Advertisement

Cross-signaling in metabotropic glutamate 2 and serotonin 2A receptor heteromers in mammalian cells

  • Lia Baki
  • Miguel Fribourg
  • Jason Younkin
  • Jose Miguel Eltit
  • Jose L. Moreno
  • Gyu Park
  • Zhanna Vysotskaya
  • Adishesh Narahari
  • Stuart C. Sealfon
  • Javier Gonzalez-Maeso
  • Diomedes E. Logothetis
Ion channels, receptors and transporters

Abstract

We previously reported that co-expression of the Gi-coupled metabotropic glutamate receptor 2 (mGlu2R) and the Gq-coupled serotonin (5-HT) 2A receptor (2AR) in Xenopus oocytes (Fribourg et al. Cell 147:1011–1023, 2011) results in inverse cross-signaling, where for either receptor, strong agonists suppress and inverse agonists potentiate the signaling of the partner receptor. Importantly, through this cross-signaling, the mGlu2R/2AR heteromer integrates the actions of psychedelic and antipsychotic drugs. To investigate whether mGlu2R and 2AR can cross-signal in mammalian cells, we stably co-expressed them in HEK293 cells along with the GIRK1/GIRK4 channel, a reporter of Gi and Gq signaling activity. Crosstalk-positive clones were identified by Fura-2 calcium imaging, based on potentiation of 5-HT-induced Ca2+ responses by the inverse mGlu2/3R agonist LY341495. Cross-signaling from both sides of the complex was confirmed in representative clones by using the GIRK channel reporter, both in whole-cell patch-clamp and in fluorescence assays using potentiometric dyes, and further established by competition binding assays. Notably, only 25–30 % of the clones were crosstalk-positive. The crosstalk-positive phenotype correlated with (a) increased colocalization of the two receptors at the cell surface, (b) lower density of mGlu2R binding sites and higher density of 2AR binding sites in total membrane preparations, and (c) higher ratios of mGlu2R/2AR normalized surface protein expression. Consistent with our results in Xenopus oocytes, a combination of ligands targeting both receptors could elicit functional crosstalk in a crosstalk-negative clone. Crosstalk-positive clones can be used in high-throughput assays for identification of antipsychotic drugs targeting this receptor heterocomplex.

Keywords

G protein-coupled receptor (GPCR) Metabotropic glutamate 2 (mGlu2) receptor 5-HT2A receptor Cross-signaling Calcium intracellular release Membrane potential probes Mammalian cells 

Notes

Acknowledgments

The authors wish to thank Dr. Taihao Jin (University of California, San Francisco) for developing an automated program to read fluorescent data from 96-well microplates in a Flex Station 3 reader, Dr Clive M. Baumgarten (Virginia Commonwealth University) for kindly offering access to his patch-clamp rigs, Dr George Liapakis (University of Crete, Greece) for preliminary binding experiments in the clonal cell lines, Drs Carlos A. Villalba-Galea (Virginia Commonwealth University) and Qiong Yao Tang (Xuzhou Medical College, Xuzhou, Jiangsu Province, China) for help with electrophysiology experiments, and Junghoon Ha for analysis and with the presentation of Fig. S3. We also thank all members of the Logothetis lab for critical feedback on the work and the manuscript. We acknowledge Heikki Vaananen and Nada Marjanovic for technical support and the Icahn School of Medicine at Mount Sinai Quantitative PCR Core Facility.

This work was supported by the National Institutes of Health grants R01HL59949 and R01 HL090882 to D.E.L, R01MH084894 to J.G-M, and T32 MH096678 training grant to M.F.

Supplementary material

424_2015_1780_MOESM1_ESM.pdf (313 kb)
ESM 1 Sample traces from whole-cell patch-clamp recordings of GIRK1/4 currents in HEK/GIRK clone 31 in response to 100 μM GTPγS (a) and HEK/GIRK/mGlu 2 R clone 59 in response to 100 μM Glu (b). Whole-cell patch-clamp current recordings were performed as detailed in the Methods. Application of BaCl2 abolished the current (PDF 313 kb)
424_2015_1780_MOESM2_ESM.avi (10.3 mb)
ESM 2 Time course of calcium mobilization in response to 5-HT in HEK/GIRK/mGlu2R/2AR clone 106, reported by the calcium indicator Fura-2 (AVI 10.3 mb)
424_2015_1780_MOESM3_ESM.avi (3.6 mb)
ESM 3 Time course of calcium mobilization in response to 5-HT in HEK/GIRK/mGlu2R/2AR clone 146, reported by the calcium indicator Fura-2 (AVI 3.62 mb)
424_2015_1780_MOESM4_ESM.pdf (4.8 mb)
ESM 4 HEK/GIRK/mGlu 2 R/2AR clones 3 and 92 displayed unexpected responses. a,b Summary of responses of FURA-2-loaded cells from clone 3 (a) or clone 92 (b) to 20-50 nM 5-HT ± 100 μM of LY34, analyzed as indicated in the legend to Fig. 2. The crosstalk-positive clone 80 and the crosstalk-negative clone 45 have been included for reference. c Degrees of colocalization of mGlu2R and 2AR in clones 3 and 92 (grey bars), determined as described in the legend to Fig. 3, are shown together with the corresponding degrees in the crosstalk-positive clone 80 (black bar) and the crosstalk-negative clone 45 (white bar). d Ratios of normalized (protein/mRNA) mGlu2R to normalized (protein/mRNA) 2AR for clones 3 and 92 (grey bars) are shown together with the corresponding ratios in the crosstalk-positive clone 80 (black bars) and the crosstalk-negative clone 45 (white bars).e Crosstalk-positive and crosstalk-negative clones segregate in two distinct groups when their average mGlu2R protein/mRNA ratio is plotted against their average 2AR protein/mRNA ratio. f Summary of responses of clone 92 (N = 5) to application of Glu (20 μM) followed by addition of Paliperidone (50 μM), measured by the potentiometric dye FLIPR Blue as described in the legend of Fig. 8. Responses from the crosstalk-positive clone 80 (N = 19) and the control clone 59 (N = 16) are shown for reference (PDF 4.83 mb)
424_2015_1780_MOESM5_ESM.pdf (1003 kb)
ESM 5 Representative current traces from whole-cell patch-clamp recordings of GIRK currents for the positive results shown in Fig. 6 for clones HEK/GIRK/mGlu2R/2AR clones 80 and 45. (a) 5-HT (20 nM), followed by 5-HT (20 nM) + LY34 (100 μM) for clone 80, (b) Glutamate (Glu, 500 nM), followed by Glu (500 nM) + Paliperidone (100 μM) (Glu + Pal) for clone 80, (c) LY37 (50 nM), followed by LY37 (50 nM) + Pal (100 μM). Gq activity for clone 45. Since the agonist concentrations used were below the EC50 values, responses showed large fluctuations, thus running averages of the traces were produced using the Origin software (OriginLab Corporation) and displayed in the figure (PDF 0.97 mb)
424_2015_1780_MOESM6_ESM.avi (30.1 mb)
ESM 6 Time course of changes in fluorescence in response to the sequential application of Glu and Glu + Tertiapin Q, recorded by epifluorescence microscopy in HLB 021-152- loaded cells from HEK/GIRK/mGlu2R/2AR clone 106. Pseudocolor has been used to facilitate visualization of the small changes in fluorescence (see Fig. 7), associated with this type of fluorescent potentiometric probes (AVI 30 mb)
424_2015_1780_MOESM7_ESM.avi (32.2 mb)
ESM 7 Time course of changes in fluorescence in response to sequential application of Glu (50 μM) and Glu + Tertiapin Q (100 nM), recorded by epifluorescence microscopy in HLB 021-152- loaded cells from HEK/GIRK/mGlu2R clone 3. The same pseudocolor used for Video 3 has been used here to facilitate comparison (AVI 32.2 mb)
424_2015_1780_MOESM8_ESM.pdf (2.4 mb)
ESM 8 Sample traces of Gi- dependent changes in GIRK channel activity reported by the potentiometric dye HLB 021-152 and recorded by epifluorescence microscopy. a,b Changes in fluorescence in response to sequential application of Glu (50 μM) and Glu + Tertiapin Q (100 nM) as recorded by epifluorescence microscopy in HLB 021-152- loaded cells from the HEK/GIRK/mGlu2R/2AR clone 106 (a) and from the parental HEK/GIRK clone 31 (b). Each line corresponds to the response of a single cell (PDF 2.40 mb)
424_2015_1780_MOESM9_ESM.avi (15.7 mb)
ESM 9 Time course of changes in fluorescence in response to sequential application of Glu (50 μM) and Glu + 5-HT (1 μM), recorded by epifluorescence microscopy in HLB 021-152- loaded cells from HEK/GIRK/mGlu2R/2AR clone 106. Pseudocolor has been used to facilitate visualization of the small changes in fluorescence (see Fig. 7b) (AVI 15.6 mb)
424_2015_1780_MOESM10_ESM.pdf (1.8 mb)
ESM 10 Sample traces of Gi- and Gq- dependent changes in GIRK channel activity reported by the potentiometric dye HLB 021-152 and recorded by epifluorescence microscopy. Changes in fluorescence in response to sequential application of Glu (50 μM) and Glu + 5-HT (1 μM) as recorded by epifluorescence microscopy in HLB 021-152- loaded cells from the HEK/GIRK/mGlu2R/2AR clone 106. Each line corresponds to the response of a single cell (PDF 1.75 mb)

References

  1. 1.
    Albizu L, Holloway T, Gonzalez-Maeso J, Sealfon SC (2011) Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 61:770–777. doi: 10.1016/j.neuropharm.2011.05.023 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bezbradica JS, Rosenstein RK, DeMarco RA, Brodsky I, Medzhitov R (2014) A role for the ITAM signaling module in specifying cytokine-receptor functions. Nat Immunol 15:333–342. doi: 10.1038/ni.2845 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Borderia AV, Hartmann BM, Fernandez-Sesma A, Moran TM, Sealfon SC (2008) Antiviral-activated dendritic cells: a paracrine-induced response state. J Immunol 181:6872–6881CrossRefPubMedGoogle Scholar
  4. 4.
    Breitwieser GE, Szabo G (1985) Uncoupling of cardiac muscarinic and beta-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317:538–540CrossRefPubMedGoogle Scholar
  5. 5.
    Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26:131–137. doi: 10.1016/j.tips.2005.01.004 CrossRefPubMedGoogle Scholar
  6. 6.
    Delille HK, Becker JM, Burkhardt S, Bleher B, Terstappen GC, Schmidt M, Meyer AH, Unger L, Marek GJ, Mezler M (2012) Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades. Neuropharmacology 62:2184–2191. doi: 10.1016/j.neuropharm.2012.01.010 CrossRefPubMedGoogle Scholar
  7. 7.
    Delille HK, Mezler M, Marek GJ (2013) The two faces of the pharmacological interaction of mGlu2 and 5-HT(2)A—relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology 70:296–305. doi: 10.1016/j.neuropharm.2013.02.005 CrossRefPubMedGoogle Scholar
  8. 8.
    Fell MJ, Svensson KA, Johnson BG, Schoepp DD (2008) Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (−)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039). J Pharmacol Exp Therapeut 326:209–217. doi: 10.1124/jpet.108.136861 CrossRefGoogle Scholar
  9. 9.
    Ferre S, Quiroz C, Orru M, Guitart X, Navarro G, Cortes A, Casado V, Canela EI, Lluis C, Franco R (2011) Adenosine A(2A) receptors and A(2A) receptor heteromers as key players in striatal function. Front Neuroanat 5:36. doi: 10.3389/fnana.2011.00036 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ferre S, Torvinen M, Antoniou K, Irenius E, Civelli O, Arenas E, Fredholm BB, Fuxe K (1998) Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells. J Biol Chem 273:4718–4724CrossRefPubMedGoogle Scholar
  11. 11.
    Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, Ruta JD, Albizu L, Li Z, Umali A, Shim J, Fabiato A, MacKerell AD Jr, Brezina V, Sealfon SC, Filizola M, Gonzalez-Maeso J, Logothetis DE (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147:1011–1023. doi: 10.1016/j.cell.2011.09.055 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA (2004) A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci U S A 101:5135–5139. doi: 10.1073/pnas.0307601101 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97. doi: 10.1038/nature06612 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hatcher-Solis C, Fribourg M, Spyridaki K, Younkin J, Ellaithy A, Xiang G, Liapakis G, Gonzalez-Maeso J, Zhang H, Cui M, Logothetis DE (2014) G protein-coupled receptor signaling to Kir channels in Xenopus oocytes. Curr Pharm Biotechnol 15:987–995CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    He C, Zhang H, Mirshahi T, Logothetis DE (1999) Identification of a potassium channel site that interacts with G protein betagamma subunits to mediate agonist-induced signaling. J Biol Chem 274:12517–12524CrossRefPubMedGoogle Scholar
  16. 16.
    Janovick JA, Knollman PE, Brothers SP, Ayala-Yanez R, Aziz AS, Conn PM (2006) Regulation of G protein-coupled receptor trafficking by inefficient plasma membrane expression: molecular basis of an evolved strategy. J Biol Chem 281:8417–8425. doi: 10.1074/jbc.M510601200 CrossRefPubMedGoogle Scholar
  17. 17.
    Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396:674–679. doi: 10.1038/25348 CrossRefPubMedGoogle Scholar
  18. 18.
    Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700. doi: 10.1038/21441 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687. doi: 10.1038/25360 CrossRefPubMedGoogle Scholar
  20. 20.
    Khalil AM, Cambier JC, Shlomchik MJ (2012) B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336:1178–1181. doi: 10.1126/science.1213368 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kinon BJ, Millen BA, Zhang L, McKinzie DL (2015) Exploratory analysis for a targeted patient population responsive to the metabotropic glutamate 2/3 receptor agonist pomaglumetad methionil in schizophrenia. Biol Psychiatry. doi: 10.1016/j.biopsych.2015.03.016 PubMedGoogle Scholar
  22. 22.
    Knapman A, Santiago M, Du YP, Bennallack PR, Christie MJ, Connor M (2013) A continuous, fluorescence-based assay of mu-opioid receptor activation in AtT-20 cells. J Biomol Screen 18:269–276. doi: 10.1177/1087057112461376 CrossRefPubMedGoogle Scholar
  23. 23.
    Kobrinsky E, Mirshahi T, Zhang H, Jin T, Logothetis DE (2000) Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K + −current desensitization. Nat Cell Biol 2:507–514. doi: 10.1038/35019544 CrossRefPubMedGoogle Scholar
  24. 24.
    Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326. doi: 10.1038/325321a0 CrossRefPubMedGoogle Scholar
  25. 25.
    Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK, Cui M, Baki L (2015) Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol 77:81–104. doi: 10.1146/annurev-physiol-021113-170358 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lopez-Gimenez JF, Canals M, Pediani JD, Milligan G (2007) The alpha1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol Pharmacol 71:1015–1029. doi: 10.1124/mol.106.033035 CrossRefPubMedGoogle Scholar
  27. 27.
    Markey KA, Koyama M, Gartlan KH, Leveque L, Kuns RD, Lineburg KE, Teal BE, MacDonald KP, Hill GR (2014) Cross-dressing by donor dendritic cells after allogeneic bone marrow transplantation contributes to formation of the immunological synapse and maximizes responses to indirectly presented antigen. J Immunol 192:5426–5433. doi: 10.4049/jimmunol.1302490 CrossRefPubMedGoogle Scholar
  28. 28.
    Moreno JL, Miranda-Azpiazu P, Garcia-Bea A, Younkin J, Cui M, Kozlenkov A, Ben-Ezra A, Voloudakis G, Fakira AK, Baki L, Ge Y, Georgakopoulos A, Moron JA, Milligan G, Lopez-Gimenez JF, Robakis NK, Logothetis DE, Meana JJ, Gonzalez-Maeso J (2016) Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal (in press)Google Scholar
  29. 29.
    Moreno JL, Muguruza C, Umali A, Mortillo S, Holloway T, Pilar-Cuellar F, Mocci G, Seto J, Callado LF, Neve RL, Milligan G, Sealfon SC, Lopez-Gimenez JF, Meana JJ, Benson DL, Gonzalez-Maeso J (2012) Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A.mGlu2) receptor heteromerization and its psychoactive behavioral function. J Biol Chem 287:44301–44319. doi: 10.1074/jbc.M112.413161 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 13:1102–1107. doi: 10.1038/nm1632 CrossRefPubMedGoogle Scholar
  31. 31.
    Rao RR, Li Q, Gubbels Bupp MR, Shrikant PA (2012) Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity 36:374–387. doi: 10.1016/j.immuni.2012.01.015 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rives ML, Vol C, Fukazawa Y, Tinel N, Trinquet E, Ayoub MA, Shigemoto R, Pin JP, Prezeau L (2009) Crosstalk between GABAB and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO J 28:2195–2208. doi: 10.1038/emboj.2009.177 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ruchala I, Cabra V, Solis E Jr, Glennon RA, De Felice LJ, Eltit JM (2014) Electrical coupling between the human serotonin transporter and voltage-gated Ca(2+) channels. Cell Calcium 56:25–33. doi: 10.1016/j.ceca.2014.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Saugstad JA, Segerson TP, Westbrook GL (1996) Metabotropic glutamate receptors activate G-protein-coupled inwardly rectifying potassium channels in Xenopus oocytes. J Neurosci: Off J Soc Neurosci 16:5979–5985Google Scholar
  35. 35.
    Shen MY, Perreault ML, Fan T, George SR (2015) The dopamine D1-D2 receptor heteromer exerts a tonic inhibitory effect on the expression of amphetamine-induced locomotor sensitization. Pharmacol Biochem Behav 128:33–40. doi: 10.1016/j.pbb.2014.11.011 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Spooren WP, Gasparini F, van der Putten H, Koller M, Nakanishi S, Kuhn R (2000) Lack of effect of LY314582 (a group 2 metabotropic glutamate receptor agonist) on phencyclidine-induced locomotor activity in metabotropic glutamate receptor 2 knockout mice. Eur J Pharmacol 397:R1–R2CrossRefPubMedGoogle Scholar
  37. 37.
    Tang Y, Li X, He J, Lu J, Diwu Z (2006) Real-time and high throughput monitoring of cAMP in live cells using a fluorescent membrane potential-sensitive dye. Assay Drug Dev Technol 4:461–471. doi: 10.1089/adt.2006.4.461 CrossRefPubMedGoogle Scholar
  38. 38.
    Vazquez M, Dunn CA, Walsh KB (2012) A fluorescent screening assay for identifying modulators of GIRK channels. J Vis Exp. doi: 10.3791/3850 PubMedPubMedCentralGoogle Scholar
  39. 39.
    Vilardaga JP, Nikolaev VO, Lorenz K, Ferrandon S, Zhuang Z, Lohse MJ (2008) Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling. Nat Chem Biol 4:126–131. doi: 10.1038/nchembio.64 CrossRefPubMedGoogle Scholar
  40. 40.
    Walsh KB (2010) A real-time screening assay for GIRK1/4 channel blockers. J Biomol Screen 15:1229–1237. doi: 10.1177/1087057110381384 CrossRefPubMedGoogle Scholar
  41. 41.
    Walsh KB (2011) Targeting GIRK channels for the development of new therapeutic agents. Front Pharmacol 2:64. doi: 10.3389/fphar.2011.00064 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396:679–682. doi: 10.1038/25354 CrossRefPubMedGoogle Scholar
  43. 43.
    Woolley ML, Pemberton DJ, Bate S, Corti C, Jones DN (2008) The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity. Psychopharmacology 196:431–440. doi: 10.1007/s00213-007-0974-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lia Baki
    • 1
  • Miguel Fribourg
    • 2
  • Jason Younkin
    • 1
  • Jose Miguel Eltit
    • 1
  • Jose L. Moreno
    • 3
  • Gyu Park
    • 1
  • Zhanna Vysotskaya
    • 1
  • Adishesh Narahari
    • 1
  • Stuart C. Sealfon
    • 2
    • 4
    • 5
  • Javier Gonzalez-Maeso
    • 1
    • 2
    • 3
    • 5
  • Diomedes E. Logothetis
    • 1
  1. 1.Department of Physiology and BiophysicsVirginia Commonwealth University School of MedicineRichmondUSA
  2. 2.Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkUSA
  4. 4.Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkUSA
  5. 5.Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations