The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements

  • Jinfeng Teng
  • Stephen Loukin
  • Andriy Anishkin
  • Ching KungEmail author
Invited Review


Focus on touch and hearing distracts attention from numerous subconscious force sensors, such as the vital control of blood pressure and systemic osmolarity, and sensors in nonanimals. Multifarious manifestations should not obscure invariant and fundamental physicochemical principles. We advocate that force from lipid (FFL) is one such principle. It is based on the fact that the self-assembled bilayer necessitates inherent forces that are large and anisotropic, even at life’s origin. Functional response of membrane proteins is governed by bilayer force changes. Added stress can redirect these forces, leading to geometric changes of embedded proteins such as ion channels. The FFL principle was first demonstrated when purified bacterial mechanosensitive channel of large conductance (MscL) remained mechanosensitive (MS) after reconstituting into bilayers. This key experiment has recently been unequivocally replicated with two vertebrate MS K2p channels. Even the canonical Kv and the Drosophila canonical transient receptor potentials (TRPCs) have now been shown to be MS in biophysical and in physiological contexts, supporting the universality of the FFL paradigm. We also review the deterministic role of mechanical force during stem cell differentiation as well as the cell-cell and cell-matrix tethers that provide force communications. In both the ear hair cell and the worm’s touch neuron, deleting the cadherin or microtubule tethers reduces but does not eliminate MS channel activities. We found no evidence to distinguish whether these tethers directly pull on the channel protein or a surrounding lipid platform. Regardless of the implementation, pulling tether tenses up the bilayer. Membrane tenting is directly visible at the apexes of the stereocilia.


Force-sensing Mechanosensitivity Lipid bilayer K2p Touch Hearing 



Work in our laboratories is supported by the Huck Institute of Life Sciences (A.A.) and NIH grant GM096088 and the Vilas Trust of the University of Wisconsin-Madison (to C.K.).


  1. 1.
    Alagramam KN, Goodyear RJ, Geng R, Furness DN, van Aken AF, Marcotti W, Kros CJ, Richardson GP (2011) Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells. PLoS One 6(4):e19183PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Anderson M, Kim EY, Hagmann H, Benzing T, Dryer SE (2013) Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am J Physiol Cell Physiol 305(3):C276–C289PubMedCrossRefGoogle Scholar
  3. 3.
    Anishkin A, Kung C (2013) Stiffened lipid platforms at molecular force foci. Proc Natl Acad Sci U S A 110(13):4886–4892PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Anishkin A, Loukin S, Teng J.-F, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci (in press)Google Scholar
  5. 5.
    Assad JA, Shepherd GM, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7(6):985–994PubMedCrossRefGoogle Scholar
  6. 6.
    Baek EB, Kim SJ (2011) Mechanisms of myogenic response: Ca(2+)-dependent and -independent signaling. J Smooth Muscle Res 47(2):55–65PubMedCrossRefGoogle Scholar
  7. 7.
    Bellono NW, Kammel LG, Zimmerman AL, Oancea E (2013) UV light phototransduction activates transient receptor potential A1 ion channels in human melanocytes. Proc Natl Acad Sci U S A 110(6):2383–2388PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Berrier C, Pozza A, de Lacroix de Lavalette A, Chardonnet S, Mesneau A, Jaxel C, le Maire M, Ghazi A (2013) The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J Biol Chem 288(38):27307–27314PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bourque CW (2008) Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci 9(7):519–531PubMedCrossRefGoogle Scholar
  10. 10.
    Brohawn SG, Campbell EB, MacKinnon R (2013) Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K + channel. Proc Natl Acad Sci U S A 110(6):2129–2134PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335(6067):436–441PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Brohawn SG, Su Z, Mackinnon R (2014) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111(9):3614–3619PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem 101:1723–1725CrossRefGoogle Scholar
  14. 14.
    Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504(7478):113–118PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Celler K, Koning RI, Koster AJ, van Wezel GP (2013) Multidimensional view of the bacterial cytoskeleton. J Bacteriol 195(8):1627–1636PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Chen IA, Walde P (2010) From self-assembled vesicles to protocells. Cold Spring Harb Perspect Biol 2(7):a002170PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8(7):510–521PubMedCrossRefGoogle Scholar
  18. 18.
    Clapham DE, Miller C (2011) A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc Natl Acad Sci U S A 108(49):19492–19497PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Cox CD, Nakayama Y, Nomura T, Martinac B (2014) The evolutionary ‘tinkering’ of MscS-like channels: generation of structural and functional diversity. Pfluegers Archiv - Eur J Physiol (in press)Google Scholar
  20. 20.
    Darwin C, Darwin F (1881) The power of movement in plants. Appleton and Company, New YorkGoogle Scholar
  21. 21.
    Darwin C, Darwin F (1903) More letters of Charls Darwin. Hazell, Watson, and Viney, LondonGoogle Scholar
  22. 22.
    Delmas P, Coste B (2013) Mechano-gated ion channels in sensory systems. Cell 155(2):278–284PubMedCrossRefGoogle Scholar
  23. 23.
    Eckert R (1972) Bioelectric control of ciliary activity. Science 176:473–481PubMedCrossRefGoogle Scholar
  24. 24.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689PubMedCrossRefGoogle Scholar
  25. 25.
    Goodman MB, Ernstrom GG, Chelur DS, O’Hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415(6875):1039–1042PubMedCrossRefGoogle Scholar
  26. 26.
    Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, Schwartz MA (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466(7303):263–266PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Guharay G, Sachs F (1984) Stretch-activated single ion channel surrents in tissure-cultured embryonic chich skeletal muscle. J Physiol 352:685–701PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Gullingsrud J, Schulten K (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86(6):3496–3509PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322Google Scholar
  30. 30.
    Hamill OP, McBride DW Jr (1992) Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc Natl Acad Sci U S A 89(16):7462–7466PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hao J, Padilla F, Dandonneau M, Lavebratt C, Lesage F, Noel J, Delmas P (2013) Kv1.1 channels act as mechanical brake in the senses of touch and pain. Neuron 77(5):899–914PubMedCrossRefGoogle Scholar
  32. 32.
    Hardie RC, Franze K (2012) Photomechanical responses in Drosophila photoreceptors. Science 338(6104):260–263. doi: 10.1126/science PubMedCrossRefGoogle Scholar
  33. 33.
    Hayakawa K, Tatsumi H, Sokabe M (2008) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121(Pt 4):496–503PubMedCrossRefGoogle Scholar
  34. 34.
    Honore E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8(4):251–261PubMedCrossRefGoogle Scholar
  35. 35.
    Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A, Hagmann H, Reinhardt C, Koos F, Kunzelmann K, Shirokova E, Krautwurst D, Harteneck C, Simons M, Pavenstadt H, Kerjaschki D, Thiele C, Walz G, Chalfie M, Benzing T (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 103(46):17079–17086PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Hughes S, Hankins MW, Foster RG, Peirson SN (2012) Melanopsin phototransduction: slowly emerging from the dark. Prog Brain Res 199:19–40PubMedCrossRefGoogle Scholar
  37. 37.
    Jennings HS (1908) The interpretation of the behavior of the lower organisms. Science 27(696):698–710PubMedCrossRefGoogle Scholar
  38. 38.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821PubMedCrossRefGoogle Scholar
  39. 39.
    Kawagishi I, Imagawa M, Imae Y, McCarter L, Homma M (1996) The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microbiol 20(4):693–699PubMedCrossRefGoogle Scholar
  40. 40.
    Kim KX, Beurg M, Hackney CM, Furness DN, Mahendrasingam S, Fettiplace R (2013) The role of transmembrane channel-like proteins in the operation of hair cell mechanotransducer channels. J Gen Physiol 142(5):493–505PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Kim TJ, Seong J, Ouyang M, Sun J, Lu S, Hong JP, Wang N, Wang Y (2009) Substrate rigidity regulates Ca2+ oscillation via RhoA pathway in stem cells. J Cell Physiol 218(2):285–293PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Kindt KS, Finch G, Nicolson T (2012) Kinocilia mediate mechanosensitivity in developing zebrafish hair cells. Dev Cell 23(2):329–341PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Kloda A, Lua L, Hall R, Adams DJ, Martinac B (2007) Liposome reconstitution and modulation of recombinant N-methyl-D-aspartate receptor channels by membrane stretch. Proc Natl Acad Sci U S A 104(5):1540–1545PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Krieg M, Dunn AR, Goodman MB (2014) Mechanical control of the sense of touch by beta-spectrin. Nat Cell Biol 16:224–233PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Kung C (2005) A possible unifying principle for mechanosensation. Nature 436(7051):647–654PubMedCrossRefGoogle Scholar
  46. 46.
    Lauritzen I, Chemin J, Honore E, Jodar M, Guy N, Lazdunski M, Jane Patel A (2005) Cross-talk between the mechano-gated K2P channel TREK-1 and the actinGoogle Scholar
  47. 47.
    Lee AG (2005) How lipids and proteins interact in a membrane: a molecular approach. Mol Biosyst 1(3):203–212PubMedCrossRefGoogle Scholar
  48. 48.
    Li GR, Deng XL (2011) Functional ion channels in stem cells. World J Stem Cells 3(3):19–24PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci U S A 100(23):13698–13703PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Liman ER (2012) Cell signaling. Putting the squeeze on phototransduction. Science 338(6104):200–201PubMedCrossRefGoogle Scholar
  51. 51.
    Lindahl E, Edholm O (2000) Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J Chem Phys 113:3882–3893CrossRefGoogle Scholar
  52. 52.
    Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K + channel in a lipid membrane-like environment. Nature 450(7168):376–382PubMedCrossRefGoogle Scholar
  53. 53.
    Loukin S, Su Z, Kung C (2011) Increased basal activity is a key determinant in the severity of human skeletal dysplasia caused by TRPV4 mutations. PLoS One 6(5):e19533PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Loukin S, Zhou X, Su Z, Saimi Y, Kung C (2010) Wild-type and brachyolmia-causing mutant TRPV4 channels respond directly to stretch force. J Biol Chem 285(35):27176–27181PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Loukin SH, Su Z, Kung C (2009) Hypotonic shocks activate rat TRPV4 in yeast in the absence of polyunsaturated fatty acids. FEBS Lett 583(4):754–758PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA, Costa V, Price M, Benson C, Welsh MJ, Chapleau MW, Abboud FM (2009) The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64(6):885–897PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Lundbaek JA, Collingwood SA, Ingolfsson HI, Kapoor R, Andersen OS (2010) Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 7(44):373–395PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells.[see comment]. Nat Cell Biol 7(2):179–185PubMedCrossRefGoogle Scholar
  59. 59.
    Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348(6298):261–263PubMedCrossRefGoogle Scholar
  60. 60.
    Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci U S A 84(8):2297–2301PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, Bouillon R, Nilius B, Carmeliet G (2008) TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8(3):257–265PubMedCrossRefGoogle Scholar
  62. 62.
    Matthews BD, Thodeti CK, Tytell JD, Mammoto A, Overby DR, Ingber DE (2010) Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr Biol (Camb) 2(9):435–442CrossRefGoogle Scholar
  63. 63.
    Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335(6067):432–436PubMedCrossRefGoogle Scholar
  64. 64.
    Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, Sokabe M, Miyasaka N, Suzuki M, Ezura Y, Noda M (2008) Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 216(1):47–53PubMedCrossRefGoogle Scholar
  65. 65.
    Monshausen GB, Haswell ES (2013) A force of nature: molecular mechanisms of mechanoperception in plants. J Exp Bot 64(15):4663–4680PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Moore C, Cevikbas F, Pasolli HA, Chen Y, Kong W, Kempkes C, Parekh P, Lee SH, Kontchou NA, Ye I, Jokerst NM, Fuchs E, Steinhoff M, Liedtke WB (2013) UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci U S A.110(34)E3225-3234Google Scholar
  67. 67.
    Musah S, Morin SA, Wrighton PJ, Zwick DB, Jin S, Kiessling LL (2012) Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano 6(11):10168–10177PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14(2):152–163PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    O'Hagan R, Chalfie M, Goodman MB (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8:43–50PubMedCrossRefGoogle Scholar
  70. 70.
    Ogura A, Machemer H (1980) Distribution of mechanoreceptor channels in the Paramecium surface membrane. J Comp Physiol 135(3):233–242CrossRefGoogle Scholar
  71. 71.
    Oliet SH, Bourque CW (1993) Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature 364(6435):341–343. doi: 10.1038/364341a0 PubMedCrossRefGoogle Scholar
  72. 72.
    Opsahl LR, Webb WW (1994) Lipid-glass adhesion in giga-sealed patch-clamped membranes. Biophys J 66(1):75–79PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Patel AJ, Lazdunski M, Honore E (2001) Lipid and mechano-gated 2P domain K(+) channels. Curr Opin Cell Biol 13(4):422–428PubMedCrossRefGoogle Scholar
  74. 74.
    Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418(6901):942–948PubMedCrossRefGoogle Scholar
  75. 75.
    Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9(9):696–703PubMedCrossRefGoogle Scholar
  76. 76.
    Petric S, Clasen L, van Wessel C, Geduldig N, Ding Z, Schullenberg M, Mersmann J, Zacharowski K, Aller MI, Schmidt KG, Donner BC (2012) In vivo electrophysiological characterization of TASK-1 deficient mice. Cell Physiol Biochem 30(3):523–537PubMedCrossRefGoogle Scholar
  77. 77.
    Reeves D, Ursell T, Sens P, Kondev J, Phillips R (2008) Membrane mechanics as a probe of ion-channel gating mechanisms. Phys Rev E Stat Nonlinear Soft Matter Phys 78(4 Pt 1):041901CrossRefGoogle Scholar
  78. 78.
    Satow Y, Murphy AD, Kung C (1983) The ionic basis of the depolarising mechanoreceptor potential of Paramecium tetraurelia. J Exp Biol 103:253–264Google Scholar
  79. 79.
    Schermer B, Benzing T (2009) Lipid-protein interactions along the slit diaphragm of podocytes. J Am Soc Nephrol 20(3):473–478PubMedCrossRefGoogle Scholar
  80. 80.
    Schmidt D, del Marmol J, MacKinnon R (2012) Mechanistic basis for low threshold mechanosensitivity in voltage-dependent K+ channels. Proc Natl Acad Sci U S A 109(26):10352–10357PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Schmidt D, MacKinnon R (2008) Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane. Proc Natl Acad Sci U S A 105(49):19276–19281PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Sexton T, Buhr E, Van Gelder RN (2012) Melanopsin and mechanisms of non-visual ocular photoreception. J Biol Chem 287(3):1649–1656PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Sharif Naeini R, Witty MF, Seguela P, Bourque CW (2006) An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 9(1):93–98PubMedCrossRefGoogle Scholar
  84. 84.
    Sharif-Naeini R, Ciura S, Zhang Z, Bourque CW (2008) Contribution of TRPV channels to osmosensory transduction, thirst, and vasopressin release. Kidney Int 73(7):811–815PubMedCrossRefGoogle Scholar
  85. 85.
    Sharif-Naeini R, Dedman A, Folgering JH, Duprat F, Patel A, Nilius B, Honore E (2008) TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch 456(3):529–540PubMedCrossRefGoogle Scholar
  86. 86.
    Suchyna TM, Markin VS, Sachs F (2009) Biophysics and structure of the patch and the gigaseal. Biophys J 97(3):738–747PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368(6468):265–268PubMedCrossRefGoogle Scholar
  88. 88.
    Sukharev SI, Blount P, Martinac B, Kung C (1997) Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu Rev Physiol 59:633–657. doi: 10.1146/annurev.physiol.59.1.633 PubMedCrossRefGoogle Scholar
  89. 89.
    Sun H, Li DP, Chen SR, Hittelman WN, Pan HL (2009) Sensing of blood pressure increase by transient receptor potential vanilloid 1 receptors on baroreceptors. J Pharmacol Exp Ther 331(3):851–859PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Terns RM, Terns MP (2014) CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends Genet 30(3):111–118PubMedCrossRefGoogle Scholar
  91. 91.
    Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WT (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11(7):642–649PubMedCrossRefGoogle Scholar
  92. 92.
    Vasquez V, Krieg M, Lockhead D, Goodman MB (2014) Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep 6(1):70–80PubMedCrossRefGoogle Scholar
  93. 93.
    Wetzel C, Hu J, Riethmacher D, Benckendorff A, Harder L, Eilers A, Moshourab R, Kozlenkov A, Labuz D, Caspani O, Erdmann B, Machelska H, Heppenstall PA, Lewin GR (2007) A stomatin-domain protein essential for touch sensation in the mouse. Nature 445(7124):206–209PubMedCrossRefGoogle Scholar
  94. 94.
    Yim EK, Sheetz MP (2012) Force-dependent cell signaling in stem cell differentiation. Stem Cell Res Ther 3(5):41PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Zhang Y, Gao F, Popov VL, Wen JW, Hamill OP (2000) Mechanically gated channel activity in cytoskeleton-deficient plasma membrane blebs and vesicles from Xenopus oocytes. J Physiol 523(Pt 1):117–130PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Zhao H, Williams DE, Shin JB, Brugger B, Gillespie PG (2012) Large membrane domains in hair bundles specify spatially constricted radixin activation. J Neurosci 32(13):4600–4609PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jinfeng Teng
    • 1
  • Stephen Loukin
    • 1
  • Andriy Anishkin
    • 2
  • Ching Kung
    • 3
    Email author
  1. 1.Laboratory of Molecular BiologyUniversity of WisconsinMadisonUSA
  2. 2.Department of Biochemistry and Center for Computational Proteomics at the Huck Institute of Life SciencesPennsylvania State UniversityCollegeUSA
  3. 3.Laboratory of Molecular Biology and Department of GeneticsUniversity of WisconsinMadisonUSA

Personalised recommendations