Potassium channels in pancreatic duct epithelial cells: their role, function and pathophysiological relevance

  • Viktória VengloveczEmail author
  • Zoltán RakonczayJr.
  • Michael A. Gray
  • Péter HegyiEmail author
Invited Review


Pancreatic ductal epithelial cells play a fundamental role in HCO3 secretion, a process which is essential for maintaining the integrity of the pancreas. Although several studies have implicated impaired HCO3 and fluid secretion as a triggering factor in the development of pancreatitis, the mechanism and regulation of HCO3 secretion is still not completely understood. To date, most studies on the ion transporters that orchestrate ductal HCO3 secretion have focussed on the role of Cl/HCO3 exchangers and Cl channels, whereas much less is known about the role of K+ channels. However, there is growing evidence that many types of K+ channels are present in ductal cells where they have an essential role in establishing and maintaining the electrochemical driving force for anion secretion. For this reason, strategies that increase K+ channel function may help to restore impaired HCO3 and fluid secretion, such as in pancreatitis, and therefore provide novel directions for future pancreatic therapy. In this review, our aims are to summarize the types of K+ channels found in pancreatic ductal cells and to discuss their individual roles in ductal HCO3 secretion. We will also describe how K+ channels are involved in pathophysiological conditions and discuss how they could act as new molecular targets for the development of therapeutic approaches to treat pancreatic diseases.


K+ channels HCO3 Secretion Pancreatic ductal cells Pancreatitis 



Our research is supported by Hungarian National Development Agency grants (TÁMOP-4.2.2.A-11/1/KONV-2012-0035, TÁMOP-4.2.2-A-11/1/KONV-2012-0052, TÁMOP-4.2.2.A-11/1/KONV-2012-0073), the Hungarian Scientific Research Fund (OTKA NF105758, NF100677, K109756) and the Hungarian Academy of Sciences (BO/00531/11/5). This research was also supported by the European Union and the State of Hungary, cofinanced by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 ‘National Excellence Program’ and MTA-SZTE Momentum Grant (LP2014-10/2014).

Conflict of interest

The authors hereby declare that there is no conflict of interest to disclose.


  1. 1.
    Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA (1999) MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97(2):175–187PubMedGoogle Scholar
  2. 2.
    Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I (1998) Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem 273(28):17689–17695PubMedGoogle Scholar
  3. 3.
    Argent BE, Gray MA, Steward MC, Case RM (2012) Cell physiology of pancreatic ducts. In: Johnson LR (ed) Physiology of the gastrointestinal tract, vol 1, 5th edn. Academic Press, Oxford, pp 1399–1424Google Scholar
  4. 4.
    Barfield JP, Yeung CH, Cooper TG (2005) Characterization of potassium channels involved in volume regulation of human spermatozoa. Mol Hum Reprod 11(12):891–897PubMedGoogle Scholar
  5. 5.
    Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384(6604):78–80PubMedGoogle Scholar
  6. 6.
    Barriere H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P (2003) Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules. J Gen Physiol 122(2):177–190PubMedCentralPubMedGoogle Scholar
  7. 7.
    Behrendorff N, Floetenmeyer M, Schwiening C, Thorn P (2010) Protons released during pancreatic acinar cell secretion acidify the lumen and contribute to pancreatitis in mice. Gastroenterology 139(5):1711–1720, 1720 e1711–e1715Google Scholar
  8. 8.
    Behrens R, Nolting A, Reimann F, Schwarz M, Waldschutz R, Pongs O (2000) hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEBS Lett 474(1):99–106PubMedGoogle Scholar
  9. 9.
    Bentzen BH, Nardi A, Calloe K, Madsen LS, Olesen SP, Grunnet M (2007) The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels. Mol Pharmacol 72(4):1033–1044PubMedGoogle Scholar
  10. 10.
    Bentzen BH, Osadchii O, Jespersen T, Hansen RS, Olesen SP, Grunnet M (2009) Activation of big conductance Ca(2+)-activated K(+) channels (BK) protects the heart against ischemia-reperfusion injury. Pflugers Arch 457(5):979–988PubMedGoogle Scholar
  11. 11.
    Berridge MJ (1995) Calcium signalling and cell proliferation. Bioessays 17(6):491–500PubMedGoogle Scholar
  12. 12.
    Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ, Kaczmarek LK (2003) Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci 23(37):11681–11691PubMedGoogle Scholar
  13. 13.
    Bhoomagoud M, Jung T, Atladottir J, Kolodecik TR, Shugrue C, Chaudhuri A, Thrower EC, Gorelick FS (2009) Reducing extracellular pH sensitizes the acinar cell to secretagogue-induced pancreatitis responses in rats. Gastroenterology 137(3):1083–1092PubMedCentralPubMedGoogle Scholar
  14. 14.
    Bielanska J, Hernandez-Losa J, Perez-Verdaguer M, Moline T, Somoza R, Ramon YCS, Condom E, Ferreres JC, Felipe A (2009) Voltage-dependent potassium channels Kv1.3 and Kv1.5 in human cancer. Curr Cancer Drug Targets 9(8):904–914PubMedGoogle Scholar
  15. 15.
    Bielanska J, Hernandez-Losa J, Moline T, Somoza R, Cajal SR, Condom E, Ferreres JC, Felipe A (2012) Increased voltage-dependent K(+) channel Kv1.3 and Kv1.5 expression correlates with leiomyosarcoma aggressiveness. Oncol Lett 4(2):227–230PubMedCentralPubMedGoogle Scholar
  16. 16.
    Blatz AL, Magleby KL (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323(6090):718–720PubMedGoogle Scholar
  17. 17.
    Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275(9):6453–6461PubMedGoogle Scholar
  18. 18.
    Camacho J (2006) Ether a go-go potassium channels and cancer. Cancer Lett 233(1):1–9PubMedGoogle Scholar
  19. 19.
    Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80(5):795–803PubMedGoogle Scholar
  20. 20.
    D’Adamo MC, Shang L, Imbrici P, Brown SD, Pessia M, Tucker SJ (2011) Genetic inactivation of Kcnj16 identifies Kir5.1 as an important determinant of neuronal PCO2/pH sensitivity. J Biol Chem 286(1):192–198PubMedCentralPubMedGoogle Scholar
  21. 21.
    Demolombe S, Franco D, de Boer P, Kuperschmidt S, Roden D, Pereon Y, Jarry A, Moorman AF, Escande D (2001) Differential expression of KvLQT1 and its regulator IsK in mouse epithelia. Am J Physiol Cell Physiol 280(2):C359–C372PubMedGoogle Scholar
  22. 22.
    Derst C, Hirsch JR, Preisig-Muller R, Wischmeyer E, Karschin A, Doring F, Thomzig A, Veh RW, Schlatter E, Kummer W, Daut J (2001) Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney. Kidney Int 59:2197–2205PubMedGoogle Scholar
  23. 23.
    Diener M, Hug F, Strabel D, Scharrer E (1996) Cyclic AMP-dependent regulation of K+ transport in the rat distal colon. Br J Pharmacol 118(6):1477–1487PubMedCentralPubMedGoogle Scholar
  24. 24.
    Dorwart MR, Shcheynikov N, Yang D, Muallem S (2008) The solute carrier 26 family of proteins in epithelial ion transport. Physiology (Bethesda) 23:104–114Google Scholar
  25. 25.
    Doupnik CA, Davidson N, Lester HA (1995) The inward rectifier potassium channel family. Curr Opin Neurobiol 5(3):268–277PubMedGoogle Scholar
  26. 26.
    Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16(17):5464–5471PubMedCentralPubMedGoogle Scholar
  27. 27.
    Durie PR (1989) The pathophysiology of the pancreatic defect in cystic fibrosis. Acta Paediatr Scand Suppl 363:41–44PubMedGoogle Scholar
  28. 28.
    Durie PR (1998) Pancreatitis and mutations of the cystic fibrosis gene. N Engl J Med 339(10):687–688PubMedGoogle Scholar
  29. 29.
    Dutta AK, Khimji AK, Sathe M, Kresge C, Parameswara V, Esser V, Rockey DC, Feranchak AP (2009) Identification and functional characterization of the intermediate-conductance Ca(2+)-activated K(+) channel (IK-1) in biliary epithelium. Am J Physiol Gastrointest Liver Physiol 297(5):G1009–G1018PubMedCentralPubMedGoogle Scholar
  30. 30.
    Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou J, Beckingham K, Chandy KG, Cahalan MD, Aiyar J (1999) Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J Biol Chem 274(9):5746–5754PubMedGoogle Scholar
  31. 31.
    Fedida D, Wible B, Wang Z, Fermini B, Faust F, Nattel S, Brown AM (1993) Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ Res 73(1):210–216PubMedGoogle Scholar
  32. 32.
    Flores CA, Melvin JE, Figueroa CD, Sepulveda FV (2007) Abolition of Ca2+-mediated intestinal anion secretion and increased stool dehydration in mice lacking the intermediate conductance Ca2+-dependent K+ channel Kcnn4. J Physiol 583(Pt 2):705–717PubMedCentralPubMedGoogle Scholar
  33. 33.
    Fong P, Argent BE, Guggino WB, Gray MA (2003) Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line HPAF. Am J Physiol Cell Physiol 285(2):C433–C445PubMedGoogle Scholar
  34. 34.
    Freedman SD, Kern HF, Scheele GA (2001) Pancreatic acinar cell dysfunction in CFTR(−/−) mice is associated with impairments in luminal pH and endocytosis. Gastroenterology 121(4):950–957PubMedGoogle Scholar
  35. 35.
    Fuller CM, Eckhardt L, Schulz I (1989) Ionic and osmotic dependence of secretion from permeabilised acini of the rat pancreas. Pflugers Arch 413(4):385–394PubMedGoogle Scholar
  36. 36.
    Furness JB, Robbins HL, Selmer IS, Hunne B, Chen MX, Hicks GA, Moore S, Neylon CB (2003) Expression of intermediate conductance potassium channel immunoreactivity in neurons and epithelial cells of the rat gastrointestinal tract. Cell Tissue Res 314(2):179–189PubMedGoogle Scholar
  37. 37.
    Garcia-Calvo M, Knaus HG, McManus OB, Giangiacomo KM, Kaczorowski GJ, Garcia ML (1994) Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J Biol Chem 269(1):676–682PubMedGoogle Scholar
  38. 38.
    Gardos G (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta 30(3):653–654PubMedGoogle Scholar
  39. 39.
    Girard C, Duprat F, Terrenoire C, Tinel N, Fosset M, Romey G, Lazdunski M, Lesage F (2001) Genomic and functional characteristics of novel human pancreatic 2p domain K+ channels. Biochem Biophys Res Commun 282:249–256PubMedGoogle Scholar
  40. 40.
    Grady T, Mah’Moud M, Otani T, Rhee S, Lerch MM, Gorelick FS (1998) Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury. Am J Physiol 275(5 Pt 1):G1010–G1017PubMedGoogle Scholar
  41. 41.
    Gray MA, Greenwell JR, Garton AJ, Argent BE (1990) Regulation of maxi-K+ channels on pancreatic duct cells by cyclic AMP-dependent phosphorylation. J Membr Biol 115(3):203–215PubMedGoogle Scholar
  42. 42.
    Greger R, Bleich M, Riedemann N, van Driessche W, Ecke D, Warth R (1997) The role of K+ channels in colonic Cl- secretion. Comp Biochem Physiol A Physiol 118(2):271–275PubMedGoogle Scholar
  43. 43.
    Gukovsky I, Gukovskaya AS, Blinman TA, Zaninovic V, Pandol SJ (1998) Early NF-kappaB activation is associated with hormone-induced pancreatitis. Am J Physiol 275(6 Pt 1):G1402–G1414PubMedGoogle Scholar
  44. 44.
    Hayashi M, Novak I (2013) Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels (Austin) 7(6):432–441Google Scholar
  45. 45.
    Hayashi M, Wang J, Hede SE, Novak I (2012) An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. Am J Physiol Cell Physiol 303(2):C151–C159PubMedGoogle Scholar
  46. 46.
    Hede SE, Amstrup J, Klaerke DA, Novak I (2005) P2Y2 and P2Y4 receptors regulate pancreatic Ca(2+)-activated K+ channels differently. Pflugers Arch 450(6):429–436PubMedGoogle Scholar
  47. 47.
    Hegyi P, Petersen OH (2013) The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology. Rev Physiol Biochem Pharmacol 165:1–30PubMedGoogle Scholar
  48. 48.
    Hegyi P, Pandol S, Venglovecz V, Rakonczay Z Jr (2010) The acinar-ductal tango in the pathogenesis of acute pancreatitis. Gut 60(4):544–552PubMedGoogle Scholar
  49. 49.
    Hegyi P, Maleth J, Venglovecz V, Rakonczay Z Jr (2011) Pancreatic ductal bicarbonate secretion: challenge of the acinar Acid load. Front Physiol 2:36PubMedCentralPubMedGoogle Scholar
  50. 50.
    Heitzmann D, Warth R (2008) Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 88(3):1119–1182PubMedGoogle Scholar
  51. 51.
    Hibino H, Higashi-Shingai K, Fujita A, Iwai K, Ishii M, Kurachi Y (2004) Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential. Eur J Neurosci 19(1):76–84PubMedGoogle Scholar
  52. 52.
    Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90(1):291–366PubMedGoogle Scholar
  53. 53.
    Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89(1):193–277PubMedGoogle Scholar
  54. 54.
    Inagaki N, Tsuura Y, Namba N, Masuda K, Gonoi T, Horie M, Seino Y, Mizuta M, Seino S (1995) Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J Biol Chem 270(11):5691–5694PubMedGoogle Scholar
  55. 55.
    Isbrandt D, Leicher T, Waldschutz R, Zhu X, Luhmann U, Michel U, Sauter K, Pongs O (2000) Gene structures and expression profiles of three human KCND (Kv4) potassium channels mediating A-type currents I(TO) and I(SA). Genomics 64(2):144–154PubMedGoogle Scholar
  56. 56.
    Iwatsuki N, Petersen OH (1985) Inhibition of Ca2+-activated K+ channels in pig pancreatic acinar cells by Ba2+, Ca2+, quinine and quinidine. Biochim Biophys Acta 819(2):249–257PubMedGoogle Scholar
  57. 57.
    Jager H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S (2004) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65(3):630–638PubMedGoogle Scholar
  58. 58.
    Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 20:91–123PubMedGoogle Scholar
  59. 59.
    Jehle J, Schweizer PA, Katus HA, Thomas D (2011) Novel roles for hERG K(+) channels in cell proliferation and apoptosis. Cell Death Dis 2(8):e193PubMedCentralPubMedGoogle Scholar
  60. 60.
    Jensen BS, Strobaek D, Christophersen P, Jorgensen TD, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol 275(3 Pt 1):C848–C856PubMedGoogle Scholar
  61. 61.
    Jensen BS, Odum N, Jorgensen NK, Christophersen P, Olesen SP (1999) Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels. Proc Natl Acad Sci U S A 96(19):10917–10921PubMedCentralPubMedGoogle Scholar
  62. 62.
    Joiner WJ, Basavappa S, Vidyasagar S, Nehrke K, Krishnan S, Binder HJ, Boulpaep EL, Rajendran VM (2003) Active K+ secretion through multiple KCa-type channels and regulation by IKCa channels in rat proximal colon. Am J Physiol Gastrointest Liver Physiol 285(1):G185–G196PubMedGoogle Scholar
  63. 63.
    Ju M, Wray D (2002) Molecular identification and characterisation of the human EAG2 potassium channel. FEBS Lett 524(1–3):204–210PubMedGoogle Scholar
  64. 64.
    Judak L, Hegyi P, Rakonczay Z Jr, Maleth J, Gray MA, Venglovecz V (2014) Ethanol and its non-oxidative metabolites profoundly inhibit CFTR function in pancreatic epithelial cells which is prevented by ATP supplementation. Pflugers Arch 466(3):549–562PubMedGoogle Scholar
  65. 65.
    Jung SR, Kim K, Hille B, Nguyen TD, Koh DS (2006) Pattern of Ca2+ increase determines the type of secretory mechanism activated in dog pancreatic duct epithelial cells. J Physiol 576(Pt 1):163–178PubMedCentralPubMedGoogle Scholar
  66. 66.
    Kaczmarek LK (2013) Slack, Slick and sodium-activated potassium channels. ISRN Neurosci 2013 (2013)Google Scholar
  67. 67.
    Kalman K, Nguyen A, Tseng-Crank J, Dukes ID, Chandy G, Hustad CM, Copeland NG, Jenkins NA, Mohrenweiser H, Brandriff B, Cahalan M, Gutman GA, Chandy KG (1998) Genomic organization, chromosomal localization, tissue distribution, and biophysical characterization of a novel mammalian Shaker-related voltage-gated potassium channel, Kv1.7. J Biol Chem 273(10):5851–5857PubMedGoogle Scholar
  68. 68.
    Kang D, Kim D (2004) Single-channel properties and pH sensitivity of two-pore domain K+ channels of the TALK family. Biochem Biophys Res Commun 315(4):836–844PubMedGoogle Scholar
  69. 69.
    Kelly ML, Abu-Hamdah R, Jeremic A, Cho SJ, Ilie AE, Jena BP (2005) Patch clamped single pancreatic zymogen granules: direct measurements of ion channel activities at the granule membrane. Pancreatology 5(4–5):443–449PubMedGoogle Scholar
  70. 70.
    Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245(4922):1073–1080PubMedGoogle Scholar
  71. 71.
    Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376(6542):690–695PubMedGoogle Scholar
  72. 72.
    Khanna R, Chang MC, Joiner WJ, Kaczmarek LK, Schlichter LC (1999) hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J Biol Chem 274(21):14838–14849PubMedGoogle Scholar
  73. 73.
    Kiehn J, Lacerda AE, Wible B, Brown AM (1996) Molecular physiology and pharmacology of HERG. Single-channel currents and block by dofetilide. Circulation 94(10):2572–2579PubMedGoogle Scholar
  74. 74.
    Kim D, Gnatenco C (2001) TASK-5, a new member of the tandem-pore K(+) channel family. Biochem Biophys Res Commun 284(4):923–930PubMedGoogle Scholar
  75. 75.
    Kim SJ, Greger R (1999) Voltage-dependent, slowly activating K+ current (I(Ks)) and its augmentation by carbachol in rat pancreatic acini. Pflugers Arch 438(5):604–611PubMedGoogle Scholar
  76. 76.
    Kim SJ, Kerst G, Schreiber R, Pavenstadt H, Greger R, Hug MJ, Bleich M (2000) Inwardly rectifying K+ channels in the basolateral membrane of rat pancreatic acini. Pflugers Arch 441(2–3):331–340PubMedGoogle Scholar
  77. 77.
    Knaus HG, Garcia-Calvo M, Kaczorowski GJ, Garcia ML (1994) Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J Biol Chem 269(6):3921–3924PubMedGoogle Scholar
  78. 78.
    Kondo C, Isomoto S, Matsumoto S, Yamamda M, Horio Y, Yamashita S, Takemura-Kameda K, Matsuzawa Y, Kurachi Y (1996) Cloning and functional expression of a novel isoform of ROMK inwardly rectifying ATP-dependent K+ channel, ROMK6 (Kir1.1f). FEBS Lett 399:122–126PubMedGoogle Scholar
  79. 79.
    Lachheb S, Cluzeaud F, Bens M, Genete M, Hibino H, Lourdel S, Kurachi Y, Vandewalle A, Teulon J, Paulais M (2008) Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am J Physiol Renal Physiol 294(6):F1398–F1407PubMedGoogle Scholar
  80. 80.
    Lansu K, Gentile S (2013) Potassium channel activation inhibits proliferation of breast cancer cells by activating a senescence program. Cell Death Dis 4:e652PubMedCentralPubMedGoogle Scholar
  81. 81.
    Latorre R, Oberhauser A, Labarca P, Alvarez O (1989) Varieties of calcium-activated potassium channels. Annu Rev Physiol 51:385–399PubMedGoogle Scholar
  82. 82.
    Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD, Brandenburg SA, Litzi TJ, Bunton TE, Limb C, Francis H, Gorelikow M, Gu H, Washington K, Argani P, Goldenring JR, Coffey RJ, Feinberg AP (2000) Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 106(12):1447–1455PubMedCentralPubMedGoogle Scholar
  83. 83.
    Lee MG, Ohana E, Park HW, Yang D, Muallem S (2012) Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 92(1):39–74PubMedCentralPubMedGoogle Scholar
  84. 84.
    Liu Y, Holmgren M, Jurman ME, Yellen G (1997) Gated access to the pore of a voltage-dependent K+ channel. Neuron 19(1):175–184PubMedGoogle Scholar
  85. 85.
    Liu Y, McKenna E, Figueroa DJ, Blevins R, Austin CP, Bennett PB, Swanson R (2000) The human inward rectifier K(+) channel subunit kir5.1 (KCNJ16) maps to chromosome 17q25 and is expressed in kidney and pancreas. Cytogenet Cell Genet 90(1–2):60–63PubMedGoogle Scholar
  86. 86.
    Lohrmann E, Burhoff I, Nitschke RB, Lang HJ, Mania D, Englert HC, Hropot M, Warth R, Rohm W, Bleich M et al (1995) A new class of inhibitors of cAMP-mediated Cl- secretion in rabbit colon, acting by the reduction of cAMP-activated K+ conductance. Pflugers Arch 429(4):517–530PubMedGoogle Scholar
  87. 87.
    Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903PubMedGoogle Scholar
  88. 88.
    Long SB, Campbell EB, Mackinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309(5736):903–908PubMedGoogle Scholar
  89. 89.
    Loussouarn G, Demolombe S, Mohammad-Panah R, Escande D, Baro I (1996) Expression of CFTR controls cAMP-dependent activation of epithelial K+ currents. Am J Physiol 271(5 Pt 1):C1565–C1573PubMedGoogle Scholar
  90. 90.
    MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AM, Backx PH, Wheeler MB (2001) Members of the Kv1 and Kv2 voltage-dependent K(+) channel families regulate insulin secretion. Mol Endocrinol 15(8):1423–1435PubMedGoogle Scholar
  91. 91.
    Madden ME, Sarras MP Jr (1987) Distribution of Na+, K+-ATPase in rat exocrine pancreas as monitored by K+-NPPase cytochemistry and [3H]-ouabain binding: a plasma membrane protein found primarily to be ductal cell associated. J Histochem Cytochem 35(12):1365–1374PubMedGoogle Scholar
  92. 92.
    Maleth J, Hegyi P (2014) Calcium signaling in pancreatic ductal epithelial cells: an old friend and a nasty enemy. Cell CalciumGoogle Scholar
  93. 93.
    Maleth J, Venglovecz V, Razga Z, Tiszlavicz L, Rakonczay Z Jr, Hegyi P (2011) Non-conjugated chenodeoxycholate induces severe mitochondrial damage and inhibits bicarbonate transport in pancreatic duct cells. Gut 60(1):136–138PubMedGoogle Scholar
  94. 94.
    Maleth J, Rakonczay Z Jr, Venglovecz V, Dolman NJ, Hegyi P (2013) Central role of mitochondrial injury in the pathogenesis of acute pancreatitis. Acta Physiol (Oxf) 207(2):226–235Google Scholar
  95. 95.
    Mannuzzu LM, Moronne MM, Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271(5246):213–216PubMedGoogle Scholar
  96. 96.
    Manzanares D, Gonzalez C, Ivonnet P, Chen RS, Valencia-Gattas M, Conner GE, Larsson HP, Salathe M (2011) Functional apical large conductance, Ca2+-activated, and voltage-dependent K+ channels are required for maintenance of airway surface liquid volume. J Biol Chem 286(22):19830–19839PubMedCentralPubMedGoogle Scholar
  97. 97.
    Marty A (1981) Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature 291(5815):497–500PubMedGoogle Scholar
  98. 98.
    Marty A, Tan YP, Trautmann A (1984) Three types of calcium-dependent channel in rat lacrimal glands. J Physiol 357:293–325PubMedCentralPubMedGoogle Scholar
  99. 99.
    Maruyama Y, Petersen OH, Flanagan P, Pearson GT (1983) Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells. Nature 305(5931):228–232PubMedGoogle Scholar
  100. 100.
    McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14(3):645–650PubMedGoogle Scholar
  101. 101.
    Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD, Kelsell RE, Gloger II, Pangalos MN (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res Mol Brain Res 86(1–2):101–114PubMedGoogle Scholar
  102. 102.
    Meera P, Wallner M, Song M, Toro L (1997) Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc Natl Acad Sci U S A 94(25):14066–14071PubMedCentralPubMedGoogle Scholar
  103. 103.
    Miller C (2000) An overview of the potassium channel family. Genome Biol 1(4):reviews0004.1–0004.5Google Scholar
  104. 104.
    Morton MJ, O’Connell AD, Sivaprasadarao A, Hunter M (2003) Determinants of pH sensing in the two-pore domain K(+) channels TASK-1 and −2. Pflugers Arch 445(5):577–583PubMedGoogle Scholar
  105. 105.
    Nakamoto T, Romanenko VG, Takahashi A, Begenisich T, Melvin JE (2008) Apical maxi-K (KCa1.1) channels mediate K+ secretion by the mouse submandibular exocrine gland. Am J Physiol Cell Physiol 294(3):C810–C819PubMedCentralPubMedGoogle Scholar
  106. 106.
    Nanda Kumar NS, Singh SK, Rajendran VM (2010) Mucosal potassium efflux mediated via Kcnn4 channels provides the driving force for electrogenic anion secretion in colon. Am J Physiol Gastrointest Liver Physiol 299(3):G707–G714PubMedCentralPubMedGoogle Scholar
  107. 107.
    Nehrke K, Quinn CC, Begenisich T (2003) Molecular identification of Ca2+-activated K+ channels in parotid acinar cells. Am J Physiol Cell Physiol 284(2):C535–C546PubMedGoogle Scholar
  108. 108.
    Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270(5236):633–637PubMedGoogle Scholar
  109. 109.
    Nguyen TD, Moody MW (1998) Calcium-activated potassium conductances on cultured nontransformed dog pancreatic duct epithelial cells. Pancreas 17(4):348–358PubMedGoogle Scholar
  110. 110.
    Niemeyer MI, Cid LP, Barros LF, Sepulveda FV (2001) Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 276(46):43166–43174PubMedGoogle Scholar
  111. 111.
    Niemeyer MI, Gonzalez-Nilo FD, Zuniga L, Gonzalez W, Cid LP, Sepulveda FV (2006) Gating of two-pore domain K+ channels by extracellular pH. Biochem Soc Trans 34(Pt 5):899–902PubMedGoogle Scholar
  112. 112.
    Niemeyer MI, Cid LP, Pena-Munzenmayer G, Sepulveda FV (2010) Separate gating mechanisms mediate the regulation of K2P potassium channel TASK-2 by intra- and extracellular pH. J Biol Chem 285(22):16467–16475PubMedCentralPubMedGoogle Scholar
  113. 113.
    Novak I, Greger R (1988) Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane. Pflugers Arch 411(1):58–68PubMedGoogle Scholar
  114. 114.
    Novak I, Greger R (1991) Effect of bicarbonate on potassium conductance of isolated perfused rat pancreatic ducts. Pflugers Arch 419(1):76–83PubMedGoogle Scholar
  115. 115.
    Okolo C, Wong T, Moody MW, Nguyen TD (2002) Effects of bile acids on dog pancreatic duct epithelial cell secretion and monolayer resistance. Am J Physiol Gastrointest Liver Physiol 283(5):G1042–G1050PubMedGoogle Scholar
  116. 116.
    Opie E (1901) The etiology of acute haemorrhagic pancreatitis. Johns Hopkins Hosp Bull 12:182–188Google Scholar
  117. 117.
    Orio P, Rojas P, Ferreira G, Latorre R (2002) New disguises for an old channel: MaxiK channel beta-subunits. News Physiol Sci 17:156–161PubMedGoogle Scholar
  118. 118.
    Oshiro T, Takahashi H, Ohsaga A, Ebihara S, Sasaki H, Maruyama Y (2005) Delayed expression of large conductance K+ channels reshaping agonist-induced currents in mouse pancreatic acinar cells. J Physiol 563(Pt 2):379–391PubMedCentralPubMedGoogle Scholar
  119. 119.
    Ottschytsch N, Raes A, Van Hoorick D, Snyders DJ (2002) Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome. Proc Natl Acad Sci U S A 99(12):7986–7991PubMedCentralPubMedGoogle Scholar
  120. 120.
    Pallagi P, Venglovecz V, Rakonczay Z Jr., Borka K, Korompay A, Ozsvari B, Judak L, Sahin-Toth M, Geisz A, Schnur A, Maleth J, Takacs T, Gray MA, Argent BE, Mayerle J, Lerch MM, Wittmann T, Hegyi P (2011) Trypsin reduces pancreatic ductal bicarbonate secretion by inhibiting CFTR Cl(−) channels and luminal anion exchangers. Gastroenterology 141(6):2228–2239 e2226. doi: 10.1053/j.gastro.2011.08.039
  121. 121.
    Pallagi P, Balla Z, Singh AK, Dosa S, Ivanyi B, Kukor Z, Toth A, Riederer B, Liu Y, Engelhardt R, Jarmay K, Szabo A, Janovszky A, Perides G, Venglovecz V, Maleth J, Wittmann T, Takacs T, Gray MA, Gacser A, Hegyi P, Seidler U, Rakonczay Z Jr (2014) The role of pancreatic ductal secretion in protection against acute pancreatitis in mice*. Crit Care Med 42(3):e177–e188PubMedGoogle Scholar
  122. 122.
    Papazian DM, Shao XM, Seoh SA, Mock AF, Huang Y, Wainstock DH (1995) Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14(6):1293–1301PubMedGoogle Scholar
  123. 123.
    Pardo LA, Stuhmer W (2014) The roles of K(+) channels in cancer. Nat Rev Cancer 14(1):39–48PubMedGoogle Scholar
  124. 124.
    Pardo LA, del Camino D, Sanchez A, Alves F, Bruggemann A, Beckh S, Stuhmer W (1999) Oncogenic potential of EAG K(+) channels. Embo J 18(20):5540–5547PubMedCentralPubMedGoogle Scholar
  125. 125.
    Park KP, Beck JS, Douglas IJ, Brown PD (1994) Ca(2+)-activated K+ channels are involved in regulatory volume decrease in acinar cells isolated from the rat lacrimal gland. J Membr Biol 141(2):193–201PubMedGoogle Scholar
  126. 126.
    Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH, Lee MG (2012) Dynamic regulation of CFTR bicarbonate permeability by [Cl-]i and its role in pancreatic bicarbonate secretion. Gastroenterology 139(2):620–631Google Scholar
  127. 127.
    Park S, Shcheynikov N, Hong JH, Zheng C, Suh SH, Kawaai K, Ando H, Mizutani A, Abe T, Kiyonari H, Seki G, Yule D, Mikoshiba K, Muallem S (2013) Irbit mediates synergy between Ca(2+) and cAMP signaling pathways during epithelial transport in mice. Gastroenterology 145(1):232–241PubMedCentralPubMedGoogle Scholar
  128. 128.
    Pedersen SF, Hoffmann EK, Novak I (2013) Cell volume regulation in epithelial physiology and cancer. Front Physiol 4:233PubMedCentralPubMedGoogle Scholar
  129. 129.
    Perozo E, Santacruz-Toloza L, Stefani E, Bezanilla F, Papazian DM (1994) S4 mutations alter gating currents of Shaker K channels. Biophys J 66(2 Pt 1):345–354PubMedCentralPubMedGoogle Scholar
  130. 130.
    Petersen OH, Ueda N (1975) Pancreatic acinar cells: effect of acetylcholine, pancreozymin, gastrin and secretin on membrane potential and resistance in vivo and in vitro. J Physiol 247(2):461–471PubMedCentralPubMedGoogle Scholar
  131. 131.
    Petersen OH, Findlay I, Iwatsuki N, Singh J, Gallacher DV, Fuller CM, Pearson GT, Dunne MJ, Morris AP (1985) Human pancreatic acinar cells: studies of stimulus-secretion coupling. Gastroenterology 89(1):109–117PubMedGoogle Scholar
  132. 132.
    Pluznick JL, Sansom SC (2006) BK channels in the kidney: role in K(+) secretion and localization of molecular components. Am J Physiol Renal Physiol 291(3):F517–F529PubMedGoogle Scholar
  133. 133.
    Quinton PM (2008) Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet 372(9636):415–417PubMedGoogle Scholar
  134. 134.
    Reber HA, Mosley JG (1980) The effect of bile salts on the pancreatic duct mucosal barrier. Br J Surg 67(1):59–62PubMedGoogle Scholar
  135. 135.
    Reber HA, Roberts C, Way LW (1979) The pancreatic duct mucosal barrier. Am J Surg 137(1):128–134PubMedGoogle Scholar
  136. 136.
    Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, Lazdunski M (1998) Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J Biol Chem 273(47):30863–30869PubMedGoogle Scholar
  137. 137.
    Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP (1993) Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 11(4):645–655PubMedGoogle Scholar
  138. 138.
    Saganich MJ, Vega-Saenz de Miera E, Nadal MS, Baker H, Coetzee WA, Rudy B (1999) Cloning of components of a novel subthreshold-activating K(+) channel with a unique pattern of expression in the cerebral cortex. J Neurosci 19(24):10789–10802PubMedGoogle Scholar
  139. 139.
    Sah P (1996) Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19(4):150–154PubMedGoogle Scholar
  140. 140.
    Sakmann B, Trube G (1984) Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol 347:641–657PubMedCentralPubMedGoogle Scholar
  141. 141.
    Saluja AK, Bhagat L, Lee HS, Bhatia M, Frossard JL, Steer ML (1999) Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. Am J Physiol 276(4 Pt 1):G835–G842PubMedGoogle Scholar
  142. 142.
    Saluja AK, Lerch MM, Phillips PA, Dudeja V (2007) Why does pancreatic overstimulation cause pancreatitis? Annu Rev Physiol 69:249–269PubMedGoogle Scholar
  143. 143.
    Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440(7083):463–469PubMedGoogle Scholar
  144. 144.
    Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81(2):299–307PubMedGoogle Scholar
  145. 145.
    Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384(6604):80–83PubMedGoogle Scholar
  146. 146.
    Santi CM, Ferreira G, Yang B, Gazula VR, Butler A, Wei A, Kaczmarek LK, Salkoff L (2006) Opposite regulation of Slick and Slack K+ channels by neuromodulators. J Neurosci 26(19):5059–5068PubMedGoogle Scholar
  147. 147.
    Sausbier M, Matos JE, Sausbier U, Beranek G, Arntz C, Neuhuber W, Ruth P, Leipziger J (2006) Distal colonic K(+) secretion occurs via BK channels. J Am Soc Nephrol 17(5):1275–1282PubMedGoogle Scholar
  148. 148.
    Scheele GA, Fukuoka SI, Kern HF, Freedman SD (1996) Pancreatic dysfunction in cystic fibrosis occurs as a result of impairments in luminal pH, apical trafficking of zymogen granule membranes, and solubilization of secretory enzymes. Pancreas 12(1):1–9PubMedGoogle Scholar
  149. 149.
    Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch TJ (2000) A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403(6766):196–199PubMedGoogle Scholar
  150. 150.
    Sewell WA, Young JA (1975) Secretion of electrolytes by the pancreas of the anaestetized rat. J Physiol 252(2):379–396PubMedCentralPubMedGoogle Scholar
  151. 151.
    Shcheynikov N, Wang Y, Park M, Ko SB, Dorwart M, Naruse S, Thomas PJ, Muallem S (2006) Coupling modes and stoichiometry of Cl-/HCO3- exchange by slc26a3 and slc26a6. J Gen Physiol 127(5):511–524PubMedCentralPubMedGoogle Scholar
  152. 152.
    Shieh CC, Klemic KG, Kirsch GE (1997) Role of transmembrane segment S5 on gating of voltage-dependent K+ channels. J Gen Physiol 109(6):767–778PubMedCentralPubMedGoogle Scholar
  153. 153.
    Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52(4):557–594PubMedGoogle Scholar
  154. 154.
    Shuck ME, Piser TM, Bock JH, Slightom JL, Lee KS, Bienkowski MJ (1997) Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir12 and Kir13). J Biol Chem 272:586–593PubMedGoogle Scholar
  155. 155.
    Skryma RN, Prevarskaya NB, Dufy-Barbe L, Odessa MF, Audin J, Dufy B (1997) Potassium conductance in the androgen-sensitive prostate cancer cell line, LNCaP: involvement in cell proliferation. Prostate 33(2):112–122PubMedGoogle Scholar
  156. 156.
    Skryma R, Van Coppenolle F, Dufy-Barbe L, Dufy B, Prevarskaya N (1999) Characterization of Ca(2+)-inhibited potassium channels in the LNCaP human prostate cancer cell line. Recept Channels 6(4):241–253PubMedGoogle Scholar
  157. 157.
    Smith PL, Baukrowitz T, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379(6568):833–836PubMedGoogle Scholar
  158. 158.
    Song P, Groos S, Riederer B, Feng Z, Krabbenhoft A, Smolka A, Seidler U (2009) KCNQ1 is the luminal K+ recycling channel during stimulation of gastric acid secretion. J Physiol 587(Pt 15):3955–3965PubMedCentralPubMedGoogle Scholar
  159. 159.
    Sorensen MV, Matos JE, Praetorius HA, Leipziger J (2010) Colonic potassium handling. Pflugers Arch 459(5):645–656PubMedGoogle Scholar
  160. 160.
    Spitzner M, Ousingsawat J, Scheidt K, Kunzelmann K, Schreiber R (2007) Voltage-gated K+ channels support proliferation of colonic carcinoma cells. FASEB J 21(1):35–44PubMedGoogle Scholar
  161. 161.
    Steward MC, Ishiguro H, Case RM (2005) Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol 67:377–409PubMedGoogle Scholar
  162. 162.
    Stewart AK, Yamamoto A, Nakakuki M, Kondo T, Alper SL, Ishiguro H (2009) Functional coupling of apical Cl/HCO3− exchange with CFTR in stimulated HCO3- secretion by guinea pig interlobular pancreatic duct. Am J Physiol Gastrointest Liver Physiol 296(6):G1307–G1317PubMedCentralPubMedGoogle Scholar
  163. 163.
    Stuenkel EL, Machen TE, Williams JA (1988) pH regulatory mechanisms in rat pancreatic ductal cells. Am J Physiol 254(6 Pt 1):G925–G930PubMedGoogle Scholar
  164. 164.
    Su K, Kyaw H, Fan P, Zeng Z, Shell BK, Carter KC, Li Y (1997) Isolation, characterization, and mapping of two human potassium channels. Biochem Biophys Res Commun 241(3):675–681PubMedGoogle Scholar
  165. 165.
    Suzuki K, Petersen OH (1988) Patch-clamp study of single-channel and whole-cell K+ currents in guinea pig pancreatic acinar cells. Am J Physiol 255(3 Pt 1):G275–G285PubMedGoogle Scholar
  166. 166.
    Takacs T, Rosztoczy A, Maleth J, Rakonczay Z Jr, Hegyi P (2013) Intraductal acidosis in acute biliary pancreatitis. Pancreatology 13(4):333–335PubMedGoogle Scholar
  167. 167.
    Takahata T, Hayashi M, Ishikawa T (2003) SK4/IK1-like channels mediate TEA-insensitive, Ca2+-activated K+ currents in bovine parotid acinar cells. Am J Physiol Cell Physiol 284(1):C127–C144PubMedGoogle Scholar
  168. 168.
    Takumi T, Ohkubo H, Nakanishi S (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242(4881):1042–1045PubMedGoogle Scholar
  169. 169.
    Tamarina NA, Wang Y, Mariotto L, Kuznetsov A, Bond C, Adelman J, Philipson LH (2003) Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes 52(8):2000–2006PubMedGoogle Scholar
  170. 170.
    Tanemoto M, Kittaka N, Inanobe A, Kurachi Y (2000) In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1. J Physiol 525(Pt 3):587–592PubMedCentralPubMedGoogle Scholar
  171. 171.
    Tarasov A, Dusonchet J, Ashcroft F (2004) Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53(Suppl 3):S113–S122PubMedGoogle Scholar
  172. 172.
    Thevenod F (2002) Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol Cell Physiol 283(3):C651–C672PubMedGoogle Scholar
  173. 173.
    Thompson-Vest N, Shimizu Y, Hunne B, Furness JB (2006) The distribution of intermediate-conductance, calcium-activated, potassium (IK) channels in epithelial cells. J Anat 208(2):219–229PubMedCentralPubMedGoogle Scholar
  174. 174.
    Toro L, Wallner M, Meera P, Tanaka Y (1998) Maxi-K(Ca), a unique member of the voltage-gated K channel superfamily. News Physiol Sci 13:112–117PubMedGoogle Scholar
  175. 175.
    Trapani JG, Korn SJ (2003) Effect of external pH on activation of the Kv1.5 potassium channel. Biophys J 84(1):195–204PubMedCentralPubMedGoogle Scholar
  176. 176.
    Tucker SJ, Imbrici P, Salvatore L, D’Adamo MC, Pessia M (2000) pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia. J Biol Chem 275(22):16404–16407PubMedGoogle Scholar
  177. 177.
    Valverde MA, O’Brien JA, Sepulveda FV, Ratcliff RA, Evans MJ, Colledge WH (1995) Impaired cell volume regulation in intestinal crypt epithelia of cystic fibrosis mice. Proc Natl Acad Sci U S A 92(20):9038–9041PubMedCentralPubMedGoogle Scholar
  178. 178.
    vanTol BL, Missan S, Crack J, Moser S, Baldridge WH, Linsdell P, Cowley EA (2007) Contribution of KCNQ1 to the regulatory volume decrease in the human mammary epithelial cell line MCF-7. Am J Physiol Cell Physiol 293(3):C1010–C1019PubMedGoogle Scholar
  179. 179.
    Vaughn J, Wolford JK, Prochazka M, Permana PA (2000) Genomic structure and expression of human KCNJ9 (Kir3.3/GIRK3). Biochem Biophys Res Commun 274(2):302–309PubMedGoogle Scholar
  180. 180.
    Venglovecz V, Rakonczay Z Jr, Ozsvari B, Takacs T, Lonovics J, Varro A, Gray MA, Argent BE, Hegyi P (2008) Effects of bile acids on pancreatic ductal bicarbonate secretion in guinea pig. Gut 57(8):1102–1112PubMedGoogle Scholar
  181. 181.
    Venglovecz V, Hegyi P, Rakonczay Z Jr, Tiszlavicz L, Nardi A, Grunnet M, Gray MA (2011) Pathophysiological relevance of apical large-conductance Ca(2)+-activated potassium channels in pancreatic duct epithelial cells. Gut 60(3):361–369PubMedGoogle Scholar
  182. 182.
    Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8(3):321–329PubMedGoogle Scholar
  183. 183.
    Villalonga N, Martinez-Marmol R, Roura-Ferrer M, David M, Valenzuela C, Soler C, Felipe A (2008) Cell cycle-dependent expression of Kv1.5 is involved in myoblast proliferation. Biochim Biophys Acta 1783(5):728–736PubMedGoogle Scholar
  184. 184.
    Villanger O, Veel T, Raeder MG (1995) Secretin causes H+/HCO3− secretion from pig pancreatic ductules by vacuolar-type H(+)-adenosine triphosphatase. Gastroenterology 108(3):850–859PubMedGoogle Scholar
  185. 185.
    Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12(1):17–23PubMedGoogle Scholar
  186. 186.
    Wang Y, Soyombo AA, Shcheynikov N, Zeng W, Dorwart M, Marino CR, Thomas PJ, Muallem S (2006) Slc26a6 regulates CFTR activity in vivo to determine pancreatic duct HCO3− secretion: relevance to cystic fibrosis. Embo J 25(21):5049–5057PubMedCentralPubMedGoogle Scholar
  187. 187.
    Wang J, Haanes KA, Novak I (2013) Purinergic regulation of CFTR and Ca(2+)-activated Cl(−) channels and K(+) channels in human pancreatic duct epithelium. Am J Physiol Cell Physiol 304(7):C673–C684PubMedGoogle Scholar
  188. 188.
    Warmke JW, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A 91(8):3438–3442PubMedCentralPubMedGoogle Scholar
  189. 189.
    Warth R, Bleich M (2000) K+ channels and colonic function. Rev Physiol Biochem Pharmacol 140:1–62PubMedGoogle Scholar
  190. 190.
    Warth R, Hamm K, Bleich M, Kunzelmann K, von Hahn T, Schreiber R, Ullrich E, Mengel M, Trautmann N, Kindle P, Schwab A, Greger R (1999) Molecular and functional characterization of the small Ca(2+)-regulated K+ channel (rSK4) of colonic crypts. Pflugers Arch 438(4):437–444PubMedGoogle Scholar
  191. 191.
    Warth R, Garcia Alzamora M, Kim JK, Zdebik A, Nitschke R, Bleich M, Gerlach U, Barhanin J, Kim SJ (2002) The role of KCNQ1/KCNE1 K(+) channels in intestine and pancreas: lessons from the KCNE1 knockout mouse. Pflugers Arch 443(5–6):822–828PubMedGoogle Scholar
  192. 192.
    Warth R, Barriere H, Meneton P, Bloch M, Thomas J, Tauc M, Heitzmann D, Romeo E, Verrey F, Mengual R, Guy N, Bendahhou S, Lesage F, Poujeol P, Barhanin J (2004) Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci U S A 101(21):8215–8220PubMedCentralPubMedGoogle Scholar
  193. 193.
    Woodfork KA, Wonderlin WF, Peterson VA, Strobl JS (1995) Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J Cell Physiol 162(2):163–171PubMedGoogle Scholar
  194. 194.
    Yan L, Figueroa DJ, Austin CP, Liu Y, Bugianesi RM, Slaughter RS, Kaczorowski GJ, Kohler MG (2004) Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 53(3):597–607PubMedGoogle Scholar
  195. 195.
    Yang Y, Sigworth FJ (1998) Single-channel properties of IKs potassium channels. J Gen Physiol 112(6):665–678PubMedCentralPubMedGoogle Scholar
  196. 196.
    Yang WP, Levesque PC, Little WA, Conder ML, Shalaby FY, Blanar MA (1997) KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias. Proc Natl Acad Sci U S A 94(8):4017–4021PubMedCentralPubMedGoogle Scholar
  197. 197.
    Yao X, Forte JG (2003) Cell biology of acid secretion by the parietal cell. Annu Rev Physiol 65:103–131PubMedGoogle Scholar
  198. 198.
    Yazejian B, DiGregorio DA, Vergara JL, Poage RE, Meriney SD, Grinnell AD (1997) Direct measurements of presynaptic calcium and calcium-activated potassium currents regulating neurotransmitter release at cultured Xenopus nerve-muscle synapses. J Neurosci 17(9):2990–3001PubMedGoogle Scholar
  199. 199.
    Yeung CH, Cooper TG (2008) Potassium channels involved in human sperm volume regulation–quantitative studies at the protein and mRNA levels. Mol Reprod Dev 75(4):659–668PubMedGoogle Scholar
  200. 200.
    Yoshimoto Y, Fukuyama Y, Horio Y, Inanobe A, Gotoh M, Kurachi Y (1999) Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein-gated K+ channel. FEBS Lett 444(2–3):265–269PubMedGoogle Scholar
  201. 201.
    Yuan A, Santi CM, Wei A, Wang ZW, Pollak K, Nonet M, Kaczmarek L, Crowder CM, Salkoff L (2003) The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37(5):765–773PubMedGoogle Scholar
  202. 202.
    Zhao KQ, Xiong G, Wilber M, Cohen NA, Kreindler JL (2012) A role for two-pore K(+) channels in modulating Na(+) absorption and Cl(−) secretion in normal human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 302(1):L4–L12PubMedCentralPubMedGoogle Scholar
  203. 203.
    Zhou J, Jeron A, London B, Han X, Koren G (1998) Characterization of a slowly inactivating outward current in adult mouse ventricular myocytes. Circ Res 83(8):806–814PubMedGoogle Scholar
  204. 204.
    Zhu XR, Wulf A, Schwarz M, Isbrandt D, Pongs O (1999) Characterization of human Kv4.2 mediating a rapidly-inactivating transient voltage-sensitive K+ current. Recept Channels 6(5):387–400PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Pharmacology and PharmacotherapyUniversity of SzegedSzegedHungary
  2. 2.First Department of MedicineUniversity of SzegedSzegedHungary
  3. 3.Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
  4. 4.MTA-SZTE Translational Gastroenterology Research GroupSzegedHungary

Personalised recommendations