Advertisement

Much more than a leak: structure and function of K2P-channels

  • Vijay Renigunta
  • Günter Schlichthörl
  • Jürgen DautEmail author
Invited Review

Abstract

Over the last decade, we have seen an enormous increase in the number of experimental studies on two-pore-domain potassium channels (K2P-channels). The collection of reviews and original articles compiled for this special issue of Pflügers Archiv aims to give an up-to-date summary of what is known about the physiology and pathophysiology of K2P-channels. This introductory overview briefly describes the structure of K2P-channels and their function in different organs. Its main aim is to provide some background information for the 19 reviews and original articles of this special issue of Pflügers Archiv. It is not intended to be a comprehensive review; instead, this introductory overview focuses on some unresolved questions and controversial issues, such as: Do K2P-channels display voltage-dependent gating? Do K2P-channels contribute to the generation of action potentials? What is the functional role of alternative translation initiation? Do K2P-channels have one or two or more gates? We come to the conclusion that we are just beginning to understand the extremely complex regulation of these fascinating channels, which are often inadequately described as ‘leak channels’.

Keywords

K2P-channels Action potential Voltage dependence 

Notes

Acknowledgments

We thank Brigitte Burk and Susanne Bamerny for the technical and administrative support and Stephen Tucker, Dominik Oliver, Blanche Schwappach and Linus Conrad for useful comments on the manuscript. Any remaining errors are, of course, ours. This work was supported by a grant of the Deutsche Forschungsgemeinschaft (FOR 1086/TPA7 and SFB 593/TPA4).

References

  1. 1.
    Alloui A, Zimmermann K, Mamet J, Duprat F, Noel J, Chemin J, Guy N, Blondeau N, Voilley N, Rubat-Coudert C, Borsotto M, Romey G, Heurteaux C, Reeh P, Eschalier A, Lazdunski M (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25:2368–2376PubMedCentralPubMedGoogle Scholar
  2. 2.
    Andres-Enguix I, Caley A, Yustos R, Schumacher MA, Spanu PD, Dickinson R, Maze M, Franks NP (2007) Determinants of the anesthetic sensitivity of two-pore domain acid-sensitive potassium channels: molecular cloning of an anesthetic-activated potassium channel from Lymnaea stagnalis. J Biol Chem 282:20977–20990PubMedGoogle Scholar
  3. 3.
    Andres-Enguix I, Shang L, Stansfeld PJ, Morahan JM, Sansom MS, Lafreniere RG, Roy B, Griffiths LR, Rouleau GA, Ebers GC, Cader ZM, Tucker SJ (2012) Functional analysis of missense variants in the TRESK (KCNK18) K channel. Sci Rep 2:237PubMedCentralPubMedGoogle Scholar
  4. 4.
    Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A 111:7898–7905PubMedCentralPubMedGoogle Scholar
  5. 5.
    Aryal P, Abd-Wahab F, Bucci G, Sansom MS, Tucker SJ (2014) A hydrophobic barrier deep within the inner pore of the TWIK-1 K2P potassium channel. Nat Commun 5:4377PubMedCentralPubMedGoogle Scholar
  6. 6.
    Aryal P, Abd-Wahab F, Bucci G, Sansom MS, Tucker SJ (2014) Influence of lipids on the hydrophobic barrier within the pore of the TWIK-1 K2P channel. Channels (Austin):0Google Scholar
  7. 7.
    Aryal P, Sansom MS, Tucker SJ (2015) Hydrophobic gating in ion channels. J Mol Biol 427:121–130PubMedGoogle Scholar
  8. 8.
    Ashmole I, Goodwin PA, Stanfield PR (2001) TASK-5, a novel member of the tandem pore K+ channel family. Pflugers Arch 442:828–833PubMedGoogle Scholar
  9. 9.
    Ashmole I, Vavoulis DV, Stansfeld PJ, Mehta PR, Feng JF, Sutcliffe MJ, Stanfield PR (2009) The response of the tandem pore potassium channel TASK-3 (K(2P)9.1) to voltage: gating at the cytoplasmic mouth. J Physiol 587:4769–4783PubMedCentralPubMedGoogle Scholar
  10. 10.
    Bagriantsev SN, Clark KA, Minor DL Jr (2012) Metabolic and thermal stimuli control K(2P)2.1 (TREK-1) through modular sensory and gating domains. EMBO J 31:3297–3308PubMedCentralPubMedGoogle Scholar
  11. 11.
    Bagriantsev SN, Peyronnet R, Clark KA, Honore E, Minor DL Jr (2011) Multiple modalities converge on a common gate to control K2P channel function. EMBO J 30:3594–3606PubMedCentralPubMedGoogle Scholar
  12. 12.
    Bandulik S, Penton D, Barhanin J, Warth R (2010) TASK1 and TASK3 potassium channels: determinants of aldosterone secretion and adrenocortical zonation. Horm Metab Res 42:450–457PubMedGoogle Scholar
  13. 13.
    Bandulik S, Tauber P, Lalli E, Barhanin J, Warth R (2014) Two-pore domain potassium channels in the adrenal cortex. Pflugers Arch. doi: 10.1007/s00424-014-1628-6
  14. 14.
    Bandulik S, Tauber P, Penton D, Schweda F, Tegtmeier I, Sterner C, Lalli E, Lesage F, Hartmann M, Barhanin J, Warth R (2013) Severe hyperaldosteronism in neonatal Task3 potassium channel knockout mice is associated with activation of the intraadrenal renin-angiotensin system. Endocrinology 154:2712–2722PubMedGoogle Scholar
  15. 15.
    Bang H, Kim Y, Kim D (2000) TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J Biol Chem 275:17412–17419Google Scholar
  16. 16.
    Bardou O, Trinh NT, Brochiero E (2009) Molecular diversity and function of K+ channels in airway and alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 296:L145–L155Google Scholar
  17. 17.
    Barel O, Shalev SA, Ofir R, Cohen A, Zlotogora J, Shorer Z, Mazor G, Finer G, Khateeb S, Zilberberg N, Birk OS (2008) Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am J Hum Genet 83:193–199PubMedCentralPubMedGoogle Scholar
  18. 18.
    Baukrowitz T, Yellen G (1995) Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron 15:951–960Google Scholar
  19. 19.
    Baukrowitz T, Yellen G (1996) Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel. Science 271:653–656Google Scholar
  20. 20.
    Bavro VN, De Zorzi R, Schmidt MR, Muniz JR, Zubcevic L, Sansom MS, Venien-Bryan C, Tucker SJ (2012) Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating. Nat Struct Mol Biol 19:158–163PubMedCentralPubMedGoogle Scholar
  21. 21.
    Bayliss DA, Barhanin J, Gestreau C, Guyenet PG (2014) The role of pH-sensitive TASK channels in central respiratory chemoreception. Pflugers ArchGoogle Scholar
  22. 22.
    Bayliss DA, Barrett PQ (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol SciGoogle Scholar
  23. 23.
    Bayliss DA, Talley EM, Sirois JE, Lei Q (2001) TASK-1 is a highly modulated pH-sensitive 'leak' K+ channel expressed in brainstem respiratory neurons. Respir Physiol 129:159–174Google Scholar
  24. 24.
    Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451–465PubMedGoogle Scholar
  25. 25.
    Ben-Abu Y, Zhou Y, Zilberberg N, Yifrach O (2009) Inverse coupling in leak and voltage-activated K+ channel gates underlies distinct roles in electrical signaling. Nat Struct Mol Biol 16:71–79PubMedGoogle Scholar
  26. 26.
    Bichet D, Blin S, Feliciangeli S, Chatelain FC, Bobak N, Lesage F (2014) Silent but not dumb: how cellular trafficking and pore gating modulate expression of TWIK1 and THIK2. Pflugers Arch. doi: 10.1007/s00424-014-1631-y
  27. 27.
    Bichet D, Haass FA, Jan LY (2003) Merging functional studies with structures of inward-rectifier K+ channels. Nat Rev Neurosci 4:957–967Google Scholar
  28. 28.
    Bista P, Cerina M, Ehling P, Leist M, Pape HC, Meuth SG, Budde T (2014) The role of two-pore-domain background K (K) channels in the thalamus. Pflugers Arch. doi: 10.1007/s00424-014-1632-x
  29. 29.
    Bista P, Meuth SG, Kanyshkova T, Cerina M, Pawlowski M, Ehling P, Landgraf P, Borsotto M, Heurteaux C, Pape HC, Baukrowitz T, Budde T (2012) Identification of the muscarinic pathway underlying cessation of sleep-related burst activity in rat thalamocortical relay neurons. Pflugers Arch 463:89–102PubMedGoogle Scholar
  30. 30.
    Bista P, Pawlowski M, Cerina M, Ehling P, Leist M, Meuth P, Aissaoui A, Borsotto M, Heurteaux C, Decher N, Pape HC, Oliver D, Meuth SG, Budde T (2015) Differential phospholipase C-dependent modulation of TASK and TREK two-pore domain K+ channels in rat thalamocortical relay neurons. J Physiol 593:127–144PubMedGoogle Scholar
  31. 31.
    Bittner S, Budde T, Wiendl H, Meuth SG (2010) From the background to the spotlight: TASK channels in pathological conditions. Brain Pathol 20:999–1009PubMedGoogle Scholar
  32. 32.
    Bittner S, Meuth SG, Gobel K, Melzer N, Herrmann AM, Simon OJ, Weishaupt A, Budde T, Bayliss DA, Bendszus M, Wiendl H (2009) TASK1 modulates inflammation and neurodegeneration in autoimmune inflammation of the central nervous system. Brain 132:2501–2516PubMedCentralPubMedGoogle Scholar
  33. 33.
    Bittner S, Ruck T, Schuhmann MK, Herrmann AM, Moha ou Maati H, Bobak N, Gobel K, Langhauser F, Stegner D, Ehling P, Borsotto M, Pape HC, Nieswandt B, Kleinschnitz C, Heurteaux C, Galla HJ, Budde T, Wiendl H, Meuth SG (2013) Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med 19:1161–1165PubMedGoogle Scholar
  34. 34.
    Blondeau N, Petrault O, Manta S, Giordanengo V, Gounon P, Bordet R, Lazdunski M, Heurteaux C (2007) Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Circ Res 101:176–184PubMedGoogle Scholar
  35. 35.
    Bobak N, Bittner S, Andronic J, Hartmann S, Muhlpfordt F, Schneider-Hohendorf T, Wolf K, Schmelter C, Gobel K, Meuth P, Zimmermann H, Doring F, Wischmeyer E, Budde T, Wiendl H, Meuth SG, Sukhorukov VL (2011) Volume regulation of murine T lymphocytes relies on voltage-dependent and two-pore domain potassium channels. Biochim Biophys Acta 1808:2036–2044PubMedGoogle Scholar
  36. 36.
    Bockenhauer D, Zilberberg N, Goldstein SA (2001) KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. Nat Neurosci 4:486–491PubMedGoogle Scholar
  37. 37.
    Bodnar M, Schlichthorl G, Daut J (2014) The potassium current carried by TREK-1 channels in rat cardiac ventricular muscle. Pflugers Arch. doi: 10.1007/s00424-014-1678-9
  38. 38.
    Bond RC, Choisy SC, Bryant SM, Hancox JC, James AF (2014) Inhibition of a TREK-like K+ channel current by noradrenaline requires both beta1- and beta2-adrenoceptors in rat atrial myocytes. Cardiovasc Res 104:206–215PubMedCentralPubMedGoogle Scholar
  39. 39.
    Borsotto M, Veyssiere J, Moha Ou Maati H, Devader C, Mazella J, Heurteaux C (2015) Targeting two-pore domain K(+) channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept. Br J Pharmacol 172:771–784PubMedGoogle Scholar
  40. 40.
    Brickley SG, Aller MI, Sandu C, Veale EL, Alder FG, Sambi H, Mathie A, Wisden W (2007) TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons. J Neurosci 27:9329–9340PubMedGoogle Scholar
  41. 41.
    Brohawn SG, Campbell EB, MacKinnon R (2013) Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel. Proc Natl Acad Sci U S A 110:2129–2134PubMedCentralPubMedGoogle Scholar
  42. 42.
    Brohawn SG, Campbell EB, MacKinnon R (2014) Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516:126–130PubMedGoogle Scholar
  43. 43.
    Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441PubMedCentralPubMedGoogle Scholar
  44. 44.
    Brohawn SG, Su Z, MacKinnon R (2014) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111:3614–3619PubMedCentralPubMedGoogle Scholar
  45. 45.
    Bryan RM Jr, Joseph BK, Lloyd E, Rusch NJ (2007) Starring TREK-1: the next generation of vascular K+ channels. Circ Res 101:119–121PubMedGoogle Scholar
  46. 46.
    Bryan RM Jr, You J, Phillips SC, Andresen JJ, Lloyd EE, Rogers PA, Dryer SE, Marrelli SP (2006) Evidence for two-pore domain potassium channels in rat cerebral arteries. Am J Physiol Heart Circ Physiol 291:H770–H780PubMedGoogle Scholar
  47. 47.
    Buckler KJ (2007) TASK-like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol 157:55–64PubMedGoogle Scholar
  48. 48.
    Buckler KJ (2015) TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers ArchGoogle Scholar
  49. 49.
    Bushell T, Clarke C, Mathie A, Robertson B (2002) Pharmacological characterization of a non-inactivating outward current observed in mouse cerebellar Purkinje neurones. Br J Pharmacol 135:705–712PubMedCentralPubMedGoogle Scholar
  50. 50.
    Buxton IL, Singer CA, Tichenor JN (2010) Expression of stretch-activated two-pore potassium channels in human myometrium in pregnancy and labor. PLoS One 5:e12372PubMedCentralPubMedGoogle Scholar
  51. 51.
    Chatelain FC, Bichet D, Douguet D, Feliciangeli S, Bendahhou S, Reichold M, Warth R, Barhanin J, Lesage F (2012) TWIK1, a unique background channel with variable ion selectivity. Proc Natl Acad Sci U S A 109:5499–5504PubMedCentralPubMedGoogle Scholar
  52. 52.
    Chatelain FC, Bichet D, Feliciangeli S, Larroque MM, Braud VM, Douguet D, Lesage F (2013) Silencing of the tandem pore domain halothane-inhibited K+ channel 2 (THIK2) relies on combined intracellular retention and low intrinsic activity at the plasma membrane. J Biol Chem 288:35081–35092PubMedCentralPubMedGoogle Scholar
  53. 53.
    Chavez RA, Gray AT, Zhao BB, Kindler CH, Mazurek MJ, Mehta Y, Forsayeth JR, Yost CS (1999) TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J Biol Chem 274:7887–7892PubMedGoogle Scholar
  54. 54.
    Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M, Honore E (2005) A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J 24:44–53PubMedCentralPubMedGoogle Scholar
  55. 55.
    Chen H, Chatelain FC, Lesage F (2014) Altered and dynamic ion selectivity of K+ channels in cell development and excitability. Trends Pharmacol Sci 35:461–469PubMedGoogle Scholar
  56. 56.
    Coburn CA, Luo Y, Cui M, Wang J, Soll R, Dong J, Hu B, Lyon MA, Santarelli VP, Kraus RL, Gregan Y, Wang Y, Fox SV, Binns J, Doran SM, Reiss DR, Tannenbaum PL, Gotter AL, Meinke PT, Renger JJ (2012) Discovery of a pharmacologically active antagonist of the two-pore-domain potassium channel K2P9.1 (TASK-3). ChemMedChem 7:123–133PubMedGoogle Scholar
  57. 57.
    Cohen A, Ben-Abu Y, Hen S, Zilberberg N (2008) A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J Biol Chem 283:19448–19455PubMedGoogle Scholar
  58. 58.
    Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117:165–180PubMedCentralPubMedGoogle Scholar
  59. 59.
    Coulon P, Budde T, Pape HC (2012) The sleep relay—the role of the thalamus in central and decentral sleep regulation. Pflugers Arch 463:53–71PubMedGoogle Scholar
  60. 60.
    Czirjak G, Fischer T, Spat A, Lesage F, Enyedi P (2000) TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol Endocrinol 14:863–874PubMedGoogle Scholar
  61. 61.
    Czirjak G, Toth ZE, Enyedi P (2004) The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J Biol Chem 279:18550–18558PubMedGoogle Scholar
  62. 62.
    Dadi PK, Vierra NC, Jacobson DA (2014) Pancreatic beta-cell-specific ablation of TASK-1 channels augments glucose-stimulated calcium entry and insulin secretion, improving glucose tolerance. Endocrinology 155:3757–3768PubMedGoogle Scholar
  63. 63.
    Davis KA, Cowley EA (2006) Two-pore-domain potassium channels support anion secretion from human airway Calu-3 epithelial cells. Pflugers Arch 451:631–641PubMedGoogle Scholar
  64. 64.
    Decher N, Kiper AK, Rolfes C, Schulze-Bahr E, Rinne S (2014) The role of acid-sensitive two-pore domain potassium channels in cardiac electrophysiology: focus on arrhythmias. Pflugers Arch. doi: 10.1007/s00424-014-1637-5
  65. 65.
    Decher N, Maier M, Dittrich W, Gassenhuber J, Brüggemann A, Busch AE, Steinmeyer K (2001) Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett 492:84–89PubMedGoogle Scholar
  66. 66.
    Decher N, Renigunta V, Zuzarte M, Soom M, Heinemann SH, Timothy KW, Keating MT, Daut J, Sanguinetti MC, Splawski I (2007) Impaired interaction between the slide helix and the C-terminus of Kir2.1: a novel mechanism of Andersen syndrome. Cardiovasc Res 75:748–757PubMedGoogle Scholar
  67. 67.
    Decher N, Wemhoner K, Rinne S, Netter MF, Zuzarte M, Aller MI, Kaufmann SG, Li XT, Meuth SG, Daut J, Sachse FB, Maier SK (2011) Knock-out of the potassium channel TASK-1 leads to a prolonged QT interval and a disturbed QRS complex. Cell Physiol Biochem 28:77–86PubMedGoogle Scholar
  68. 68.
    Decressac S, Franco M, Bendahhou S, Warth R, Knauer S, Barhanin J, Lazdunski M, Lesage F (2004) ARF6-dependent interaction of the TWIK1 K+ channel with EFA6, a GDP/GTP exchange factor for ARF6. EMBO Rep 5:1171–1175Google Scholar
  69. 69.
    Dedman A, Sharif-Naeini R, Folgering JH, Duprat F, Patel A, Honore E (2009) The mechano-gated K(2P) channel TREK-1. Eur Biophys J 38:293–303PubMedGoogle Scholar
  70. 70.
    Demaurex N, El Chemaly A (2010) Physiological roles of voltage-gated proton channels in leukocytes. J Physiol 588:4659–4665PubMedCentralPubMedGoogle Scholar
  71. 71.
    Dong YY, Pike ACW, al. e (2015) K2P channel gating mechanisms revealed by structures of TREK-2 and a comkplex with Prozac. Science 347:1256-1259Google Scholar
  72. 72.
    Donner BC, Schullenberg M, Geduldig N, Huning A, Mersmann J, Zacharowski K, Kovacevic A, Decking U, Aller MI, Schmidt KG Functional role of TASK-1 in the heart: studies in TASK-1-deficient mice show prolonged cardiac repolarization and reduced heart rate variability. Basic Res Cardiol 106:75-87Google Scholar
  73. 73.
    Dubreuil V, Ramanantsoa N, Trochet D, Vaubourg V, Amiel J, Gallego J, Brunet JF, Goridis C (2008) A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci U S A 105:1067–1072PubMedCentralPubMedGoogle Scholar
  74. 74.
    Dubreuil V, Thoby-Brisson M, Rallu M, Persson K, Pattyn A, Birchmeier C, Brunet JF, Fortin G, Goridis C (2009) Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci 29:14836–14846PubMedGoogle Scholar
  75. 75.
    Duprat F, Girard C, Jarretou G, Lazdunski M (2005) Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J Physiol 562:235–244PubMedCentralPubMedGoogle Scholar
  76. 76.
    Duprat F, Lauritzen I, Patel A, Honore E (2007) The TASK background K2P channels: chemo- and nutrient sensors. Trends Neurosci 30:573–580PubMedGoogle Scholar
  77. 77.
    Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–5471PubMedCentralPubMedGoogle Scholar
  78. 78.
    Ehling P, Bittner S, Bobak N, Schwarz T, Wiendl H, Budde T, Kleinschnitz C, Meuth SG (2010) Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9). Exp Transl Stroke Med 2:14PubMedCentralPubMedGoogle Scholar
  79. 79.
    Ehling P, Cerina M, Budde T, Meuth SG, Bittner S (2014) The CNS under pathophysiologic attack-examining the role of K channels. Pflugers Arch. doi: 10.1007/s00424-014-1664-2
  80. 80.
    Eikermann-Haerter K, Ayata C (2010) Cortical spreading depression and migraine. Curr Neurol Neurosci Rep 10:167–173PubMedGoogle Scholar
  81. 81.
    Enyeart JA, Danthi SJ, Enyeart JJ (2004) TREK-1 K+ channels couple angiotensin II receptors to membrane depolarization and aldosterone secretion in bovine adrenal glomerulosa cells. Am J Physiol Endocrinol Metab 287:E1154–E1165PubMedGoogle Scholar
  82. 82.
    Enyeart JJ (2005) Biochemical and Ionic signaling mechanisms for ACTH-stimulated cortisol production. Vitam Horm 70:265–279PubMedGoogle Scholar
  83. 83.
    Enyedi P, Braun G, Czirjak G (2012) TRESK: the lone ranger of two-pore domain potassium channels. Mol Cell Endocrinol 353:75–81PubMedGoogle Scholar
  84. 84.
    Enyedi P, Czirjak G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605PubMedGoogle Scholar
  85. 85.
    Enyedi P, Czirjak G (2014) Properties, regulation, pharmacology, and functions of the K channel, TRESK. Pflugers Arch. doi: 10.1007/s00424-014-1634-8
  86. 86.
    Es-Salah-Lamoureux Z, Steele DF, Fedida D (2010) Research into the therapeutic roles of two-pore-domain potassium channels. Trends Pharmacol Sci 31:587–595PubMedGoogle Scholar
  87. 87.
    Feliciangeli S, Bendahhou S, Sandoz G, Gounon P, Reichold M, Warth R, Lazdunski M, Barhanin J, Lesage F (2007) Does sumoylation control K2P1/TWIK1 background K+ channels? Cell 130:563–569PubMedGoogle Scholar
  88. 88.
    Feliciangeli S, Chatelain FC, Bichet D, Lesage F (2015) The family of K2P channels: salient structural and functional properties. J Physiol. doi: 10.1113/jphysiol.2014.287268
  89. 89.
    Feliciangeli S, Tardy MP, Sandoz G, Chatelain FC, Warth R, Barhanin J, Bendahhou S, Lesage F (2010) Potassium channel silencing by constitutive endocytosis and intracellular sequestration. J Biol Chem 285:4798–4805PubMedCentralPubMedGoogle Scholar
  90. 90.
    Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, Lazdunski M (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J 15:6854–6862PubMedCentralPubMedGoogle Scholar
  91. 91.
    Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (1998) A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J 17:3297–3308PubMedCentralPubMedGoogle Scholar
  92. 92.
    Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9:370–386PubMedGoogle Scholar
  93. 93.
    Franks NP, Lieb WR (1988) Volatile general anaesthetics activate a novel neuronal K+ current. Nature 333:662–664PubMedGoogle Scholar
  94. 94.
    Friedrich C, Rinne S, Zumhagen S, Kiper AK, Silbernagel N, Netter MF, Stallmeyer B, Schulze-Bahr E, Decher N (2014) Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder. EMBO Mol Med 6:937–951PubMedCentralPubMedGoogle Scholar
  95. 95.
    Garry A, Fromy B, Blondeau N, Henrion D, Brau F, Gounon P, Guy N, Heurteaux C, Lazdunski M, Saumet JL (2007) Altered acetylcholine, bradykinin and cutaneous pressure-induced vasodilation in mice lacking the TREK1 potassium channel: the endothelial link. EMBO Rep 8:354–359PubMedCentralPubMedGoogle Scholar
  96. 96.
    Gestreau C, Heitzmann D, Thomas J, Dubreuil V, Bandulik S, Reichold M, Bendahhou S, Pierson P, Sterner C, Peyronnet-Roux J, Benfriha C, Tegtmeier I, Ehnes H, Georgieff M, Lesage F, Brunet JF, Goridis C, Warth R, Barhanin J (2010) Task2 potassium channels set central respiratory CO2 and O2 sensitivity. Proc Natl Acad Sci U S A 107:2325–2330PubMedCentralPubMedGoogle Scholar
  97. 97.
    Girard C, Duprat F, Terrenoire C, Tinel N, Fosset M, Romey G, Lazdunski M, Lesage F (2001) Genomic and functional characteristics of novel human pancreatic 2P domain K+ channels. Biochem Biophys Res Commun 282:249–256PubMedGoogle Scholar
  98. 98.
    Göb E, Bittner S, Bobak N, Kraft P, Gobel K, Langhauser F, Homola GA, Brede M, Budde T, Meuth SG, Kleinschnitz C (2014) The two-pore domain potassium channel KCNK5 deteriorates outcome in ischemic neurodegeneration. Pflugers ArchGoogle Scholar
  99. 99.
    Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184PubMedGoogle Scholar
  100. 100.
    Goldstein SA, Price LA, Rosenthal DN, Pausch MH (1996) ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:13256–13261PubMedCentralPubMedGoogle Scholar
  101. 101.
    Goldstein SA, Wang KW, Ilan N, Pausch MH (1998) Sequence and function of the two P domain potassium channels: implications of an emerging superfamily. J Mol Med (Berl) 76:13–20Google Scholar
  102. 102.
    Gonzalez C, Baez-Nieto D, Valencia I, Oyarzun I, Rojas P, Naranjo D, Latorre R (2012) K+ channels: function-structural overview. Comp Physiol 2:2087–2149Google Scholar
  103. 103.
    Gonzalez W, Valdebenito B, Caballero J, Riadi G, Riedelsberger J, Martinez G, Ramirez D, Zuniga L, Sepulveda FV, Dreyer I, Janta M, Becker D (2014) K channels in plants and animals. Pflugers ArchGoogle Scholar
  104. 104.
    Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP (2004) Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 65:443–452PubMedGoogle Scholar
  105. 105.
    Gu W, Schlichthorl G, Hirsch JR, Engels H, Karschin C, Karschin A, Derst C, Steinlein OK, Daut J (2002) Expression pattern and functional characteristics of two novel splice variants of the two-pore-domain potassium channel TREK-2. J Physiol 539:657–668PubMedCentralPubMedGoogle Scholar
  106. 106.
    Gulbis JM, Doyle DA (2004) Potassium channel structures: do they conform? Curr Opin Struct Biol 14:440–446PubMedGoogle Scholar
  107. 107.
    Gurney A, Manoury B (2009) Two-pore potassium channels in the cardiovascular system. Eur Biophys J 38:305–318PubMedGoogle Scholar
  108. 108.
    Gurney AM, Osipenko ON, MacMillan D, McFarlane KM, Tate RJ, Kempsill FE (2003) Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells. Circ Res 93:957–964PubMedGoogle Scholar
  109. 109.
    Guyenet PG, Bayliss DA, Stornetta RL, Fortuna MG, Abbott SB, DePuy SD (2009) Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respir Physiol Neurobiol 168:59–68PubMedCentralPubMedGoogle Scholar
  110. 110.
    Guyenet PG, Stornetta RL, Bayliss DA (2008) Retrotrapezoid nucleus and central chemoreception. J Physiol 586:2043–2048PubMedCentralPubMedGoogle Scholar
  111. 111.
    Han J, Gnatenco C, Sladek CD, Kim D (2003) Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus. J Physiol 546:625–639PubMedCentralPubMedGoogle Scholar
  112. 112.
    Han J, Kang D, Kim D (2003) Functional properties of four splice variants of a human pancreatic tandem-pore K+ channel, TALK-1. Am J Physiol Cell Physiol 285:C529–C538Google Scholar
  113. 113.
    Hayoz S, Bychkov R, Serir K, Docquier M, Beny JL (2009) Purinergic activation of a leak potassium current in freshly dissociated myocytes from mouse thoracic aorta. Acta Physiol (Oxf) 195:247–258Google Scholar
  114. 114.
    Heitzmann D, Derand R, Jungbauer S, Bandulik S, Sterner C, Schweda F, El Wakil A, Lalli E, Guy N, Mengual R, Reichold M, Tegtmeier I, Bendahhou S, Gomez-Sanchez CE, Aller MI, Wisden W, Weber A, Lesage F, Warth R, Barhanin J (2008) Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO J 27:179–187PubMedCentralPubMedGoogle Scholar
  115. 115.
    Heitzmann D, Warth R (2008) Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 88:1119–1182PubMedGoogle Scholar
  116. 116.
    Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695PubMedCentralPubMedGoogle Scholar
  117. 117.
    Hille B (2001) Ion channels of excitable membranes, 3rd edition edn. Sinauer, SunderlandGoogle Scholar
  118. 118.
    Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116:473–496PubMedCentralPubMedGoogle Scholar
  119. 119.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedCentralPubMedGoogle Scholar
  120. 120.
    Honore E (2008) Alternative translation initiation further increases the molecular and functional diversity of ion channels. J Physiol 586:5605–5606PubMedCentralPubMedGoogle Scholar
  121. 121.
    Honoré E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261PubMedGoogle Scholar
  122. 122.
    Honore E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K+ channel TREK-1. EMBO J 21:2968–2976PubMedCentralPubMedGoogle Scholar
  123. 123.
    Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417:523–526PubMedGoogle Scholar
  124. 124.
    Kang D, Choe C, Kim D (2005) Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J Physiol 564:103–116PubMedCentralPubMedGoogle Scholar
  125. 125.
    Kang D, Kim D (2004) Single-channel properties and pH sensitivity of two-pore domain K+ channels of the TALK family. Biochem Biophys Res Commun 315:836–844PubMedGoogle Scholar
  126. 126.
    Kang D, Kim D (2006) TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons. Am J Physiol Cell Physiol 291:C138–C146PubMedGoogle Scholar
  127. 127.
    Kang D, Mariash E, Kim D (2004) Functional expression of TRESK-2, a new member of the tandem-pore K+ channel family. J Biol Chem 279:28063–28070PubMedGoogle Scholar
  128. 128.
    Karschin C, Wischmeyer E, Preisig-Müller R, Rajan S, Derst C, Grzeschik KH, Daut J, Karschin A (2001) Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K+ channel subunit, TASK-5, associated with the central auditory nervous system. Mol Cell Neurosci 18:632–648PubMedGoogle Scholar
  129. 129.
    Kilisch M, Lytovchenko O, Schwappach B, Renigunta V, Daut J (2015) The role of protein-protein interactions in the intracellular traffic of the potassium channels TASK-1 and TASK-3. Pflugers Arch. doi: 10.1007/s00424-014-1672-2
  130. 130.
    Kim D (1992) A mechanosensitive K+ channel in heart cells. Activation by arachidonic acid. J Gen Physiol 100:1021–1040PubMedGoogle Scholar
  131. 131.
    Kim D (2005) Physiology and pharmacology of two-pore domain potassium channels. Curr Pharm Des 11:2717–2736PubMedGoogle Scholar
  132. 132.
    Kim D, Cavanaugh EJ, Kim I, Carroll JL (2009) Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells. J Physiol 587:2963–2975PubMedCentralPubMedGoogle Scholar
  133. 133.
    Kim D, Clapham DE (1989) Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. Science 244:1174–1176PubMedGoogle Scholar
  134. 134.
    Kim D, Gnatenco C (2001) TASK-5, a new member of the tandem-pore K+ channel family. Biochem Biophys Res Commun 284:923–930PubMedGoogle Scholar
  135. 135.
    Kim D, Kang D (2014) Role of K channels in stimulus-secretion coupling. Pflugers Arch. doi: 10.1007/s00424-014-1663-3
  136. 136.
    Kim D, Kim I, Papreck JR, Donnelly DF, Carroll JL (2011) Characterization of an ATP-sensitive K+ channel in rat carotid body glomus cells. Respir Physiol Neurobiol 177:247–255Google Scholar
  137. 137.
    Kim Y, Bang H, Gnatenco C, Kim D (2001) Synergistic interaction and the role of C-terminus in the activation of TRAAK K+ channels by pressure, free fatty acids and alkali. Pflugers Arch 442:64–72PubMedGoogle Scholar
  138. 138.
    Kim Y, Bang H, Kim D (2000) TASK-3, a new member of the tandem pore K+ channel family. J Biol Chem 275:9340–9347PubMedGoogle Scholar
  139. 139.
    Kim Y, Bang H, Kim D (1999) TBAK-1 and TASK-1, two-pore K+ channel subunits: kinetic properties and expression in rat heart. Am J Physiol 277:H1669–H1678Google Scholar
  140. 140.
    Kim Y, Gnatenco C, Bang H, Kim D (2001) Localization of TREK-2 K+ channel domains that regulate channel kinetics and sensitivity to pressure, fatty acids and pHi. Pflugers Arch 442:952–960PubMedGoogle Scholar
  141. 141.
    Kiper AK, Rinne S, Rolfes C, Ramirez D, Seebohm G, Netter MF, Gonzalez W, Decher N (2014) Kv1.5 blockers preferentially inhibit TASK-1 channels: TASK-1 as a target against atrial fibrillation and obstructive sleep apnea? Pflugers Arch. doi: 10.1007/s00424-014-1665-1
  142. 142.
    Klein M, Kandel ER (1980) Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia. Proc Natl Acad Sci U S A 77:6912–6916PubMedCentralPubMedGoogle Scholar
  143. 143.
    Klein M, Shapiro E, Kandel ER (1980) Synaptic plasticity and the modulation of the Ca2+ current. J Exp Biol 89:117–157PubMedGoogle Scholar
  144. 144.
    Kobertz WR, Williams C, Miller C (2000) Hanging gondola structure of the T1 domain in a voltage-gated K+ channel. Biochemistry 39:10347–10352Google Scholar
  145. 145.
    Koh DS, Jonas P, Brau ME, Vogel W (1992) A TEA-insensitive flickering potassium channel active around the resting potential in myelinated nerve. J Membr Biol 130:149–162PubMedGoogle Scholar
  146. 146.
    Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37PubMedGoogle Scholar
  147. 147.
    Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926PubMedGoogle Scholar
  148. 148.
    L'Hoste S, Barriere H, Belfodil R, Rubera I, Duranton C, Tauc M, Poujeol C, Barhanin J, Poujeol P (2007) Extracellular pH alkalinization by Cl-/HCO3- exchanger is crucial for TASK2 activation by hypotonic shock in proximal cell lines from mouse kidney. Am J Physiol Renal Physiol 292:F628–F638PubMedGoogle Scholar
  149. 149.
    Lafreniere RG, Cader MZ, Poulin JF, Andres-Enguix I, Simoneau M, Gupta N, Boisvert K, Lafreniere F, McLaughlan S, Dube MP, Marcinkiewicz MM, Ramagopalan S, Ansorge O, Brais B, Sequeiros J, Pereira-Monteiro JM, Griffiths LR, Tucker SJ, Ebers G, Rouleau GA (2010) A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med 16:1157–1160PubMedGoogle Scholar
  150. 150.
    Lafreniere RG, Rouleau GA (2011) Migraine: role of the TRESK two-pore potassium channel. Int J Biochem Cell Biol 43:1533–1536PubMedGoogle Scholar
  151. 151.
    Lee AG (2011) Biological membranes: the importance of molecular detail. Trends Biochem Sci 36:493–500PubMedGoogle Scholar
  152. 152.
    Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40PubMedGoogle Scholar
  153. 153.
    Lesage F, Barhanin J (2011) Molecular physiology of pH-sensitive background K2P channels. Physiology (Bethesda) 26:424–437Google Scholar
  154. 154.
    Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004–1011PubMedCentralPubMedGoogle Scholar
  155. 155.
    Lesage F, Terrenoire C, Romey G, Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275:28398–28405PubMedGoogle Scholar
  156. 156.
    Li XT, Dyachenko V, Zuzarte M, Putzke C, Preisig-Müller R, Isenberg G, Daut J (2006) The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovasc Res 69:86–97Google Scholar
  157. 157.
    Liu C, Au JD, Zou HL, Cotten JF, Yost CS (2004) Potent activation of the human tandem pore domain K channel TRESK with clinical concentrations of volatile anesthetics. Anesth Analg 99:1715–1722, table of contentsPubMedGoogle Scholar
  158. 158.
    Lolicato M, Riegelhaupt PM, Arrigoni C, Clark KA, Minor DL Jr (2014) Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K(2P) channels. Neuron 84:1198–1212PubMedGoogle Scholar
  159. 159.
    Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903PubMedGoogle Scholar
  160. 160.
    Lopes CM, Gallagher PG, Buck ME, Butler MH, Goldstein SA (2000) Proton block and voltage gating are potassium-dependent in the cardiac leak channel KCNK3. J Biol Chem 275:16969–16978PubMedGoogle Scholar
  161. 161.
    Lopes CM, Zilberberg N, Goldstein SA (2001) Block of Kcnk3 by protons. Evidence that 2-P-domain potassium channel subunits function as homodimers. J Biol Chem 276:24449–24452PubMedGoogle Scholar
  162. 162.
    Lopez-Cayuqueo KI, Pena-Munzenmayer G, Niemeyer MI, Sepulveda FV, Cid LP (2014) TASK-2 K K channel: thoughts about gating and its fitness to physiological function. Pflugers Arch. doi: 10.1007/s00424-014-1627-7
  163. 163.
    Ma L, Xie YP, Zhou M, Chen H (2012) Silent TWIK-1 potassium channels conduct monovalent cation currents. Biophys J 102:L34–L36PubMedCentralPubMedGoogle Scholar
  164. 164.
    Ma L, Zhang X, Zhou M, Chen H (2012) Acid-sensitive TWIK and TASK two-pore domain potassium channels change ion selectivity and become permeable to sodium in extracellular acidification. J Biol Chem 287:37145–37153PubMedCentralPubMedGoogle Scholar
  165. 165.
    MacKenzie G, Franks NP, Brickley SG (2014) Two-pore domain potassium channels enable action potential generation in the absence of voltage-gated potassium channels. Pflugers Arch. doi: 10.1007/s00424-014-1660-6
  166. 166.
    Maingret F, Fosset M, Lesage F, Lazdunski M, Honore E (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381–1387PubMedGoogle Scholar
  167. 167.
    Maingret F, Honore E, Lazdunski M, Patel AJ (2002) Molecular basis of the voltage-dependent gating of TREK-1, a mechano-sensitive K+ channel. Biochem Biophys Res Commun 292:339–346PubMedGoogle Scholar
  168. 168.
    Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696PubMedGoogle Scholar
  169. 169.
    Manoury B, Lamalle C, Oliveira R, Reid J, Gurney AM (2011) Contractile and electrophysiological properties of pulmonary artery smooth muscle are not altered in TASK-1 knockout mice. J Physiol 589:3231–3246PubMedCentralPubMedGoogle Scholar
  170. 170.
    Mant A, Elliott D, Eyers PA, O'Kelly IM (2011) Protein kinase A is central for forward transport of two-pore domain potassium channels K2P3.1 and K2P9.1. J Biol Chem 286:14110–14119PubMedCentralPubMedGoogle Scholar
  171. 171.
    Mathie A (2007) Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 578:377–385PubMedCentralPubMedGoogle Scholar
  172. 172.
    Mathie A, Al-Moubarak E, Veale EL (2010) Gating of two pore domain potassium channels. J Physiol 588:3149–3156PubMedCentralPubMedGoogle Scholar
  173. 173.
    Mathie A, Veale EL (2014) Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. Pflugers Arch. doi: 10.1007/s00424-014-1655-3
  174. 174.
    Mazella J, Petrault O, Lucas G, Deval E, Beraud-Dufour S, Gandin C, El-Yacoubi M, Widmann C, Guyon A, Chevet E, Taouji S, Conductier G, Corinus A, Coppola T, Gobbi G, Nahon JL, Heurteaux C, Borsotto M (2010) Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLoS Biol 8:e1000355PubMedCentralPubMedGoogle Scholar
  175. 175.
    Meuth SG, Aller MI, Munsch T, Schuhmacher T, Seidenbecher T, Meuth P, Kleinschnitz C, Pape HC, Wiendl H, Wisden W, Budde T (2006) The contribution of TWIK-related acid-sensitive K + -containing channels to the function of dorsal lateral geniculate thalamocortical relay neurons. Mol Pharmacol 69:1468–1476PubMedGoogle Scholar
  176. 176.
    Meuth SG, Bittner S, Meuth P, Simon OJ, Budde T, Wiendl H (2008) TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 critically influence T lymphocyte effector functions. J Biol Chem 283:14559–14570Google Scholar
  177. 177.
    Meuth SG, Budde T, Kanyshkova T, Broicher T, Munsch T, Pape HC (2003) Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosci 23:6460–6469PubMedGoogle Scholar
  178. 178.
    Meuth SG, Kanyshkova T, Meuth P, Landgraf P, Munsch T, Ludwig A, Hofmann F, Pape HC, Budde T (2006) Membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels. J Neurophysiol 96:1517–1529PubMedGoogle Scholar
  179. 179.
    Meuth SG, Kleinschnitz C, Broicher T, Austinat M, Braeuninger S, Bittner S, Fischer S, Bayliss DA, Budde T, Stoll G, Wiendl H (2009) The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. Neurobiol Dis 33:1–11PubMedCentralPubMedGoogle Scholar
  180. 180.
    Millar JA, Barratt L, Southan AP, Page KM, Fyffe RE, Robertson B, Mathie A (2000) A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc Natl Acad Sci U S A 97:3614–3618PubMedCentralPubMedGoogle Scholar
  181. 181.
    Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335:432–436PubMedGoogle Scholar
  182. 182.
    Morton MJ, O'Connell AD, Sivaprasadarao A, Hunter M (2003) Determinants of pH sensing in the two-pore domain K(+) channels TASK-1 and -2. Pflugers Arch 445:577–583PubMedGoogle Scholar
  183. 183.
    Mu D, Chen L, Zhang X, See LH, Koch CM, Yen C, Tong JJ, Spiegel L, Nguyen KC, Servoss A, Peng Y, Pei L, Marks JR, Lowe S, Hoey T, Jan LY, McCombie WR, Wigler MH, Powers S (2003) Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3:297–302PubMedGoogle Scholar
  184. 184.
    Mulkey DK, Talley EM, Stornetta RL, Siegel AR, West GH, Chen X, Sen N, Mistry AM, Guyenet PG, Bayliss DA (2007) TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. J Neurosci 27:14049–14058PubMedGoogle Scholar
  185. 185.
    Murbartian J, Lei Q, Sando JJ, Bayliss DA (2005) Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels. J Biol Chem 280:30175–30184PubMedGoogle Scholar
  186. 186.
    Musset B, Meuth SG, Liu GX, Derst C, Wegner S, Pape HC, Budde T, Preisig-Muller R, Daut J (2006) Effects of divalent cations and spermine on the K+ channel TASK-3 and on the outward current in thalamic neurons. J Physiol 572:639–657PubMedCentralPubMedGoogle Scholar
  187. 187.
    Nagaraj C, Tang B, Balint Z, Wygrecka M, Hrzenjak A, Kwapiszewska G, Stacher E, Lindenmann J, Weir EK, Olschewski H, Olschewski A (2012) Src tyrosine kinase is crucial for potassium channel function in human pulmonary arteries. Eur Respir JGoogle Scholar
  188. 188.
    Niemeyer MI, Cid LP, Pena-Munzenmayer G, Sepulveda FV (2010) Separate gating mechanisms mediate the regulation of K2P potassium channel TASK-2 by intra- and extracellular pH. J Biol Chem 285:16467–16475PubMedCentralPubMedGoogle Scholar
  189. 189.
    Niemeyer MI, Gonzalez-Nilo FD, Zuniga L, Gonzalez W, Cid LP, Sepulveda FV (2007) Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel. Proc Natl Acad Sci U S A 104:666–671PubMedCentralPubMedGoogle Scholar
  190. 190.
    Nilius B, Honore E (2012) Sensing pressure with ion channels. Trends NeurosciGoogle Scholar
  191. 191.
    Nishida M, Cadene M, Chait BT, MacKinnon R (2007) Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J 26:4005–4015PubMedCentralPubMedGoogle Scholar
  192. 192.
    Nishida M, MacKinnon R (2002) Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell 111:957–965PubMedGoogle Scholar
  193. 193.
    Noel J, Sandoz G, Lesage F (2011) Molecular regulations governing TREK and TRAAK channel functions. Channels (Austin) 5:402–409Google Scholar
  194. 194.
    O'Kelly I (2014) Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K2P) channels. Pflügers Archiv Eur J PhysiolGoogle Scholar
  195. 195.
    O'Kelly I, Butler MH, Zilberberg N, Goldstein SA (2002) Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111:577–588PubMedGoogle Scholar
  196. 196.
    Olschewski A, Li Y, Tang B, Hanze J, Eul B, Bohle RM, Wilhelm J, Morty RE, Brau ME, Weir EK, Kwapiszewska G, Klepetko W, Seeger W, Olschewski H (2006) Impact of TASK-1 in human pulmonary artery smooth muscle cells. Circ Res 98:1072–1080PubMedGoogle Scholar
  197. 197.
    Orias M, Velazquez H, Tung F, Lee G, Desir GV (1997) Cloning and localization of a double-pore K channel, KCNK1: exclusive expression in distal nephron segments. Am J Physiol 273:F663–F666PubMedGoogle Scholar
  198. 198.
    Ozaita A, Vega-Saenz de Miera E (2002) Cloning of two transcripts, HKT4.1a and HKT4.1b, from the human two-pore K+ channel gene KCNK4. Chromosomal localization, tissue distribution and functional expression. Brain Res Mol Brain Res 102:18–27PubMedGoogle Scholar
  199. 199.
    Pang DS, Robledo CJ, Carr DR, Gent TC, Vyssotski AL, Caley A, Zecharia AY, Wisden W, Brickley SG, Franks NP (2009) An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proc Natl Acad Sci U S A 106:17546–17551PubMedCentralPubMedGoogle Scholar
  200. 200.
    Panyi G (2005) Biophysical and pharmacological aspects of K+ channels in T lymphocytes. Eur Biophys J 34:515–529PubMedGoogle Scholar
  201. 201.
    Panyi G, Deutsch C (2006) Cross talk between activation and slow inactivation gates of Shaker potassium channels. J Gen Physiol 128:547–559PubMedCentralPubMedGoogle Scholar
  202. 202.
    Panyi G, Sheng Z, Deutsch C (1995) C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys J 69:896–903PubMedCentralPubMedGoogle Scholar
  203. 203.
    Patel AJ, Honore E (2003) 2P domain K+ channels: novel pharmacological targets for volatile general anesthetics. Adv Exp Med Biol 536:9–23PubMedGoogle Scholar
  204. 204.
    Patel AJ, Honore E (2001) Anesthetic-sensitive 2P domain K+ channels. Anesthesiology 95:1013–1021Google Scholar
  205. 205.
    Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426PubMedGoogle Scholar
  206. 206.
    Patel AJ, Honore E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 17:4283–4290PubMedCentralPubMedGoogle Scholar
  207. 207.
    Patel AJ, Maingret F, Magnone V, Fosset M, Lazdunski M, Honore E (2000) TWIK-2, an inactivating 2P domain K+ channel. J Biol Chem 275:28722–28730PubMedGoogle Scholar
  208. 208.
    Patel SK, Jackson L, Warren AY, Arya P, Shaw RW, Khan RN (2013) A role for two-pore potassium (K2P) channels in endometrial epithelial function. J Cell Mol Med 17:134–146PubMedCentralPubMedGoogle Scholar
  209. 209.
    Pegan S, Arrabit C, Slesinger PA, Choe S (2006) Andersen's syndrome mutation effects on the structure and assembly of the cytoplasmic domains of Kir2.1. Biochemistry 45:8599–8606PubMedGoogle Scholar
  210. 210.
    Pegan S, Arrabit C, Zhou W, Kwiatkowski W, Collins A, Slesinger PA, Choe S (2005) Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8:279–287PubMedGoogle Scholar
  211. 211.
    Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, Hoey T (2003) Oncogenic potential of TASK3 (KCNK9) depends on K+ channel function. Proc Natl Acad Sci U S A 100:7803–7807PubMedCentralPubMedGoogle Scholar
  212. 212.
    Penton D, Bandulik S, Schweda F, Haubs S, Tauber P, Reichold M, Cong LD, El Wakil A, Budde T, Lesage F, Lalli E, Zennaro MC, Warth R, Barhanin J (2012) Task3 potassium channel gene invalidation causes low Renin and salt-sensitive arterial hypertension. Endocrinology 153:4740–4748PubMedGoogle Scholar
  213. 213.
    Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Ehrlich G, Andres-Enguix I, Fritzenschaft H, Decher N, Sansom MS, Tucker SJ, Baukrowitz T (2011) The pore structure and gating mechanism of K2P channels. EMBO J 30:3607–3619PubMedCentralPubMedGoogle Scholar
  214. 214.
    Plant LD, Dementieva IS, Kollewe A, Olikara S, Marks JD, Goldstein SA (2010) One SUMO is sufficient to silence the dimeric potassium channel K2P1. Proc Natl Acad Sci U S A 107:10743–10748PubMedCentralPubMedGoogle Scholar
  215. 215.
    Pountney DJ, Gulkarov I, Vega-Saenz de Miera E, Holmes D, Saganich M, Rudy B, Artman M, Coetzee WA (1999) Identification and cloning of TWIK-originated similarity sequence (TOSS): a novel human 2-pore K+ channel principal subunit. FEBS Lett 450:191–196Google Scholar
  216. 216.
    Putzke C, Wemhöner K, Sachse FB, Rinné S, Schlichthörl G, Li XT, Jae L, Eckhardt I, Wischmeyer E, Wulf H, Preisig-Müller R, Daut J, Decher N (2007) The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res 75:59–68PubMedGoogle Scholar
  217. 217.
    Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA (2005) Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121:37–47PubMedGoogle Scholar
  218. 218.
    Rajan S, Preisig-Müller R, Wischmeyer E, Nehring R, Hanley PJ, Renigunta V, Musset B, Schlichthörl G, Derst C, Karschin A, Daut J (2002) Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol 545:13–26PubMedCentralPubMedGoogle Scholar
  219. 219.
    Rajan S, Wischmeyer E, Karschin C, Preisig-Muller R, Grzeschik KH, Daut J, Karschin A, Derst C (2001) THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem 276:7302–7311PubMedGoogle Scholar
  220. 220.
    Rajan S, Wischmeyer E, Liu GX, Preisig-Müller R, Daut J, Karschin A, Derst C (2000) TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histidine as pH sensor. J Biol Chem 275:16650–16657PubMedGoogle Scholar
  221. 221.
    Rapedius M, Schmidt MR, Sharma C, Stansfeld PJ, Sansom MS, Baukrowitz T, Tucker SJ (2012) State-independent intracellular access of quaternary ammonium blockers to the pore of TREK-1. Channels (Austin) 6:473–478Google Scholar
  222. 222.
    Renigunta V, Fischer T, Zuzarte M, Kling S, Zou X, Siebert K, Limberg MM, Rinne S, Decher N, Schlichthörl G, Daut J (2014) Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1. Mol Biol Cell 25:1877–1891PubMedCentralPubMedGoogle Scholar
  223. 223.
    Renigunta V, Yuan H, Zuzarte M, Rinné S, Koch A, Wischmeyer E, Schlichthörl G, Gao Y, Karschin A, Jacob R, Schwappach B, Daut J, Preisig-Müller R (2006) The retention factor p11 confers an endoplasmic reticulum-localization signal to the potassium channel TASK-1. Traffic 7:168–181PubMedGoogle Scholar
  224. 224.
    Renigunta V, Zou X, Kling S, Schlichthorl G, Daut J (2013) Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2. Pflugers Arch (published online 03 Dec 2013)Google Scholar
  225. 225.
    Renigunta V, Zou X, Kling S, Schlichthorl G, Daut J (2014) Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2. Pflugers Arch 466:1735–1745PubMedGoogle Scholar
  226. 226.
    Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, Lazdunski M (1998) Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J Biol Chem 273:30863–30869PubMedGoogle Scholar
  227. 227.
    Rinne S, Kiper AK, Schlichthörl G, Dittmann S, Netter MF, Limberg SH, Silbernagel N, Zuzarte M, Moosdorf R, Wulf H, Schulze-Bahr E, Rolfes C, Decher N (2015) TASK-1 and TASK-3 may form heterodimers in human atrial cardiomyocytes. J Mol Cell Cardiol 81C:71–80Google Scholar
  228. 228.
    Rinné S, Renigunta V, Schlichthörl G, Zuzarte M, Bittner S, Meuth SG, Decher N, Daut J, Preisig-Müller R (2014) A splice variant of the two-pore domain potassium channel TREK-1 with only one pore domain reduces the surface expression of full-length TREK-1 channels. Pflugers Arch 466:1559–1570PubMedGoogle Scholar
  229. 229.
    Roth R, Gillespie D, Nonner W, Eisenberg RE (2008) Bubbles, gating, and anesthetics in ion channels. Biophys J 94:4282–4298PubMedCentralPubMedGoogle Scholar
  230. 230.
    Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24:517–526PubMedGoogle Scholar
  231. 231.
    Salinas M, Reyes R, Lesage F, Fosset M, Heurteaux C, Romey G, Lazdunski M (1999) Cloning of a new mouse two-P domain channel subunit and a human homologue with a unique pore structure. J Biol Chem 274:11751–11760PubMedGoogle Scholar
  232. 232.
    Salkoff L, Butler A, Fawcett G, Kunkel M, McArdle C, Paz-y-Mino G, Nonet M, Walton N, Wang ZW, Yuan A, Wei A (2001) Evolution tunes the excitability of individual neurons. Neuroscience 103:853–859PubMedGoogle Scholar
  233. 233.
    Salkoff L, Jegla T (1995) Surfing the DNA databases for K+ channels nets yet more diversity. Neuron 15:489–492PubMedGoogle Scholar
  234. 234.
    Salkoff L, Wei AD, Baban B, Butler A, Fawcett G, Ferreira G, Santi CM (2005) Potassium channels in C. elegans. WormBook:1-15Google Scholar
  235. 235.
    Sandoz G, Bell SC, Isacoff EY (2011) Optical probing of a dynamic membrane interaction that regulates the TREK1 channel. Proc Natl Acad Sci U S A 108:2605–2610PubMedCentralPubMedGoogle Scholar
  236. 236.
    Sandoz G, Douguet D, Chatelain F, Lazdunski M, Lesage F (2009) Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc Natl Acad Sci U S A 106:14628–14633PubMedCentralPubMedGoogle Scholar
  237. 237.
    Sandoz G, Tardy MP, Thummler S, Feliciangeli S, Lazdunski M, Lesage F (2008) Mtap2 is a constituent of the protein network that regulates twik-related K+ channel expression and trafficking. J Neurosci 28:8545–8552PubMedGoogle Scholar
  238. 238.
    Sandoz G, Thummler S, Duprat F, Feliciangeli S, Vinh J, Escoubas P, Guy N, Lazdunski M, Lesage F (2006) AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K+ channels into open leak channels. EMBO J 25:5864–5872PubMedCentralPubMedGoogle Scholar
  239. 239.
    Sano Y, Inamura K, Miyake A, Mochizuki S, Kitada C, Yokoi H, Nozawa K, Okada H, Matsushime H, Furuichi K (2003) A novel two-pore domain K+ channel, TRESK, is localized in the spinal cord. J Biol Chem 278:27406–27412PubMedGoogle Scholar
  240. 240.
    Schiekel J, Lindner M, Hetzel A, Wemhöner K, Renigunta V, Schlichthörl G, Decher N, Oliver D, Daut J (2013) The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C. Cardiovasc Res 97:97–105PubMedGoogle Scholar
  241. 241.
    Schiekel J, Lindner M, Hetzel A, Wemhöner K, Renigunta V, Schlichthörl G, Decher N, Oliver D, Daut J (2012) Inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C. Cardiovasc Res (in press)Google Scholar
  242. 242.
    Schmidt D, Cross SR, MacKinnon R (2009) A gating model for the archeal voltage-dependent K(+) channel KvAP in DPhPC and POPE:POPG decane lipid bilayers. J Mol Biol 390:902–912PubMedCentralPubMedGoogle Scholar
  243. 243.
    Schmidt D, MacKinnon R (2008) Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane. Proc Natl Acad Sci U S A 105:19276–19281PubMedCentralPubMedGoogle Scholar
  244. 244.
    Schwingshackl A, Teng B, Ghosh M, West AN, Makena P, Gorantla V, Sinclair SE, Waters CM (2012) Regulation and function of the two-pore-domain (K2P) potassium channel Trek-1 in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 302:L93–L102PubMedCentralPubMedGoogle Scholar
  245. 245.
    Segal-Hayoun Y, Cohen A, Zilberberg N (2010) Molecular mechanisms underlying membrane-potential-mediated regulation of neuronal K2P2.1 channels. Mol Cell Neurosci 43:117–126PubMedGoogle Scholar
  246. 246.
    Segal-Hayoun Y, Cohen A, Zilberberg N Molecular mechanisms underlying membrane-potential-mediated regulation of neuronal K2P2.1 channels. Mol Cell Neurosci 43:117-126Google Scholar
  247. 247.
    Sepulveda FV, Pablo Cid L, Teulon J, Niemeyer MI (2015) Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K + -transport channels. Physiol Rev 95:179–217PubMedGoogle Scholar
  248. 248.
    Simkin D, Cavanaugh EJ, Kim D (2008) Control of the single channel conductance of K2P10.1 (TREK-2) by the amino-terminus: role of alternative translation initiation. J Physiol 586:5651–5663PubMedCentralPubMedGoogle Scholar
  249. 249.
    Sokolova O, Kolmakova-Partensky L, Grigorieff N (2001) Three-dimensional structure of a voltage-gated potassium channel at 2.5 nm resolution. Structure 9:215–220PubMedGoogle Scholar
  250. 250.
    Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 145:47–179PubMedGoogle Scholar
  251. 251.
    Staudacher K, Baldea I, Kisselbach J, Staudacher I, Rahm AK, Schweizer PA, Becker R, Katus HA, Thomas D (2011) Alternative splicing determines mRNA translation initiation and function of human K(2P)10.1 K+ channels. J Physiol 589:3709–3720PubMedCentralPubMedGoogle Scholar
  252. 252.
    Steinberg EA, Wafford KA, Brickley SG, Franks NP, Wisden W (2014) The role of K channels in anaesthesia and sleep. Pflugers Arch. doi: 10.1007/s00424-014-1654-4
  253. 253.
    Streit AK, Netter MF, Kempf F, Walecki M, Rinne S, Bollepalli MK, Preisig-Muller R, Renigunta V, Daut J, Baukrowitz T, Sansom MS, Stansfeld PJ, Decher N (2011) A specific two-pore domain potassium channel blocker defines the structure of the TASK-1 open pore. J Biol Chem 286:13977–13984PubMedCentralPubMedGoogle Scholar
  254. 254.
    Talley EM, Bayliss DA (2002) Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) Potassium Channels. Volatile anesthetics and neurotransmitters share a molecular site of action. J Biol Chem 277:17733–17742PubMedGoogle Scholar
  255. 255.
    Tang B, Li Y, Nagaraj C, Morty RE, Gabor S, Stacher E, Voswinckel R, Weissmann N, Leithner K, Olschewski H, Olschewski A (2009) Endothelin-1 inhibits background two-pore domain channel TASK-1 in primary human pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 41:476–483PubMedGoogle Scholar
  256. 256.
    Tao X, Avalos JL, Chen J, MacKinnon R (2009) Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science 326:1668–1674PubMedCentralPubMedGoogle Scholar
  257. 257.
    Tao X, MacKinnon R (2008) Functional analysis of Kv1.2 and paddle chimera Kv channels in planar lipid bilayers. J Mol Biol 382:24–33PubMedCentralPubMedGoogle Scholar
  258. 258.
    Teng J, Loukin S, Anishkin A, Kung C (2015) The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch 467:27–37PubMedGoogle Scholar
  259. 259.
    Terrenoire C, Lauritzen I, Lesage F, Romey G, Lazdunski M (2001) A TREK-1-like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics. Circ Res 89:336–342PubMedGoogle Scholar
  260. 260.
    Theilig F, Goranova I, Hirsch JR, Wieske M, Unsal S, Bachmann S, Veh RW, Derst C (2008) Cellular localization of THIK-1 (K2P13.1) and THIK-2 (K2P12.1) K+ channels in the mammalian kidney. Cell Physiol Biochem 21:63–74PubMedGoogle Scholar
  261. 261.
    Thomas D, Plant LD, Wilkens CM, McCrossan ZA, Goldstein SA (2008) Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium. Neuron 58:859–870PubMedCentralPubMedGoogle Scholar
  262. 262.
    Veale EL, Buswell R, Clarke CE, Mathie A (2007) Identification of a region in the TASK3 two pore domain potassium channel that is critical for its blockade by methanandamide. Br J Pharmacol 152:778–786PubMedCentralPubMedGoogle Scholar
  263. 263.
    Veale EL, Hassan M, Walsh Y, Al-Moubarak E, Mathie A (2014) Recovery of current through mutated TASK3 potassium channels underlying Birk Barel syndrome. Mol Pharmacol 85:397–407PubMedGoogle Scholar
  264. 264.
    Veale EL, Rees KA, Mathie A, Trapp S (2010) Dominant negative effects of a non-conducting TREK1 splice variant expressed in brain. J Biol Chem 285:29295–29304PubMedCentralPubMedGoogle Scholar
  265. 265.
    Wang W, Putra A, Schools GP, Ma B, Chen H, Kaczmarek LK, Barhanin J, Lesage F, Zhou M (2013) The contribution of TWIK-1 channels to astrocyte K+ current is limited by retention in intracellular compartments. Front Cell Neurosci 7:246PubMedCentralPubMedGoogle Scholar
  266. 266.
    Wareing M, Bai X, Seghier F, Turner CM, Greenwood SL, Baker PN, Taggart MJ, Fyfe GK (2006) Expression and function of potassium channels in the human placental vasculature. Am J Physiol Regul Integr Comp Physiol 291:R437–R446PubMedGoogle Scholar
  267. 267.
    Warth R, Barriere H, Meneton P, Bloch M, Thomas J, Tauc M, Heitzmann D, Romeo E, Verrey F, Mengual R, Guy N, Bendahhou S, Lesage F, Poujeol P, Barhanin J (2004) Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci U S A 101:8215–8220Google Scholar
  268. 268.
    Wei A, Jegla T, Salkoff L (1996) Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35:805–829PubMedGoogle Scholar
  269. 269.
    Wilke BU, Lindner M, Greifenberg L, Albus A, Kronimus Y, Bünemann M, Leitner MG, Oliver D (2014) Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors. Nat Commun 5:5540PubMedGoogle Scholar
  270. 270.
    Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM, Marmorstein AD, Bae YC, Park JY, Lee CJ (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151:25–40PubMedGoogle Scholar
  271. 271.
    Yeom M, Shim I, Lee HJ, Hahm DH (2005) Proteomic analysis of nicotine-associated protein expression in the striatum of repeated nicotine-treated rats. Biochem Biophys Res Commun 326:321–328PubMedGoogle Scholar
  272. 272.
    Yoo S, Liu J, Sabbadini M, Au P, Xie GX, Yost CS (2009) Regional expression of the anesthetic-activated potassium channel TRESK in the rat nervous system. Neurosci Lett 465:79–84PubMedCentralPubMedGoogle Scholar
  273. 273.
    Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA (2005) Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 57:387–395PubMedGoogle Scholar
  274. 274.
    Yuill KH, Stansfeld PJ, Ashmole I, Sutcliffe MJ, Stanfield PR (2007) The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1: contributions of the pore domains. Pflugers Arch 455:333–348PubMedCentralPubMedGoogle Scholar
  275. 275.
    Zanzouri M, Lauritzen I, Duprat F, Mazzuca M, Lesage F, Lazdunski M, Patel A (2006) Membrane potential-regulated transcription of the resting K+ conductance TASK-3 via the calcineurin pathway. J Biol Chem 281:28910–28918PubMedGoogle Scholar
  276. 276.
    Zanzouri M, Lauritzen I, Lazdunski M, Patel A (2006) The background K+ channel TASK-3 is regulated at both the transcriptional and post-transcriptional levels. Biochem Biophys Res Commun 348:1350–1357PubMedGoogle Scholar
  277. 277.
    Zhao KQ, Xiong G, Wilber M, Cohen NA, Kreindler JL (2012) A role for two-pore K(+) channels in modulating Na(+) absorption and Cl(-) secretion in normal human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 302:L4–L12PubMedCentralPubMedGoogle Scholar
  278. 278.
    Zhou M, Xu G, Xie M, Zhang X, Schools GP, Ma L, Kimelberg HK, Chen H (2009) TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci 29:8551–8564PubMedGoogle Scholar
  279. 279.
    Zuzarte M, Heusser K, Renigunta V, Schlichthörl G, Rinné S, Wischmeyer E, Daut J, Schwappach B, Preisig-Müller R (2009) Intracellular traffic of the K+ channels TASK-1 and TASK-3: role of N- and C-terminal sorting signals and interaction with 14-3-3 proteins. J Physiol 587:929–952PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vijay Renigunta
    • 1
  • Günter Schlichthörl
    • 1
  • Jürgen Daut
    • 1
    Email author
  1. 1.Institute of Physiology and PathophysiologyMarburg UniversityMarburgGermany

Personalised recommendations