Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 468, Issue 2, pp 335–349 | Cite as

Cellular volume regulation by anoctamin 6: Ca2+, phospholipase A2 and osmosensing

  • Lalida Sirianant
  • Jiraporn Ousingsawat
  • Podchanart Wanitchakool
  • Rainer Schreiber
  • Karl KunzelmannEmail author
Signaling and cell physiology

Abstract

During cell swelling, Cl channels are activated to lower intracellular Cl concentrations and to reduce cell volume, a process termed regulatory volume decrease (RVD). We show that anoctamin 6 (ANO6; TMEM16F) produces volume-regulated anion currents and controls cell volume in four unrelated cell types. Volume regulation is compromised in freshly isolated intestinal epithelial cells from Ano6−/− mice and also in lymphocytes from a patient lacking expression of ANO6. Ca2+ influx is activated and thus ANO6 is stimulated during cell swelling by local Ca2+ increase probably in functional nanodomains near the plasma membrane. This leads to stimulation of phospholipase A2 (PLA2) and generation of plasma membrane lysophospholipids, which activates ANO6. Direct application of lysophospholipids also activates an anion current that is inhibited by typical ANO6 blocker. An increase in intracellular Ca2+ supports activation of ANO6, but is not required when PLA2 is fully activated, while re-addition of arachidonic acid completely blocked ANO6. Moreover, ANO6 is activated by low intracellular Cl concentrations and may therefore operate as a cellular osmosensor. High intracellular Cl concentration inhibits ANO6 and activation by PLA2. Taken together, ANO6 supports volume regulation and volume activation of anion currents by action as a Cl channel or by scrambling membrane phospholipids. Thereby, it may support the function of LRRC8 proteins.

Keywords

TMEM16F Anoctamin 6 Volume regulation Regulatory volume decrease RVD Volume-regulated anion channel VRAC Apoptosis 

Notes

Acknowledgments

This study was supported by DFG SFB699-A7/A12, DFG KU756/12-1, Sander-Stiftung 2013.031.1 and Volkswagenstiftung AZ 87 499. We thank Dr. Johan Heemskerk and Dr. Eduard Bevers for supplying the lymphocyte cell lines. The excellent technical assistance by Mss. B. Wild, P. Seeberger, E. Tartler, Inês Cabrita and Mr. Simon Höllerer is gratefully acknowledged.

Author contribution statement

L.S., J.O., P.W. and R.S. performed the experiments. L.S., J.O., P.W., R.S. and K.K. wrote the manuscript and prepared the figures. L.S., J.O., P.W., R.S. and K.K. reviewed the final manuscript.

Compliance with ethical standards

Ethics statement

All animal experiments were approved by the local ethics commission of the University of Regensburg and were conducted according to the guidelines of the American Physiological Society and the German law for welfare of animals.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

424_2015_1739_MOESM1_ESM.pdf (99 kb)
Supplementary Fig. 1 (PDF 98 kb)
424_2015_1739_MOESM2_ESM.pdf (323 kb)
Supplementary Fig. 2 (PDF 323 kb)

References

  1. 1.
    Akita T, Okada Y (2011) Regulation of bradykinin-induced activation of volume-sensitive outwardly rectifying anion channels by Ca2+ nanodomains in mouse astrocytes. J Physiol 589:3909–3927PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Almaca J, Tian Y, AlDehni F, Ousingsawat J, Kongsuphol P, Rock JR, Harfe BD, Schreiber R, Kunzelmann K (2009) TMEM16 proteins produce volume regulated chloride currents that are reduced in mice lacking TMEM16A. J Biol Chem 284:28571–28578PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Berridge MJ (2004) Conformational coupling: a physiological calcium entry mechanism. Sci STKE 2004:e33Google Scholar
  4. 4.
    Bessac BF, Fleig A (2007) TRPM7 channel is sensitive to osmotic gradients in human kidney cells. J Physiol 582:1073–1086PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R (2014) X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516:207–212PubMedCrossRefGoogle Scholar
  6. 6.
    Cruz-Rangel S, Gamba G, Ramos-Mandujano G, Pasantes-Morales H (2012) Influence of WNK3 on intracellular chloride concentration and volume regulation in HEK293 cells. Pflugers Arch 464:317–330PubMedCrossRefGoogle Scholar
  7. 7.
    Dawson DC, Van Driessche W, Helman SI (1988) Osmotically induced basolateral K+ conductance in turtle colon: lidocaine-induced K+ channel noise. Am J Physiol 254:C165–C174PubMedGoogle Scholar
  8. 8.
    Ehlen HW, Chinenkova M, Moser M, Munter HM, Krause Y, Gross S, Brachvogel B, Wuelling M, Kornak U, Vortkamp A (2012) Inactivation of Anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J Bone Miner Res 28:246–259CrossRefGoogle Scholar
  9. 9.
    Fischer KG, Leipziger J, Rubini-Illes P, Nitschke R, Greger R (1996) Attenuation of stimulated Ca2+ influx in colonic epithelial (HT29) cells by cAMP. Pflugers Arch 432:735–740PubMedCrossRefGoogle Scholar
  10. 10.
    Forrest LR, Tavoulari S, Zhang YW, Rudnick G, Honig B (2007) Identification of a chloride ion binding site in Na+/Cl-dependent transporters. Proc Natl Acad Sci U S A 104:12761–12766PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Grubb S, Poulsen KA, Juul CA, Kyed T, Klausen TK, Larsen EH, Hoffmann EK (2013) TMEM16F (anoctamin 6), an anion channel of delayed Ca2+ activation. J Gen Physiol 141:585–600PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Harteneck C, Frenzel H, Kraft R (2007) N-(p-amylcinnamoyl)anthranilic acid (ACA): a phospholipase A(2) inhibitor and TRP channel blocker. Cardiovasc Drug Rev 25:61–75PubMedCrossRefGoogle Scholar
  13. 13.
    Harteneck C, Gollasch M (2011) Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr Pharm Biotechnol 12:35–41PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Helix N, Strobaek D, Dahl BH, Christophersen P (2003) Inhibition of the endogenous volume-regulated anion channel (VRAC) in HEK293 cells by acidic di-aryl-ureas. J Membr Biol 196:83–94PubMedCrossRefGoogle Scholar
  15. 15.
    Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277PubMedCrossRefGoogle Scholar
  16. 16.
    Ishii T, Hashimoto T, Ohmori H (1996) Hypotonic stimulation induced Ca2+ release from IP3-sensitive internal stores in a green monkey kidney cell line. J Physiol 493:371–384PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Juul CA, Grubb S, Poulsen KA, Kyed T, Hashem N, Lambert IH, Larsen EH, Hoffmann EK (2014) Anoctamin 6 differs from VRAC and VSOAC but is involved in apoptosis and supports volume regulation in the presence of Ca. Pflugers Arch 466:1899–1910PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Klausen TK, Bergdahl A, Hougaard C, Christophersen P, Pedersen SF, Hoffmann EK (2007) Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells. J Cell Physiol 210:831–842PubMedCrossRefGoogle Scholar
  19. 19.
    Kmit A, van Kruchten R, Ousingsawat J, Mattheij NJ, Senden-Gijsbers B, Heemskerk JW, Bevers EM, Kunzelmann K (2013) Calcium-activated and apoptotic phospholipid scrambling induced by Ano6 can occur independently of Ano6 ion currents. Cell Death Dis 4:e611PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kunzelmann K, Tian Y, Martins JR, Faria D, Kongsuphol P, Ousingsawat J, Thevenod F, Roussa E, Rock JR, Schreiber R (2011) Anoctamins. Pflugers Arch 462:195–208PubMedCrossRefGoogle Scholar
  21. 21.
    Lee MY, Song H, Nakai J, Ohkura M, Kotlikoff MI, Kinsey SP, Golovina VA, Blaustein MP (2006) Local subplasma membrane Ca2+ signals detected by a tethered Ca2+ sensor. Proc Natl Acad Sci U S A 103:13232–13237PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lehtonen JY, Kinnunen PK (1995) Phospholipase A2 as a mechanosensor. Biophys J 68:1888–1894PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lemonnier L, Prevarskaya N, Shuba Y, Vanden Abeele F, Nilius B, Mazurier J, Skryma R (2002) Ca2+ modulation of volume-regulated anion channels: evidence for colocalization with store-operated channels. FASEB J 16:222–224PubMedGoogle Scholar
  24. 24.
    Malvezzi M, Chalat M, Janjusevic R, Picollo A, Terashima H, Menon AK, Accardi A (2013) Ca(2+)-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat Commun 4:2367PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Martins JR, Faria D, Kongsuphol P, Reisch B, Schreiber R, Kunzelmann K (2011) Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc Natl Acad Sci U S A 108:18168–18172PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    McCarty NA, O'Neil RG (1992) Calcium signalling in volume regulation. Physiol Rev 72:1037–1061PubMedGoogle Scholar
  27. 27.
    Mohanty MJ, Ye M, Li X, Rossi NF (2001) Hypotonic swelling-induced Ca(2+) release by an IP(3)-insensitive Ca(2+) store. Am J Physiol Cell Physiol 281:C555–C562PubMedGoogle Scholar
  28. 28.
    Murakami M, Kudo I (2002) Phospholipase A2. J Biochem 131:285–292PubMedCrossRefGoogle Scholar
  29. 29.
    Namkung W, Phuan PW, Verkman AS (2011) TMEM16A inhibitors reveal TMEM16A as a minor component of CaCC conductance in airway and intestinal epithelial cells. J Biol Chem 286:2365–2374PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Nilius B, Eggermont J, Voets T, Buyse G, Manolopoulos V, Droogmans G (1997) Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Biol 68:69–119PubMedCrossRefGoogle Scholar
  31. 31.
    Nilius B, Eggermont J, Voets T, Droogmans G (1996) Volume-activated Cl-channels. Gen Pharmacol 27:1131–1140PubMedCrossRefGoogle Scholar
  32. 32.
    Nilius B, Oike M, Zahradnik I, Droogmans G (1994) Activation of a Cl-current by hypotonic volume increase in human endothelial cells. J Gen Physiol 103:787–805PubMedCrossRefGoogle Scholar
  33. 33.
    Okada Y (2006) Cell volume-sensitive chloride channels: phenotypic properties and molecular identity. Contrib Nephrol 152:9–24PubMedCrossRefGoogle Scholar
  34. 34.
    Ousingsawat J, Martins JR, Schreiber R, Rock JR, Harfe BD, Kunzelmann K (2009) Loss of TMEM16A causes a defect in epithelial Ca2+ dependent chloride transport. J Biol Chem 284:28698–28703PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ousingsawat J, Wanitchakool P, Kmit A, Romao AM, Jantarajit W, Schreiber S, Kunzelmann K (2015) Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7-receptors in macrophages. Nat Commun 6:6245PubMedCrossRefGoogle Scholar
  36. 36.
    Pedemonte N, Galietta LJ (2014) Structure and function of TMEM16 proteins (anoctamins). Physiol Rev 94:419–459PubMedCrossRefGoogle Scholar
  37. 37.
    Pedersen S, Lambert IH, Thoroed SM, Hoffmann EK (2000) Hypotonic cell swelling induces translocation of the alpha isoform of cytosolic phospholipase A2 but not the gamma isoform in Ehrlich ascites tumor cells. Eur J Biochem 267:5531–5539PubMedCrossRefGoogle Scholar
  38. 38.
    Pedersen SF, Nilius B (2007) Transient receptor potential channels in mechanosensing and cell volume regulation. Methods Enzymol 428:183–207PubMedCrossRefGoogle Scholar
  39. 39.
    Pedersen SF, Poulsen KA, Lambert IH (2006) Roles of phospholipase A2 isoforms in swelling- and melittin-induced arachidonic acid release and taurine efflux in NIH3T3 fibroblasts. Am J Physiol Cell Physiol 291:C1286–C1296PubMedCrossRefGoogle Scholar
  40. 40.
    Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387PubMedCrossRefGoogle Scholar
  41. 41.
    Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157:447–458PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sabirov RZ, Prenen J, Tomita T, Droogmans G, Nilius B (2000) Reduction of ionic strength activates single volume-regulated anion channels (VRAC) in endothelial cells. Pflugers Arch 439:315–320PubMedCrossRefGoogle Scholar
  43. 43.
    Schreiber R, Faria D, Skryabin BV, Rock JR, Kunzelmann K (2014) Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch 467:1203–1213PubMedCrossRefGoogle Scholar
  44. 44.
    Shimizu T, Iehara T, Sato K, Fujii T, Sakai H, Okada Y (2013) TMEM16F is a component of a Ca2+-activated Cl-channel but not a volume-sensitive outwardly rectifying Cl-channel. Am J Physiol Cell Physiol 304:C748–C759PubMedCrossRefGoogle Scholar
  45. 45.
    Strange K, Emma F, Jackson PS (1996) Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol 270:C711–C730PubMedGoogle Scholar
  46. 46.
    Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838PubMedCrossRefGoogle Scholar
  47. 47.
    Szteyn K, Schmid E, Nurbaeva MK, Yang W, Munzer P, Kunzelmann K, Lang F, Shumilina E (2012) Expression and functional significance of the Ca-activated Cl(−) channel ANO6 in dendritic cells. Cell Physiol Biochem 30:1319–1332PubMedCrossRefGoogle Scholar
  48. 48.
    Thoroed SM, Lauritzen L, Lambert IH, Hansen HS, Hoffmann EK (1997) Cell swelling activates phospholipase A2 in Ehrlich ascites tumor cells. J Membr Biol 160:47–58PubMedCrossRefGoogle Scholar
  49. 49.
    Tian Y, Schreiber R, Kunzelmann K (2012) Anoctamins are a family of Ca2+ activated Cl-channels. J Cell Sci 125:4991–4998PubMedCrossRefGoogle Scholar
  50. 50.
    Voets T, Droogmans G, Raskin G, Eggermont J, Nilius B (1999) Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc Natl Acad Sci U S A 96:5298–5303PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344:634–638PubMedCrossRefGoogle Scholar
  52. 52.
    Yang H, Kim A, David T, Palmer D, Jin T, Tien J, Huang F, Cheng T, Coughlin SR, Jan YN, Jan LY (2012) TMEM16F forms a Ca(2+)-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151:111–122PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yoo J, Cui Q (2009) Curvature generation and pressure profile modulation in membrane by lysolipids: insights from coarse-grained simulations. Biophys J 97:2267–2276PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yu K, Whitlock JM, Lee K, Ortlund EA, Yuan CY, and Hartzell HC (2015) Identification of a lipid scrambling domain in ANO6/TMEM16F. Elife. 4. doi: 10Google Scholar
  55. 55.
    Zholos A, Beck B, Sydorenko V, Lemonnier L, Bordat P, Prevarskaya N, Skryma R (2005) Ca(2+)- and volume-sensitive chloride currents are differentially regulated by agonists and store-operated Ca2+ entry. J Gen Physiol 125:197–211PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lalida Sirianant
    • 1
  • Jiraporn Ousingsawat
    • 1
  • Podchanart Wanitchakool
    • 1
  • Rainer Schreiber
    • 1
  • Karl Kunzelmann
    • 1
    Email author
  1. 1.Institut für PhysiologieUniversität RegensburgRegensburgGermany

Personalised recommendations