Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 467, Issue 12, pp 2473–2484 | Cite as

Cavβ2 transcription start site variants modulate calcium handling in newborn rat cardiomyocytes

  • Cristian Moreno
  • Tamara Hermosilla
  • Danna Morales
  • Matías Encina
  • Leandro Torres-Díaz
  • Pablo Díaz
  • Daniela Sarmiento
  • Felipe Simon
  • Diego Varela
Ion channels, receptors and transporters

Abstract

In the heart, the main pathway for calcium influx is mediated by L-type calcium channels, a multi-subunit complex composed of the pore-forming subunit CaV1.2 and the auxiliary subunits CaVα2δ1 and CaVβ2. To date, five distinct CaVβ2 transcriptional start site (TSS) variants (CaVβ2a-e) varying only in the composition and length of the N-terminal domain have been described, each of them granting distinct biophysical properties to the L-type current. However, the physiological role of these variants in Ca2+ handling in the native tissue has not been explored. Our results show that four of these variants are present in neonatal rat cardiomyocytes. The contribution of those CaVβ2 TSS variants on endogenous L-type current and Ca2+ handling was explored by adenoviral-mediated overexpression of each CaVβ2 variant in cultured newborn rat cardiomyocytes. As expected, all CaVβ2 TSS variants increased L-type current density and produced distinctive changes on L-type calcium channel (LTCC) current activation and inactivation kinetics. The characteristics of the induced calcium transients were dependent on the TSS variant overexpressed. Moreover, the amplitude of the calcium transients varied depending on the subunit involved, being higher in cardiomyocytes transduced with CaVβ2a and smaller in CaVβ2d. Interestingly, the contribution of Ca2+ influx and Ca2+ release on total calcium transients, as well as the sarcoplasmic calcium content, was found to be TSS-variant-dependent. Remarkably, determination of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) messenger RNA (mRNA) abundance and cell size change indicates that CaVβ2 TSS variants modulate the cardiomyocyte hypertrophic state. In summary, we demonstrate that expression of individual CaVβ2 TSS variants regulates calcium handling in cardiomyocytes and, consequently, has significant repercussion in the development of hypertrophy.

Keywords

Calcium transients Auxiliary subunits Cardiomyocytes L-type calcium current 

Notes

Acknowledgments

We are thankful to Rocio K. Finol-Urdaneta, Andrés Stutzin, and Luis Michea for constructive discussion to the manuscript. This work was supported by research grants from Fondo Nacional de Desarrollo Científico y Tecnológico (Fondecyt) 1120240 to DV, and Fondecyt 1121078 and Millennium Institute on Immunology and Immunotherapy P09-016-F to FS.

Author’s contributions

D.V. and T.H. designed the project. C.M., T.H., L.T-D., D.M., M.E., P.D., D.S., and D.V. performed the experiments. D.V., T.H., and F.S. analyzed the data. D.V. wrote the manuscript.

Conflict of interest

The authors declare no conflict of interests.

Supplementary material

Supplemental movie 1

(MPG 1939 kb)

Supplemental movie 2

(MPG 1881 kb)

Supplemental movie 3

(MPG 1926 kb)

Supplemental movie 4

(MPG 1972 kb)

424_2015_1723_Fig8_ESM.gif (37 kb)
Supplemental Fig. S1

(GIF 36 kb)

424_2015_1723_MOESM5_ESM.tif (227.3 mb)
High Resolution Image (TIFF 232773 kb)

References

  1. 1.
    Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW (2011) The Cavbeta subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci 14:173–180. doi: 10.1038/nn.2712 CrossRefPubMedGoogle Scholar
  2. 2.
    Benitah JP, Alvarez JL, Gomez AM (2010) L-type Ca(2+) current in ventricular cardiomyocytes. J Mol Cell Cardiol 48:26–36. doi: 10.1016/j.yjmcc.2009.07.026 CrossRefPubMedGoogle Scholar
  3. 3.
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. doi: 10.1038/415198a CrossRefPubMedGoogle Scholar
  4. 4.
    Bers DM (2006) Altered cardiac myocyte Ca regulation in heart failure. Physiology 21:380–387. doi: 10.1152/physiol.00019.2006 CrossRefPubMedGoogle Scholar
  5. 5.
    Buraei Z, Yang J (2010) The beta subunit of voltage-gated Ca2+ channels. Physiol Rev 90:1461–1506. doi: 10.1152/physrev.00057.2009 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Cingolani E, Ramirez Correa GA, Kizana E, Murata M, Cho HC, Marban E (2007) Gene therapy to inhibit the calcium channel beta subunit: physiological consequences and pathophysiological effects in models of cardiac hypertrophy. Circ Res 101:166–175. doi: 10.1161/CIRCRESAHA.107.155721 CrossRefPubMedGoogle Scholar
  7. 7.
    Colecraft HM, Alseikhan B, Takahashi SX, Chaudhuri D, Mittman S, Yegnasubramanian V, Alvania RS, Johns DC, Marban E, Yue DT (2002) Novel functional properties of Ca(2+) channel beta subunits revealed by their expression in adult rat heart cells. J Physiol 541:435–452PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Chen X, Nakayama H, Zhang X, Ai X, Harris DM, Tang M, Zhang H, Szeto C, Stockbower K, Berretta RM, Eckhart AD, Koch WJ, Molkentin JD, Houser SR (2011) Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. J Mol Cell Cardiol 50:460–470. doi: 10.1016/j.yjmcc.2010.11.012 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Chen X, Piacentino V 3rd, Furukawa S, Goldman B, Margulies KB, Houser SR (2002) L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res 91:517–524CrossRefPubMedGoogle Scholar
  10. 10.
    Chen X, Zhang X, Kubo H, Harris DM, Mills GD, Moyer J, Berretta R, Potts ST, Marsh JD, Houser SR (2005) Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ Res 97:1009–1017. doi: 10.1161/01.RES.0000189270.72915.D1 CrossRefPubMedGoogle Scholar
  11. 11.
    Chu PJ, Larsen JK, Chen CC, Best PM (2004) Distribution and relative expression levels of calcium channel beta subunits within the chambers of the rat heart. J Mol Cell Cardiol 36:423–434. doi: 10.1016/j.yjmcc.2003.12.012 CrossRefPubMedGoogle Scholar
  12. 12.
    Dobrev D, Voigt N, Wehrens XH (2011) The ryanodine receptor channel as a molecular motif in atrial fibrillation: pathophysiological and therapeutic implications. Cardiovasc Res 89:734–743. doi: 10.1093/cvr/cvq324 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Escobar AL, Ribeiro-Costa R, Villalba-Galea C, Zoghbi ME, Perez CG, Mejia-Alvarez R (2004) Developmental changes of intracellular Ca2+ transients in beating rat hearts. Am J Physiol Heart Circ Physiol 286:H971–H978. doi: 10.1152/ajpheart.00308.2003 CrossRefPubMedGoogle Scholar
  14. 14.
    Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–C14PubMedGoogle Scholar
  15. 15.
    Fang K, Colecraft HM (2011) Mechanism of auxiliary beta-subunit-mediated membrane targeting of L-type (Ca(V)1.2) channels. J Physiol 589:4437–4455. doi: 10.1113/jphysiol.2011.214247 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Fatkin D, McConnell BK, Mudd JO, Semsarian C, Moskowitz IG, Schoen FJ, Giewat M, Seidman CE, Seidman JG (2000) An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. J Clin Invest 106:1351–1359. doi: 10.1172/JCI11093 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Foell JD, Balijepalli RC, Delisle BP, Yunker AM, Robia SL, Walker JW, McEnery MW, January CT, Kamp TJ (2004) Molecular heterogeneity of calcium channel beta-subunits in canine and human heart: evidence for differential subcellular localization. Physiol Genomics 17:183–200. doi: 10.1152/physiolgenomics.00207.2003 CrossRefPubMedGoogle Scholar
  18. 18.
    Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H, Reiken S, Elrod JW, Correll RN, York AJ, Sargent MA, Hofmann F, Moosmang S, Marks AR, Houser SR, Bers DM, Molkentin JD (2012) Decreased cardiac L-type Ca(2)(+) channel activity induces hypertrophy and heart failure in mice. J Clin Invest 122:280–290. doi: 10.1172/JCI58227 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Haase H, Pfitzmaier B, McEnery MW, Morano I (2000) Expression of Ca(2+) channel subunits during cardiac ontogeny in mice and rats: identification of fetal alpha(1C) and beta subunit isoforms. J Cell Biochem 76:695–703CrossRefPubMedGoogle Scholar
  20. 20.
    Harary I, Farley B (1960) In vitro studies of single isolated beating heart cells. Science 131:1674–1675CrossRefPubMedGoogle Scholar
  21. 21.
    Hermosilla T, Moreno C, Itfinca M, Altier C, Armisen R, Stutzin A, Zamponi GW, Varela D (2011) L-type calcium channel beta subunit modulates angiotensin II responses in cardiomyocytes. Channels 5:280–286CrossRefPubMedGoogle Scholar
  22. 22.
    Herzig S, Khan IF, Grundemann D, Matthes J, Ludwig A, Michels G, Hoppe UC, Chaudhuri D, Schwartz A, Yue DT, Hullin R (2007) Mechanism of Ca(v)1.2 channel modulation by the amino terminus of cardiac beta2-subunits. FASEB J Off Publ Fed Am Soc Exp Biol 21:1527–1538. doi: 10.1096/fj.06-7377com Google Scholar
  23. 23.
    Hullin R, Khan IF, Wirtz S, Mohacsi P, Varadi G, Schwartz A, Herzig S (2003) Cardiac L-type calcium channel beta-subunits expressed in human heart have differential effects on single channel characteristics. J Biol Chem 278:21623–21630. doi: 10.1074/jbc.M211164200 CrossRefPubMedGoogle Scholar
  24. 24.
    Hullin R, Matthes J, von Vietinghoff S, Bodi I, Rubio M, D'Souza K, Friedrich Khan I, Rottlander D, Hoppe UC, Mohacsi P, Schmitteckert E, Gilsbach R, Bunemann M, Hein L, Schwartz A, Herzig S (2007) Increased expression of the auxiliary beta(2)-subunit of ventricular L-type Ca(2) + channels leads to single-channel activity characteristic of heart failure. PLoS One 2, e292. doi: 10.1371/journal.pone.0000292 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Link S, Meissner M, Held B, Beck A, Weissgerber P, Freichel M, Flockerzi V (2009) Diversity and developmental expression of L-type calcium channel beta2 proteins and their influence on calcium current in murine heart. J Biol Chem 284:30129–30137. doi: 10.1074/jbc.M109.045583 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Miranda-Laferte E, Ewers D, Guzman RE, Jordan N, Schmidt S, Hidalgo P (2014) The N-terminal domain tethers the voltage-gated calcium channel beta2e-subunit to the plasma membrane via electrostatic and hydrophobic interactions. J Biol Chem 289:10387–10398. doi: 10.1074/jbc.M113.507244 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Poindexter BJ, Smith JR, Buja LM, Bick RJ (2001) Calcium signaling mechanisms in dedifferentiated cardiac myocytes: comparison with neonatal and adult cardiomyocytes. Cell Calcium 30:373–382. doi: 10.1054/ceca.2001.0249 CrossRefPubMedGoogle Scholar
  29. 29.
    Schroder F, Handrock R, Beuckelmann DJ, Hirt S, Hullin R, Priebe L, Schwinger RH, Weil J, Herzig S (1998) Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation 98:969–976CrossRefPubMedGoogle Scholar
  30. 30.
    Semsarian C, Ahmad I, Giewat M, Georgakopoulos D, Schmitt JP, McConnell BK, Reiken S, Mende U, Marks AR, Kass DA, Seidman CE, Seidman JG (2002) The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J Clin Invest 109:1013–1020. doi: 10.1172/JCI14677 PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Shannon TR, Bers DM (2004) Integrated Ca2+ management in cardiac myocytes. Ann N Y Acad Sci 1015:28–38. doi: 10.1196/annals.1302.003 CrossRefPubMedGoogle Scholar
  32. 32.
    Simms BA, Zamponi GW (2012) Trafficking and stability of voltage-gated calcium channels. Cell Mol Life Sci CMLS 69:843–856. doi: 10.1007/s00018-011-0843-y CrossRefPubMedGoogle Scholar
  33. 33.
    Song LS, Guia A, Muth JN, Rubio M, Wang SQ, Xiao RP, Josephson IR, Lakatta EG, Schwartz A, Cheng H (2002) Ca(2+) signaling in cardiac myocytes overexpressing the alpha(1) subunit of L-type Ca(2+) channel. Circ Res 90:174–181CrossRefPubMedGoogle Scholar
  34. 34.
    Takahashi SX, Mittman S, Colecraft HM (2003) Distinctive modulatory effects of five human auxiliary beta2 subunit splice variants on L-type calcium channel gating. Biophys J 84:3007–3021. doi: 10.1016/S0006-3495(03)70027-7 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Tandan S, Wang Y, Wang TT, Jiang N, Hall DD, Hell JW, Luo X, Rothermel BA, Hill JA (2009) Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel. Circ Res 105:51–60. doi: 10.1161/CIRCRESAHA.109.199828 PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Van Petegem F, Clark KA, Chatelain FC, Minor DL Jr (2004) Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 429:671–675. doi: 10.1038/nature02588 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Varela D, Niemeyer MI, Cid LP, Sepulveda FV (2002) Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel. J Physiol 544:363–372PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XH, Dobrev D (2012) Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na + -Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125:2059–2070. doi: 10.1161/CIRCULATIONAHA.111.067306 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Cristian Moreno
    • 1
  • Tamara Hermosilla
    • 1
  • Danna Morales
    • 1
  • Matías Encina
    • 1
  • Leandro Torres-Díaz
    • 1
  • Pablo Díaz
    • 1
  • Daniela Sarmiento
    • 2
  • Felipe Simon
    • 2
    • 3
  • Diego Varela
    • 1
  1. 1.Centro de Estudios Moleculares de la Célula (CEMC), Programa de Fisiopatología, Facultad de Medicina, ICBMUniversidad de ChileSantiagoChile
  2. 2.Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de MedicinaUniversidad Andres BelloSantiagoChile
  3. 3.Millennium Institute on Immunology and ImmunotherapySantiagoChile

Personalised recommendations