM, Diver LA, Dakin RS, Montgomery J, McBride MW, Kennedy S, McClure JD, Robertson KE, Douglas G, Channon KM, Oldroyd KG, Baker AH (2015) Reducing in-stent restenosis: therapeutic manipulation of miRNA in vascular remodeling and inflammation. J Am Coll Cardiol 65:2314–2327. doi: 10.1016/j.jacc.2015.03.549 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349. doi: 10.1038/nature02873 PubMedCrossRefGoogle Scholar
  129. 129.
    Meloche J, Le Guen M, Potus F, Vinck J, Ranchoux B, Johnson I, Antigny F, Tremblay E, Breuils-Bonnet S, Perros F, Provencher S, Bonnet S (2015) miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol 309:C363–372. doi: 10.1152/ajpcell.00149.2015 PubMedCrossRefGoogle Scholar
  130. 130.
    Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA, Mattick JS, Rinn JL (2012) Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol 30:99–104. doi: 10.1038/nbt.2024 CrossRefGoogle Scholar
  131. 131.
    Merlet E, Atassi F, Motiani RK, Mougenot N, Jacquet A, Nadaud S, Capiod T, Trebak M, Lompre AM, Marchand A (2013) miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat. Cardiovasc Res 98:458–468. doi: 10.1093/cvr/cvt045 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Miano JM, Long X (2015) The short and long of noncoding sequences in the control of vascular cell phenotypes. Cell Mol Life Sci 72:3457–3488. doi: 10.1007/s00018-015-1936-9 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Miano JM, Long X, Fujiwara K (2007) Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 292:C70–81. doi: 10.1152/ajpcell.00386.2006 PubMedCrossRefGoogle Scholar
  134. 134.
    Miller CL, Haas U, Diaz R, Leeper NJ, Kundu RK, Patlolla B, Assimes TL, Kaiser FJ, Perisic L, Hedin U, Maegdefessel L, Schunkert H, Erdmann J, Quertermous T, Sczakiel G (2014) Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation. PLoS Genet 10:e1004263. doi: 10.1371/journal.pgen.1004263 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Morrisey EE, Ip HS, Lu MM, Parmacek MS (1996) GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol 177:309–322. doi: 10.1006/dbio.1996.0165 PubMedCrossRefGoogle Scholar
  136. 136.
    Morrow D, Scheller A, Birney YA, Sweeney C, Guha S, Cummins PM, Murphy R, Walls D, Redmond EM, Cahill PA (2005) Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell Physiol 289:C1188–1196. doi: 10.1152/ajpcell.00198.2005 PubMedCrossRefGoogle Scholar
  137. 137.
    Moss T, Stefanovsky VY (2002) At the center of eukaryotic life. Cell 109:545–548PubMedCrossRefGoogle Scholar
  138. 138.
    Motterle A, Pu X, Wood H, Xiao Q, Gor S, Ng FL, Chan K, Cross F, Shohreh B, Poston RN, Tucker AT, Caulfield MJ, Ye S (2012) Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet 21:4021–4029. doi: 10.1093/hmg/dds224 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Nemenoff RA, Horita H, Ostriker AC, Furgeson SB, Simpson PA, VanPutten V, Crossno J, Offermanns S, Weiser-Evans MC (2011) SDF-1alpha induction in mature smooth muscle cells by inactivation of PTEN is a critical mediator of exacerbated injury-induced neointima formation. Arterioscler Thromb Vasc Biol 31:1300–1308. doi: 10.1161/ATVBAHA.111.223701 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Noseda M, Fu Y, Niessen K, Wong F, Chang L, McLean G, Karsan A (2006) Smooth muscle alpha-actin is a direct target of notch/CSL. Circ Res 98:1468–1470. doi: 10.1161/01.RES.0000229683.81357.26 PubMedCrossRefGoogle Scholar
  141. 141.
    Osbourn JK, Weissberg PL, Shanahan CM (1995) A regulatory element downstream of the rat SM22 alpha gene transcription start point enhances reporter gene expression in vascular smooth muscle cells. Gene 154:249–253PubMedCrossRefGoogle Scholar
  142. 142.
    Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517PubMedGoogle Scholar
  143. 143.
    Owens GK (2007) Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found Symp 283:174–191, discussion 191-173, 238-141 PubMedCrossRefGoogle Scholar
  144. 144.
    Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801. doi: 10.1152/physrev.00041.2003 PubMedCrossRefGoogle Scholar
  145. 145.
    Pan Y, Balazs L, Tigyi G, Yue J (2011) Conditional deletion of dicer in vascular smooth muscle cells leads to the developmental delay and embryonic mortality. Biochem Biophys Res Commun 408:369–374. doi: 10.1016/j.bbrc.2011.02.119 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Pasmant E, Sabbagh A, Vidaud M, Bieche I (2011) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25:444–448. doi: 10.1096/fj.10-172452 PubMedCrossRefGoogle Scholar
  147. 147.
    Pauli A, Norris ML, Valen E, Chew GL, Gagnon JA, Zimmerman S, Mitchell A, Ma J, Dubrulle J, Reyon D, Tsai SQ, Joung JK, Saghatelian A, Schier AF (2014) Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 343:1248636. doi: 10.1126/science.1248636 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Perlman H, Suzuki E, Simonson M, Smith RC, Walsh K (1998) GATA-6 induces p21(Cip1) expression and G1 cell cycle arrest. J Biol Chem 273:13713–13718PubMedCrossRefGoogle Scholar
  149. 149.
    Proweller A, Pear WS, Parmacek MS (2005) Notch signaling represses myocardin-induced smooth muscle cell differentiation. J Biol Chem 280:8994–9004. doi: 10.1074/jbc.M413316200 PubMedCrossRefGoogle Scholar
  150. 150.
    Qiao W, Chen L, Zhang M (2014) MicroRNA-205 regulates the calcification and osteoblastic differentiation of vascular smooth muscle cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 33:1945–1953. doi: 10.1159/000362971 CrossRefGoogle Scholar
  151. 151.
    Qiu P, Li L (2002) Histone acetylation and recruitment of serum responsive factor and CREB-binding protein onto SM22 promoter during SM22 gene expression. Circ Res 90:858–865PubMedCrossRefGoogle Scholar
  152. 152.
    Qiu P, Ritchie RP, Fu Z, Cao D, Cumming J, Miano JM, Wang DZ, Li HJ, Li L (2005) Myocardin enhances Smad3-mediated transforming growth factor-beta1 signaling in a CArG box-independent manner: Smad-binding element is an important cis element for SM22alpha transcription in vivo. Circ Res 97:983–991. doi: 10.1161/01.RES.0000190604.90049.71 PubMedCrossRefGoogle Scholar
  153. 153.
    Reddy MA, Jin W, Villeneuve L, Wang M, Lanting L, Todorov I, Kato M, Natarajan R (2012) Pro-inflammatory role of microrna-200 in vascular smooth muscle cells from diabetic mice. Arterioscler Thromb Vasc Biol 32:721–729. doi: 10.1161/ATVBAHA.111.241109 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Rhee SW, Stimers JR, Wang W, Pang L (2009) Vascular smooth muscle-specific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy. J Pharmacol Exp Ther 329:775–782. doi: 10.1124/jpet.108.148866 PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi: 10.1146/annurev-biochem-051410-092902 PubMedCrossRefGoogle Scholar
  156. 156.
    Robb GB, Carson AR, Tai SC, Fish JE, Singh S, Yamada T, Scherer SW, Nakabayashi K, Marsden PA (2004) Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem 279:37982–37996. doi: 10.1074/jbc.M400271200 PubMedCrossRefGoogle Scholar
  157. 157.
    Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D’Ecclessis MF, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749. doi: 10.7554/eLife.01749 PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene ES, Straub AC, Isakson B, Randolph GJ, Owens GK (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21:628–637. doi: 10.1038/nm.3866 PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Shimizu RT, Blank RS, Jervis R, Lawrenz-Smith SC, Owens GK (1995) The smooth muscle alpha-actin gene promoter is differentially regulated in smooth muscle versus non-smooth muscle cells. J Biol Chem 270:7631–7643PubMedCrossRefGoogle Scholar
  160. 160.
    Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M, Bowman SK, Kesner BA, Maier VK, Kingston RE, Lee JT (2013) High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504:465–469. doi: 10.1038/nature12719 PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813. doi: 10.1038/415810a PubMedCrossRefGoogle Scholar
  162. 162.
    St Laurent G, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet TIG 31:239–251. doi: 10.1016/j.tig.2015.03.007 PubMedCrossRefGoogle Scholar
  163. 163.
    Sun Q, Chen G, Streb JW, Long X, Yang Y, Stoeckert CJ Jr, Miano JM (2006) Defining the mammalian CArGome. Genome Res 16:197–207. doi: 10.1101/gr.4108706 PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Sun SG, Zheng B, Han M, Fang XM, Li HX, Miao SB, Su M, Han Y, Shi HJ, Wen JK (2011) miR-146a and Kruppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep 12:56–62. doi: 10.1038/embor.2010.172 PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139. doi: 10.1002/path.2638 PubMedCrossRefGoogle Scholar
  166. 166.
    Talasila A, Yu H, Ackers-Johnson M, Bot M, van Berkel T, Bennett MR, Bot I, Sinha S (2013) Myocardin regulates vascular response to injury through miR-24/-29a and platelet-derived growth factor receptor-beta. Arterioscler Thromb Vasc Biol 33:2355–2365. doi: 10.1161/ATVBAHA.112.301000 PubMedCrossRefGoogle Scholar
  167. 167.
    Tang RH, Zheng XL, Callis TE, Stansfield WE, He J, Baldwin AS, Wang DZ, Selzman CH (2008) Myocardin inhibits cellular proliferation by inhibiting NF-kappaB(p65)-dependent cell cycle progression. Proc Natl Acad Sci U S A 105:3362–3367. doi: 10.1073/pnas.0705842105 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Taurin S, Sandbo N, Yau DM, Sethakorn N, Kach J, Dulin NO (2009) Phosphorylation of myocardin by extracellular signal-regulated kinase. J Biol Chem 284:33789–33794. doi: 10.1074/jbc.M109.048983 PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, Lieberman J, Rigoutsos I, Pandolfi PP (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147:344–357. doi: 10.1016/j.cell.2011.09.029 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Thakur N, Tiwari VK, Thomassin H, Pandey RR, Kanduri M, Gondor A, Grange T, Ohlsson R, Kanduri C (2004) An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol Cell Biol 24:7855–7862. doi: 10.1128/MCB.24.18.7855-7862.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD, Bochicchio A, Vicinanza C, Aquila I, Curcio A, Condorelli G, Indolfi C (2011) MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res 109:880–893. doi: 10.1161/CIRCRESAHA.111.240150 PubMedCrossRefGoogle Scholar
  172. 172.
    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693. doi: 10.1126/science.1192002 PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Turczynska KM, Sadegh MK, Hellstrand P, Sward K, Albinsson S (2012) MicroRNAs are essential for stretch-induced vascular smooth muscle contractile differentiation via microRNA (miR)-145-dependent expression of L-type calcium channels. J Biol Chem 287:19199–19206. doi: 10.1074/jbc.M112.341073 PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116:737–750. doi: 10.1161/CIRCRESAHA.116.302521 PubMedCrossRefGoogle Scholar
  175. 175.
    Velasquez LS, Sutherland LB, Liu Z, Grinnell F, Kamm KE, Schneider JW, Olson EN, Small EM (2013) Activation of MRTF-A-dependent gene expression with a small molecule promotes myofibroblast differentiation and wound healing. Proc Natl Acad Sci U S A 110:16850–16855. doi: 10.1073/pnas.1316764110 PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Vigetti D, Deleonibus S, Moretto P, Bowen T, Fischer JW, Grandoch M, Oberhuber A, Love DC, Hanover JA, Cinquetti R, Karousou E, Viola M, D’Angelo ML, Hascall VC, De Luca G, Passi A (2014) Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J Biol Chem 289:28816–28826. doi: 10.1074/jbc.M114.597401 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Villeneuve LM, Kato M, Reddy MA, Wang M, Lanting L, Natarajan R (2010) Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes 59:2904–2915. doi: 10.2337/db10-0208 PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, Blow MJ, Cohen JC, Rubin EM, Pennacchio LA (2010) Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464:409–412. doi: 10.1038/nature08801 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Wamhoff BR, Bowles DK, McDonald OG, Sinha S, Somlyo AP, Somlyo AV, Owens GK (2004) L-type voltage-gated Ca2+ channels modulate expression of smooth muscle differentiation marker genes via a rho kinase/myocardin/SRF-dependent mechanism. Circ Res 95:406–414. doi: 10.1161/01.RES.0000138582.36921.9e PubMedCrossRefGoogle Scholar
  180. 180.
    Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105:851–862PubMedCrossRefGoogle Scholar
  181. 181.
    Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN (2002) Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci U S A 99:14855–14860. doi: 10.1073/pnas.222561499 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Wang H, Jiang M, Xu Z, Huang H, Gong P, Zhu H, Ruan C (2015) miR-146b-5p promotes VSMC proliferation and migration. Int J Clin Exp Pathol 8:12901–12907PubMedPubMedCentralGoogle Scholar
  183. 183.
    Wang J, Yan CH, Li Y, Xu K, Tian XX, Peng CF, Tao J, Sun MY, Han YL (2013) MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes. Exp Cell Res 319:1165–1175. doi: 10.1016/j.yexcr.2013.03.010 PubMedCrossRefGoogle Scholar
  184. 184.
    Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S, Jiang Z, Xu J, Liu Q, Cao X (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344:310–313. doi: 10.1126/science.1251456 PubMedCrossRefGoogle Scholar
  185. 185.
    Wang S, Zhang X, Yuan Y, Tan M, Zhang L, Xue X, Yan Y, Han L, Xu Z (2015) BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro. Eur J Cardiothorac Surg 47:439–446. doi: 10.1093/ejcts/ezu215 PubMedCrossRefGoogle Scholar
  186. 186.
    Wang YS, Wang HY, Liao YC, Tsai PC, Chen KC, Cheng HY, Lin RT, Juo SH (2012) MicroRNA-195 regulates vascular smooth muscle cell phenotype and prevents neointimal formation. Cardiovasc Res 95:517–526. doi: 10.1093/cvr/cvs223 PubMedCrossRefGoogle Scholar
  187. 187.
    Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN (2004) Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428:185–189. doi: 10.1038/nature02382 PubMedCrossRefGoogle Scholar
  188. 188.
    White SL, Low RB (1996) Identification of promoter elements involved in cell-specific regulation of rat smooth muscle myosin heavy chain gene transcription. J Biol Chem 271:15008–15017PubMedCrossRefGoogle Scholar
  189. 189.
    Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–1573. doi: 10.1126/science.1115901 PubMedCrossRefGoogle Scholar
  190. 190.
    Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504. doi: 10.1101/gad.1800909 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, Cai Y, Huang H, Yang Y, Liu Y, Xu Z, He D, Zhang X, Hu X, Pinello L, Zhong D, He F, Yuan GC, Wang DZ, Zeng C (2014) LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130:1452–1465. doi: 10.1161/CIRCULATIONAHA.114.011675 PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Wu WH, Hu CP, Chen XP, Zhang WF, Li XW, Xiong XM, Li YJ (2011) MicroRNA-130a mediates proliferation of vascular smooth muscle cells in hypertension. Am J Hypertens 24:1087–1093. doi: 10.1038/ajh.2011.116 PubMedCrossRefGoogle Scholar
  193. 193.
    Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, Garcia-Barrio MT, Zhang J, Chen YE (2011) MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev 20:205–210. doi: 10.1089/scd.2010.0283 PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R, Olson EN (2009) MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 23:2166–2178. doi: 10.1101/gad.1842409 PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Xu F, Ahmed AS, Kang X, Hu G, Liu F, Zhang W, Zhou J (2015) MicroRNA-15b/16 attenuates vascular neointima formation by promoting the contractile phenotype of vascular smooth muscle through targeting YAP. Arterioscler Thromb Vasc Biol 35:2145–2152. doi: 10.1161/ATVBAHA.115.305748 PubMedCrossRefGoogle Scholar
  196. 196.
    Xu J, Li L, Yun HF, Han YS (2015) MiR-138 promotes smooth muscle cells proliferation and migration in db/db mice through down-regulation of SIRT1. Biochem Biophys Res Commun 463:1159–1164. doi: 10.1016/j.bbrc.2015.06.076 PubMedCrossRefGoogle Scholar
  197. 197.
    Yang J, Li X, Morrell NW (2014) Id proteins in the vasculature: from molecular biology to cardiopulmonary medicine. Cardiovasc Res 104:388–398. doi: 10.1093/cvr/cvu215 PubMedCrossRefGoogle Scholar
  198. 198.
    Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G (2005) Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280:9330–9335. doi: 10.1074/jbc.M413394200 PubMedCrossRefGoogle Scholar
  199. 199.
    Yoshida T, Hoofnagle MH, Owens GK (2004) Myocardin and Prx1 contribute to angiotensin II-induced expression of smooth muscle alpha-actin. Circ Res 94:1075–1082. doi: 10.1161/01.RES.0000125622.46280.95 PubMedCrossRefGoogle Scholar
  200. 200.
    Yoshida T, Kaestner KH, Owens GK (2008) Conditional deletion of Kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res 102:1548–1557. doi: 10.1161/CIRCRESAHA.108.176974 PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Yoshida T, Kawai-Kowase K, Owens GK (2004) Forced expression of myocardin is not sufficient for induction of smooth muscle differentiation in multipotential embryonic cells. Arterioscler Thromb Vasc Biol 24:1596–1601. doi: 10.1161/01.ATV.0000137190.63214.c5 PubMedCrossRefGoogle Scholar
  202. 202.
    Yoshida T, Sinha S, Dandre F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang DZ, Olson EN, Owens GK (2003) Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circ Res 92:856–864. doi: 10.1161/01.RES.0000068405.49081.09 PubMedCrossRefGoogle Scholar
  203. 203.
    Yu X, Zhang L, Wen G, Zhao H, Luong LA, Chen Q, Huang Y, Zhu J, Ye S, Xu Q, Wang W, Xiao Q (2015) Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells. Cell Death Differ 22:1170–1180. doi: 10.1038/cdd.2014.206 PubMedCrossRefGoogle Scholar
  204. 204.
    Zhang B, Gunawardane L, Niazi F, Jahanbani F, Chen X, Valadkhan S (2014) A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA. Mol Cell Biol 34:2318–2329. doi: 10.1128/MCB.01673-13 PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Zhang M, Ren Y, Wang Y, Wang R, Zhou Q, Peng Y, Li Q, Yu M, Jiang Y (2015) Regulation of smooth muscle contractility by competing endogenous mRNAs in intracranial aneurysms. J Neuropathol Exp Neurol 74:411–424. doi: 10.1097/NEN.0000000000000185 PubMedCrossRefGoogle Scholar
  206. 206.
    Zhao H, Wen G, Huang Y, Yu X, Chen Q, Afzal TA, le Luong A, Zhu J, Shu Y, Zhang L, Xiao Q (2015) MicroRNA-22 regulates smooth muscle cell differentiation from stem cells by targeting methyl CpG-binding protein 2. Arterioscler Thromb Vasc Biol 35:918–929. doi: 10.1161/ATVBAHA.114.305212 PubMedCrossRefGoogle Scholar
  207. 207.
    Zhao Y, Feng G, Wang Y, Yue Y, Zhao W (2014) Regulation of apoptosis by long non-coding RNA HIF1A-AS1 in VSMCs: implications for TAA pathogenesis. Int J Clin Exp Pathol 7:7643–7652PubMedPubMedCentralGoogle Scholar
  208. 208.
    Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220. doi: 10.1038/nature03817 PubMedCrossRefGoogle Scholar
  209. 209.
    Zheng L, Xu CC, Chen WD, Shen WL, Ruan CC, Zhu LM, Zhu DL, Gao PJ (2010) MicroRNA-155 regulates angiotensin II type 1 receptor expression and phenotypic differentiation in vascular adventitial fibroblasts. Biochem Biophys Res Commun 400:483–488. doi: 10.1016/j.bbrc.2010.08.067 PubMedCrossRefGoogle Scholar
  210. 210.
    Zhou J, Li YS, Nguyen P, Wang KC, Weiss A, Kuo YC, Chiu JJ, Shyy JY, Chien S (2013) Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res 113:40–51. doi: 10.1161/CIRCRESAHA.113.280883 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • N. Coll-Bonfill
    • 1
  • B. de la Cruz-Thea
    • 2
  • M. V. Pisano
    • 2
  • M. M. Musri
    • 2
    Email author
  1. 1.Department of Pulmonary Medicine Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de BarcelonaBarcelonaSpain
  2. 2.Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICETUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations