Advertisement

Decoding Lamarck—transgenerational control of metabolism by noncoding RNAs

  • Elena Schmidt
  • Jan-Wilhelm Kornfeld
Invited Review

Abstract

The concept of epigenetic transgenerational inheritance (ETI) posits that lifetime experiences in parents, particularly fathers, alter the phenotypic trajectory of their progeny independently of Mendelian genetics. Based on evidence from population studies and laboratory-controlled studies in syngenic animals, this long-term discredited so-called Lamarckian inheritance gained prominent attention. This article aims to summarize the current knowledge about ETI in lower and in higher organisms as well as in human cohorts and elaborates on epigenetic principles potentially underlying this nongenetic mode of heredity. Special attention is given to—small and long—noncoding RNAs in male gametes that recently emerged as a molecular sensor of organismal metabolic states which can ultimately relay information across the germline barrier by translating environmental cues into (epigenetic) changes in zygotic gene expression.

Keywords

Transgenerational inheritance Epigenetics Noncoding RNAs Metabolism 

References

  1. 1.
    Anderson LM, Riffle L, Wilson R, Travlos GS, Lubomirski MS, Alvord WG (2006) Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 22:327–331. doi: 10.1016/j.nut.2005.09.006 PubMedCrossRefGoogle Scholar
  2. 2.
    Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469. doi: 10.1126/science.1108190 PubMedCrossRefGoogle Scholar
  3. 3.
    Ashe A, Sapetschnig A, Weick EM, Mitchell J, Bagijn MP, Cording AC, Doebley AL, Goldstein LD, Lehrbach NJ, Le Pen J, Pintacuda G, Sakaguchi A, Sarkies P, Ahmed S, Miska EA (2012) piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150:88–99. doi: 10.1016/j.cell.2012.06.018 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bakos HW, Mitchell M, Setchell BP, Lane M (2011) The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int J Androl 34:402–410. doi: 10.1111/j.1365-2605.2010.01092.x PubMedCrossRefGoogle Scholar
  5. 5.
    Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8:227. doi: 10.1186/gb-2007-8-9-227 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi: 10.1016/j.cell.2009.01.002 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bartolomei MS (2009) Genomic imprinting: employing and avoiding epigenetic processes. Genes Dev 23:2124–2133. doi: 10.1101/gad.1841409 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Belleannee C (2015) Extracellular microRNAs from the epididymis as potential mediators of cell-to-cell communication. Asian J Androl 17:730–736. doi: 10.4103/1008-682X.155532 PubMedPubMedCentralGoogle Scholar
  9. 9.
    Brieno-Enriquez MA, Garcia-Lopez J, Cardenas DB, Guibert S, Cleroux E, Ded L, Hourcade Jde D, Peknicova J, Weber M, Del Mazo J (2015) Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells. PLoS One 10, e0124296. doi: 10.1371/journal.pone.0124296 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schubeler D, Stadler MB, Peters AH (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679–687. doi: 10.1038/nsmb.1821 PubMedCrossRefGoogle Scholar
  11. 11.
    Campos EI, Stafford JM, Reinberg D (2014) Epigenetic inheritance: histone bookmarks across generations. Trends Cell Biol 24:664–674. doi: 10.1016/j.tcb.2014.08.004 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096. doi: 10.1016/j.cell.2010.12.008 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q (2015) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. doi: 10.1126/science.aad7977 Google Scholar
  14. 14.
    Clark MB, Amaral PP, Schlesinger FJ, Dinger ME, Taft RJ, Rinn JL, Ponting CP, Stadler PF, Morris KV, Morillon A, Rozowsky JS, Gerstein MB, Wahlestedt C, Hayashizaki Y, Carninci P, Gingeras TR, Mattick JS (2011) The reality of pervasive transcription. PLoS Biol 9:e1000625. doi: 10.1371/journal.pbio.1000625, discussion e1001102PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cossetti C, Lugini L, Astrologo L, Saggio I, Fais S, Spadafora C (2014) Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes. PLoS One 9, e101629. doi: 10.1371/journal.pone.0101629 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Cropley JE, Suter CM, Beckman KB, Martin DI (2006) Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci U S A 103:17308–17312. doi: 10.1073/pnas.0607090103 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L, Jones T, Davis RW, Steinmetz LM (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A 103:5320–5325. doi: 10.1073/pnas.0601091103 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Dias BG, Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 17:89–96. doi: 10.1038/nn.3594 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ding GL, Wang FF, Shu J, Tian S, Jiang Y, Zhang D, Wang N, Luo Q, Zhang Y, Jin F, Leung PC, Sheng JZ, Huang HF (2012) Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 61:1133–1142. doi: 10.2337/db11-1314 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K et al (2012) Landscape of transcription in human cells. Nature 489:101–108. doi: 10.1038/nature11233 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dolinoy DC (2008) The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 66(Suppl 1):S7–S11. doi: 10.1111/j.1753-4887.2008.00056.x PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Donkin I, Versteyhe S, Ingerslev LR, Qian K, Mechta M, Nordkap L, Mortensen B, Appel EV, Jorgensen N, Kristiansen VB, Hansen T, Workman CT, Zierath JR, Barres R (2015) Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. doi: 10.1016/j.cmet.2015.11.004 PubMedGoogle Scholar
  23. 23.
    Eaton SA, Jayasooriah N, Buckland ME, Martin DI, Cropley JE, Suter CM (2015) Roll over Weismann: extracellular vesicles in the transgenerational transmission of environmental effects. Epigenomics. doi: 10.2217/epi.15.58 PubMedGoogle Scholar
  24. 24.
    Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J, Schubeler D, van der Vlag J, Stadler MB, Peters AH (2013) Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 20:868–875. doi: 10.1038/nsmb.2599 PubMedCrossRefGoogle Scholar
  25. 25.
    Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. doi: 10.1038/nrg3074 PubMedCrossRefGoogle Scholar
  26. 26.
    Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G 3rd, Kenny PJ, Wahlestedt C (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730. doi: 10.1038/nm1784 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. doi: 10.1038/35888 PubMedCrossRefGoogle Scholar
  28. 28.
    Fullston T, McPherson NO, Owens JA, Kang WX, Sandeman LY, Lane M (2015) Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an “obesogenic” diet. Physiol Rep 3. doi:10.14814/phy2.12336Google Scholar
  29. 29.
    Fullston T, Ohlsson Teague EM, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, Print CG, Owens JA, Lane M (2013) Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 27:4226–4243. doi: 10.1096/fj.12-224048 PubMedCrossRefGoogle Scholar
  30. 30.
    Gan H, Lin X, Zhang Z, Zhang W, Liao S, Wang L, Han C (2011) piRNA profiling during specific stages of mouse spermatogenesis. RNA 17:1191–1203. doi: 10.1261/rna.2648411 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17:667–669. doi: 10.1038/nn.3695 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Grandjean V, Fourre S, De Abreu DA, Derieppe MA, Remy JJ, Rassoulzadegan M (2015) RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep 5:18193. doi: 10.1038/srep18193 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Grandjean V, Gounon P, Wagner N, Martin L, Wagner KD, Bernex F, Cuzin F, Rassoulzadegan M (2009) The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136:3647–3655. doi: 10.1242/dev.041061 PubMedCrossRefGoogle Scholar
  34. 34.
    Greenlee AR, Shiao MS, Snyder E, Buaas FW, Gu T, Stearns TM, Sharma M, Murchison EP, Puente GC, Braun RE (2012) Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1. PLoS One 7, e46359. doi: 10.1371/journal.pone.0046359 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Greer EL, Beese-Sims SE, Brookes E, Spadafora R, Zhu Y, Rothbart SB, Aristizabal-Corrales D, Chen S, Badeaux AI, Jin Q, Wang W, Strahl BD, Colaiacovo MP, Shi Y (2014) A histone methylation network regulates transgenerational epigenetic memory in C. elegans. Cell Rep 7:113–126. doi: 10.1016/j.celrep.2014.02.044 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479:365–371. doi: 10.1038/nature10572 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gu SG, Pak J, Guang S, Maniar JM, Kennedy S, Fire A (2012) Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat Genet 44:157–164. doi: 10.1038/ng.1039 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK (2010) Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PloS One 5. doi: 10.1371/journal.pone.0013100
  39. 39.
    Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20PubMedCrossRefGoogle Scholar
  40. 40.
    Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478. doi: 10.1038/nature08162 PubMedPubMedCentralGoogle Scholar
  41. 41.
    Hanada T, Weitzer S, Mair B, Bernreuther C, Wainger BJ, Ichida J, Hanada R, Orthofer M, Cronin SJ, Komnenovic V, Minis A, Sato F, Mimata H, Yoshimura A, Tamir I, Rainer J, Kofler R, Yaron A, Eggan KC, Woolf CJ, Glatzel M, Herbst R, Martinez J, Penninger JM (2013) CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495:474–480. doi: 10.1038/nature11923 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9, e1003569. doi: 10.1371/journal.pgen.1003569 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hildebrandt MR, Germain DR, Monckton EA, Brun M, Godbout R (2015) Ddx1 knockout results in transgenerational wild-type lethality in mice. Sci Rep 5:9829. doi: 10.1038/srep09829 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. doi: 10.1016/j.cell.2014.05.010 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 345:790–797. doi: 10.1056/NEJMoa010492 PubMedCrossRefGoogle Scholar
  46. 46.
    Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119. doi: 10.1038/nature09861 PubMedCrossRefGoogle Scholar
  47. 47.
    Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208. doi: 10.1038/ng.3192 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10:682–688. doi: 10.1038/sj.ejhg.5200859 PubMedCrossRefGoogle Scholar
  49. 49.
    Keam SP, Hutvagner G (2015) tRNA-derived fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression. Life 5:1638–1651. doi: 10.3390/life5041638 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672. doi: 10.1073/pnas.0904715106 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F, Cuzin F, Rassoulzadegan M (2013) RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet 9, e1003498. doi: 10.1371/journal.pgen.1003498 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152:570–583. doi: 10.1016/j.cell.2013.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N (2011) Dicer is required for haploid male germ cell differentiation in mice. PLoS One 6, e24821. doi: 10.1371/journal.pone.0024821 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kornfeld JW, Bruning JC (2014) Regulation of metabolism by long, non-coding RNAs. Front Genet 5:57. doi: 10.3389/fgene.2014.00057 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP (2011) A survey of small RNAs in human sperm. Hum Reprod 26:3401–3412. doi: 10.1093/humrep/der329 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GX, Aiyer S, Raj A, Rinn JL, Chang HY, Khavari PA (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235. doi: 10.1038/nature11661 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lane M, McPherson NO, Fullston T, Spillane M, Sandeman L, Kang WX, Zander-Fox DL (2014) Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring. PLoS One 9, e100832. doi: 10.1371/journal.pone.0100832 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lee JT (2009) Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev 23:1831–1842. doi: 10.1101/gad.1811209 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Li L, Wang X, Stolc V, Li X, Zhang D, Su N, Tongprasit W, Li S, Cheng Z, Wang J, Deng XW (2006) Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet 38:124–129. doi: 10.1038/ng1704 PubMedCrossRefGoogle Scholar
  60. 60.
    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, Gustafsson S, Kutalik Z, Luan J, Magi R, Randall JC, Winkler TW, Wood AR, Workalemahu T, Faul JD, Smith JA, Hua Zhao J et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206. doi: 10.1038/nature14177 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lumey LH, Stein AD, Kahn HS, van der Pal-de Bruin KM, Blauw GJ, Zybert PA, Susser ES (2007) Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol 36:1196–1204. doi: 10.1093/ije/dym126 PubMedCrossRefGoogle Scholar
  62. 62.
    Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232. doi: 10.1056/NEJMoa0801869 PubMedCrossRefGoogle Scholar
  63. 63.
    Mao H, Zhu C, Zong D, Weng C, Yang X, Huang H, Liu D, Feng X, Guang S (2015) The Nrde pathway mediates small-RNA-directed histone H3 lysine 27 trimethylation in Caenorhabditis elegans. Curr Biol 25:2398–2403. doi: 10.1016/j.cub.2015.07.051 PubMedCrossRefGoogle Scholar
  64. 64.
    McPherson NO, Owens JA, Fullston T, Lane M (2015) Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am J Physiol Endocrinol Metab 308:E805–E821. doi: 10.1152/ajpendo.00013.2015 PubMedCrossRefGoogle Scholar
  65. 65.
    Miller D, Brinkworth M, Iles D (2010) Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139:287–301. doi: 10.1530/REP-09-0281 PubMedCrossRefGoogle Scholar
  66. 66.
    Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318. doi: 10.1038/15490 PubMedCrossRefGoogle Scholar
  67. 67.
    Murashov AK, Pak ES, Koury M, Ajmera A, Jeyakumar M, Parker M, Williams O, Ding J, Walters D, Neufer PD (2015) Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. FASEB J. doi: 10.1096/fj.15-274274 PubMedGoogle Scholar
  68. 68.
    Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grutzner F, Kaessmann H (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505:635–640. doi: 10.1038/nature12943 PubMedCrossRefGoogle Scholar
  69. 69.
    Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467:963–966. doi: 10.1038/nature09491 PubMedCrossRefGoogle Scholar
  70. 70.
    Ng SF, Lin RC, Maloney CA, Youngson NA, Owens JA, Morris MJ (2014) Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J 28:1830–1841. doi: 10.1096/fj.13-244046 PubMedCrossRefGoogle Scholar
  71. 71.
    Okamura K, Lai EC (2008) Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 9:673–678. doi: 10.1038/nrm2479 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ornellas F, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB (2015) Programming of obesity and comorbidities in the progeny: lessons from a model of diet-induced obese parents. PLoS One 10, e0124737. doi: 10.1371/journal.pone.0124737 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Papaioannou MD, Pitetti JL, Ro S, Park C, Aubry F, Schaad O, Vejnar CE, Kuhne F, Descombes P, Zdobnov EM, McManus MT, Guillou F, Harfe BD, Yan W, Jegou B, Nef S (2009) Sertoli cell dicer is essential for spermatogenesis in mice. Dev Biol 326:250–259. doi: 10.1016/j.ydbio.2008.11.011 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Paszkowski J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Biol 14:195–203. doi: 10.1016/j.pbi.2011.01.002 PubMedCrossRefGoogle Scholar
  75. 75.
    Pembrey ME (2010) Male-line transgenerational responses in humans. Hum Fertil 13:268–271. doi: 10.3109/14647273.2010.524721 CrossRefGoogle Scholar
  76. 76.
    Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M, Golding J (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14:159–166. doi: 10.1038/sj.ejhg.5201538 PubMedCrossRefGoogle Scholar
  77. 77.
    Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, Seisenberger S, Hore TA, Reik W, Erkek S, Peters AH, Patti ME, Ferguson-Smith AC (2014) In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science. doi: 10.1126/science.1255903 PubMedPubMedCentralGoogle Scholar
  78. 78.
    Rando OJ (2012) Daddy issues: paternal effects on phenotype. Cell 151:702–708. doi: 10.1016/j.cell.2012.10.020 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Rankin CH (2015) A review of transgenerational epigenetics for RNAi, longevity, germline maintenance and olfactory imprinting in Caenorhabditis elegans. J Exp Biol 218:41–49. doi: 10.1242/jeb.108340 PubMedCrossRefGoogle Scholar
  80. 80.
    Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441:469–474. doi: 10.1038/nature04674 PubMedCrossRefGoogle Scholar
  81. 81.
    Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, Bleker OP (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177PubMedCrossRefGoogle Scholar
  82. 82.
    Rechavi O, Houri-Ze’evi L, Anava S, Goh WS, Kerk SY, Hannon GJ, Hobert O (2014) Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158:277–287. doi: 10.1016/j.cell.2014.06.020 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rhee KE, Phelan S, McCaffery J (2012) Early determinants of obesity: genetic, epigenetic, and in utero influences. Int J Pediatr 2012:463850. doi: 10.1155/2012/463850 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323. doi: 10.1016/j.cell.2007.05.022 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL (2013) Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 33:9003–9012. doi: 10.1523/JNEUROSCI.0914-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rodgers AB, Morgan CP, Leu NA, Bale TL (2015) Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A 112:13699–13704. doi: 10.1073/pnas.1508347112 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Roseboom T, de Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485–491. doi: 10.1016/j.earlhumdev.2006.07.001 PubMedCrossRefGoogle Scholar
  88. 88.
    Ruvinsky A, Flood WD, Zhang T, Costantini F (2000) Unusual inheritance of the AxinFu mutation in mice is associated with widespread rearrangements in the proximal region of chromosome 17. Genet Res 76:135–147PubMedCrossRefGoogle Scholar
  89. 89.
    Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D’Ecclessis MF, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2, e01749. doi: 10.7554/eLife.01749 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA (2013) Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 41:4104–4117. doi: 10.1093/nar/gkt132 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Seong KH, Li D, Shimizu H, Nakamura R, Ishii S (2011) Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145:1049–1061. doi: 10.1016/j.cell.2011.05.029 PubMedCrossRefGoogle Scholar
  92. 92.
    Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587. doi: 10.1016/j.tree.2008.06.005 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ (2015) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. doi: 10.1126/science.aad6780 Google Scholar
  94. 94.
    Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476PubMedCrossRefGoogle Scholar
  95. 95.
    Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, Cohen T, Xia J, Suderman M, Hallett M, Trasler J, Peters AH, Kimmins S (2015) Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science. doi: 10.1126/science.aab2006 PubMedGoogle Scholar
  96. 96.
    Skinner MK, Mohan M, Haque MM, Zhang B, Savenkova MI (2012) Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions. Genome Biol 13:R91. doi: 10.1186/gb-2012-13-10-r91 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Smythies J, Edelstein L, Ramachandran V (2014) Molecular mechanisms for the inheritance of acquired characteristics-exosomes, microRNA shuttling, fear and stress: Lamarck resurrected? Front Genet 5:133. doi: 10.3389/fgene.2014.00133 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Sobala A, Hutvagner G (2011) Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdiscip Rev RNA 2:853–862. doi: 10.1002/wrna.96 PubMedCrossRefGoogle Scholar
  99. 99.
    Soumillon M, Necsulea A, Weier M, Brawand D, Zhang X, Gu H, Barthes P, Kokkinaki M, Nef S, Gnirke A, Dym M, de Massy B, Mikkelsen TS, Kaessmann H (2013) Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 3:2179–2190. doi: 10.1016/j.celrep.2013.05.031 PubMedCrossRefGoogle Scholar
  100. 100.
    Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Lango Allen H, Lindgren CM, Luan J, Magi R, Randall JC, Vedantam S, Winkler TW, Qi L, Workalemahu T, Heid IM, Steinthorsdottir V, Stringham HM, Weedon MN, Wheeler E, Wood AR, Ferreira T, Weyant RJ, Segre AV, Estrada K et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937–948. doi: 10.1038/ng.686 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Stoeckius M, Grun D, Rajewsky N (2014) Paternal RNA contributions in the Caenorhabditis elegans zygote. EMBO J 33:1740–1750. doi: 10.15252/embj.201488117 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg MF, Rifkin SA, Hua S, Herreman T, Tongprasit W, Barbano PE, Bussemaker HJ, White KP (2004) A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306:655–660. doi: 10.1126/science.1101312 PubMedCrossRefGoogle Scholar
  103. 103.
    Stuwe E, Toth KF, Aravin AA (2014) Small but sturdy: small RNAs in cellular memory and epigenetics. Genes Dev 28:423–431. doi: 10.1101/gad.236414.113 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Suh N, Blelloch R (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138:1653–1661. doi: 10.1242/dev.056234 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646. doi: 10.1016/j.cell.2014.09.039 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Tauffenberger A, Parker JA (2014) Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans. PLoS Genet 10, e1004346. doi: 10.1371/journal.pgen.1004346 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga MF, Voinnet O, Wincker P, Esteller M, Colot V (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–1604. doi: 10.1126/science.1165313 PubMedCrossRefGoogle Scholar
  108. 108.
    Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, Slieker RC, Stok AP, Thijssen PE, Muller F, van Zwet EW, Bock C, Meissner A, Lumey LH, Eline Slagboom P, Heijmans BT (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592. doi: 10.1038/ncomms6592 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Valdez R, Athens MA, Thompson GH, Bradshaw BS, Stern MP (1994) Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia 37:624–631PubMedCrossRefGoogle Scholar
  110. 110.
    Veenendaal MV, Painter RC, de Rooij SR, Bossuyt PM, van der Post JA, Gluckman PD, Hanson MA, Roseboom TJ (2013) Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG 120:548–553. doi: 10.1111/1471-0528.12136 PubMedCrossRefGoogle Scholar
  111. 111.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–U182. doi: 10.1038/Ncb2210 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, Neupert S, Nicholls HT, Mauer J, Hausen AC, Predel R, Kloppenburg P, Horvath TL, Bruning JC (2014) Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 156:495–509. doi: 10.1016/j.cell.2014.01.008 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Vrachnis N, Antonakopoulos N, Iliodromiti Z, Dafopoulos K, Siristatidis C, Pappa KI, Deligeoroglou E, Vitoratos N (2012) Impact of maternal diabetes on epigenetic modifications leading to diseases in the offspring. Exp Diabetes Res 2012:538474. doi: 10.1155/2012/538474 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124. doi: 10.1038/nature09819 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y, Schatten H, Sun QY (2014) Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A 111:1873–1878. doi: 10.1073/pnas.1321195111 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Weigmann K (2014) Lifestyle in the sperm: there is growing evidence that epigenetic marks can be inherited. But what is the nature of the information they store and over how many generations do they prevail? EMBO Rep 15:1233–1237. doi: 10.15252/embr.201439759 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM, Yan W (2012) The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287:25173–25190. doi: 10.1074/jbc.M112.362053 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yang F, Huo XS, Yuan SX, Zhang L, Zhou WP, Wang F, Sun SH (2013) Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell 49:1083–1096. doi: 10.1016/j.molcel.2013.01.010 PubMedCrossRefGoogle Scholar
  119. 119.
    Yuan S, Oliver D, Schuster A, Zheng H, Yan W (2015) Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice. Sci Rep 5:9266. doi: 10.1038/srep09266 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zeybel M, Hardy T, Wong YK, Mathers JC, Fox CR, Gackowska A, Oakley F, Burt AD, Wilson CL, Anstee QM, Barter MJ, Masson S, Elsharkawy AM, Mann DA, Mann J (2012) Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med 18:1369–1377. doi: 10.1038/nm.2893 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, Xie J, Giang K, Chung H, Sun X, Lu L, Carmichael GG, Taylor HS, Huang Y (2015) H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun 6:10221. doi: 10.1038/ncomms10221 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD)KölnGermany
  2. 2.Max-Planck-Institute for Metabolism ResearchKölnGermany

Personalised recommendations