Non-essential contribution of LRRC8A to volume regulation

  • Lalida Sirianant
  • Podchanart Wanitchakool
  • Jiraporn Ousingsawat
  • Roberta Benedetto
  • Anna Zormpa
  • Ines Cabrita
  • Rainer Schreiber
  • Karl Kunzelmann
Ion channels, receptors and transporters

Abstract

Volume regulation is an essential property of any living cell and needs to be tightly controlled. While different types of K+ channels have been found to participate in the regulation of cell volume, the newly identified volume-regulated anion channel (VRAC) LRRC8 has been claimed to be essential for volume regulation. In unbiased genome-wide small interfering RNA (siRNA) screens, two independent studies identified LRRC8A/Swell1 as an essential component of VRAC, thus being indispensable for cellular volume regulation. We reanalyzed the role of LRRC8A for VRAC and regulatory volume decrease (RVD) in several cell types and under various conditions. While the role of LRRC8A for VRAC and its contribution to RVD is confirmed, we find that it is not essential for swelling-activated anion currents or cellular volume regulation, or apoptotic cell shrinkage. The contribution of LRRC8A is variable and largely depending on the cell type.

Keywords

LRRC8A VRAC Volume-activated anion channels Volume regulation: regulatory volume decrease RVD, apoptotic volume decrease AVD 

References

  1. 1.
    Akita T, Okada Y (2011) Regulation of bradykinin-induced activation of volume-sensitive outwardly rectifying anion channels by Ca2+ nanodomains in mouse astrocytes. J Physiol 589:3909–3927CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Almaca J, Tian Y, AlDehni F, Ousingsawat J, Kongsuphol P, Rock JR, Harfe BD, Schreiber R, Kunzelmann K (2009) TMEM16 proteins produce volume regulated chloride currents that are reduced in mice lacking TMEM16A. J Biol Chem 284:28571–28578CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Galietta LJ, Haggie PM, Verkman AS (2001) Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett 499:220–224CrossRefPubMedGoogle Scholar
  4. 4.
    Gawenis LR, Franklin CL, Simpson JE, Palmer BA, Walker NM, Wiggins TM, Clarke LL (2003) cAMP inhibition of murine intestinal Na/H exchange requires CFTR-mediated cell shrinkage of villus epithelium. Gastroenterology 125:1148–1163CrossRefPubMedGoogle Scholar
  5. 5.
    Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277CrossRefPubMedGoogle Scholar
  6. 6.
    Honegger A, Leitz J, Bulkescher J, Hoppe-Seyler K, Hoppe-Seyler F (2013) Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int J Cancer 133:1631–1642CrossRefPubMedGoogle Scholar
  7. 7.
    Jang Y and Oh U (2014) Anoctamin 1 in secretory epithelia. Cell Calcium 55:355-361Google Scholar
  8. 8.
    Jentsch TJ, Lutter D, Planells-Cases R, Ullrich F, and Voss FK (2015) VRAC: molecular identification as LRRC8 heteromers with differential functions. Pflugers Arch (in press)Google Scholar
  9. 9.
    Juul CA, Grubb S, Poulsen KA, Kyed T, Hashem N, Lambert IH, Larsen EH, Hoffmann EK (2014) Anoctamin 6 differs from VRAC and VSOAC but is involved in apoptosis and supports volume regulation in the presence of Ca. Pflugers Arch 466:1899–1910CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kumar L, Chou J, Yee CS, Borzutzky A, Vollmann EH, von Andrian UH, Park SY, Hollander G, Manis JP, Poliani PL, Geha RS (2014) Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. J Exp Med 211:929–942CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lang F, Hoffmann EK (2012) Role of ion transport in control of apoptotic cell death. Compr Physiol 2:2037–2061PubMedGoogle Scholar
  12. 12.
    Milenkovic A, Brandl C, Milenkovic VM, Jendrike T, Sirianant L, Wanitchakool P, Zimmermann S, Reif CM, Horling F, Schrewe H, Strünker T, Alvarez L, Schreiber R, Kunzelmann K, Wetzel CH, and Weber BHF (2015) Bestrophin1 is the volume-regulated anion channel in mouse sperm and human retinal pigment epithelium. Proc.Natl.Acad.Sci U.S A. 112: E2630-E2639Google Scholar
  13. 13.
    Nilius B, Eggermont J, Voets T, Droogmans G (1996) Volume-activated Cl- channels. Gen Pharmacol 27:1131–1140CrossRefPubMedGoogle Scholar
  14. 14.
    Nilius B, Prenen J, Voets T, Eggermont J, Droogmans G (1998) Activation of volume-regulated chloride currents by reduction of intracellular ionic strength in bovine endothelial cells. J Physiol 506:353–361CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Okada Y (2006) Cell volume-sensitive chloride channels: phenotypic properties and molecular identity. Contrib Nephrol 152:9–24CrossRefPubMedGoogle Scholar
  16. 16.
    Ousingsawat J, Wanitchakool P, Kmit A, Romao AM, Jantarajit W, Schreiber S, Kunzelmann K (2015) Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7-receptors in macrophages. Nat Commun 6:6245CrossRefPubMedGoogle Scholar
  17. 17.
    Pedemonte N, Galietta LJ (2014) Structure and function of TMEM16 proteins (anoctamins). Physiol Rev 94:419–459CrossRefPubMedGoogle Scholar
  18. 18.
    Pedersen SF, Klausen TK, and Nilius B (2015) The identification of VRAC (volume regulated anion channel): an amazing Odyssey. Acta Physiol (Oxf). 213:268-281Google Scholar
  19. 19.
    Planells-Cases R, Lutter D, Guyader C, Gerhards NM, Ullrich F, Elger DA, Kucukosmanoglu A, Xu G, Voss FK, Reincke SM, Stauber T, Blomen VA, Vis DJ, Wessels LF, Brummelkamp TR, Borst P, Rottenberg S, and Jentsch TJ (2015) Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J. 34:2993-3008Google Scholar
  20. 20.
    Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157:447–458CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sawada A, Takihara Y, Kim JY, Matsuda-Hashii Y, Tokimasa S, Fujisaki H, Kubota K, Endo H, Onodera T, Ohta H, Ozono K, Hara J (2003) A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans. J Clin Invest 112:1707–1713CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sirianant L, Ousingsawat J, Wanitchakool P, Schreiber R, and Kunzelmann K (2016) Cellular volume regulation by anoctamin 6: Ca2+, phospholipase A2, osmosensing. Pflügers Arch 468:335-349Google Scholar
  23. 23.
    Takayama Y, Shibasaki K, Suzuki Y, Yamanaka A, Tominaga M (2014) Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1. FASEB J 28:2238–2248CrossRefPubMedGoogle Scholar
  24. 24.
    Valverde MA, O'Brien JA, Sepulveda FV, Ratcliff R, Evans MJ, Colledge WH (1993) Inactivation of the murine cftr gene abolishes cAMP-mediated but not Ca2+-mediated secretagogue-induced volume decrease in small-intestinal crypts. Pflugers Arch 425:434–438CrossRefPubMedGoogle Scholar
  25. 25.
    Valverde MA, O'Briens JA, Sepulveda FV, Ratcliff RA, Evans MJ, Colledge WH (1995) Impaired cell volume regulation in intestinal crypt epithelia of cystic fibrosis. Proc Natl Acad Sci 92:9038–9041CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Valverde MA, Vazquez E, Munoz FJ, Nobles M, Delaney SJ, Wainwright BJ, Colledge WH, Sheppard DN (2001) Murine CFTR channel and its role in regulatory volume decrease of small intestine crypts. Cell Physiol Biochem 10:321–328CrossRefGoogle Scholar
  27. 27.
    Vazquez E, Nobles M, Valverde MA (2001) Defective regulatory volume decrease in human cystic fibrosis tracheal cells because of altered regulation of intermediate conductance Ca2+-dependent potassium channels. Proc Natl Acad Sci U S A 98:5329–5334CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344:634–638CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lalida Sirianant
    • 1
  • Podchanart Wanitchakool
    • 1
  • Jiraporn Ousingsawat
    • 1
  • Roberta Benedetto
    • 1
  • Anna Zormpa
    • 1
  • Ines Cabrita
    • 1
  • Rainer Schreiber
    • 1
  • Karl Kunzelmann
    • 1
  1. 1.Institut für PhysiologieUniversität RegensburgRegensburgGermany

Personalised recommendations