Pflügers Archiv - European Journal of Physiology

, Volume 467, Issue 2, pp 213–229 | Cite as

Current understanding of sarcopenia: possible candidates modulating muscle mass

Invited Review

Abstract

The world’s elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and often, frailty. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, the mechanisms responsible for these deleterious changes present numerous therapeutic targets for drug discovery. Muscle loss has been linked with several proteolytic systems, including the ubuiquitin-proteasome, lysosome-autophagy, and tumor necrosis factor (TNF)-α/nuclear factor-kappaB (NF-κB) systems. Although many factors are considered to regulate age-dependent muscle loss, this gentle atrophy is not affected by factors known to enhance rapid atrophy (denervation, hindlimb suspension, etc.). In addition, defects in Akt-mammalian target of rapamycin (mTOR) and serum response factor (SRF)-dependent signaling have been found in sarcopenic muscle. Intriguingly, more recent studies indicated an apparent functional defect in autophagy- and myostatin-dependent signaling in sarcopenic muscle. In this review, we summarize the current understanding of the adaptation of many regulators in sarcopenia.

Keywords

Skeletal muscle Sarcopenia Serum response factor Autophagy Myostatin 

References

  1. 1.
    Akpan I, Concalves MD, Dhir R, Yin X, Pistilli EE, Bogdanovich S, Khurana TS, Ucran J, Lachey J, Ahima RS (2009) The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity. Int J Obes (Lond) 33:1265–1273Google Scholar
  2. 2.
    Allen DL, Unterman TG (2007) Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Physiol Cell Physiol 292:C188–C199PubMedGoogle Scholar
  3. 3.
    Allen DL, Hittel DS, McPherron AC (2011) Expression and function of myostatin in obesity, diabetes, and exercise adaptation. Med Sci Sports Exerc 43:1828–1835PubMedCentralPubMedGoogle Scholar
  4. 4.
    Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, Goldberg AL, Ulfhake B (2010) Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 285:39597–39608PubMedCentralPubMedGoogle Scholar
  5. 5.
    Aoi W, Sakuma K (2011) Oxidative stress and skeletal muscle dysfunction with aging. Curr Aging Sci 4:101–109PubMedGoogle Scholar
  6. 6.
    Arnold HH, Braun T (1996) Targeted inactivation of myogenic factor genes reveals their role during mouse myogenesis: a review. Int J Dev Biol 40:345–353PubMedGoogle Scholar
  7. 7.
    Arvat E, Broglio F, Ghigo E (2000) Insulin-like growth factor I: implication in aging. Drugs Aging 16:29–40PubMedGoogle Scholar
  8. 8.
    Baehr LM, Furlow JD, Bodine SC (2011) Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 589:4759–4776PubMedCentralPubMedGoogle Scholar
  9. 9.
    Bamman MM, Ragan RC, Kim JS, Cross JM, Hill VJ, Tuggle SC, Allman RM (2004) Myogenic protein expression before and after resistance loading in 26- and 64-yr-old men and women. J Appl Physiol 97:1329–1337PubMedGoogle Scholar
  10. 10.
    Bar-Shai M, Carmeli E, Coleman R, Rozen N, Perek S, Fuchs D, Reznick AZ (2005) The effect of hindlimb immobilization on acid phosphatase, metalloproteinase and nuclear factor-kappaB in muscles of young and old rats. Mech Ageing Dev 126:289–297PubMedGoogle Scholar
  11. 11.
    Barton ER, Morris L, Musaró A, Rosenthal N, Sweeney HL (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157:137–148PubMedCentralPubMedGoogle Scholar
  12. 12.
    Barton-Davis ER, Shoturma DI, Musaró A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci U S A 95:15603–15607PubMedCentralPubMedGoogle Scholar
  13. 13.
    Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ (1999) Predictors of skeletal muscle mass in elderly men and women. Mech Aging Dev 107:123–136PubMedGoogle Scholar
  14. 14.
    Blaauw B, Canato M, Agatea L, Toniolo L, Mammucari C, Masiero E, Abraham R, Sandri M, Schiaffino S, Reggiani C (2009) Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 23:3896–3905PubMedGoogle Scholar
  15. 15.
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708PubMedGoogle Scholar
  16. 16.
    Bossola M, Pacelli F, Costelli P, Tortorelli A, Rosa F, Doglietto GB (2008) Proteasome activities in the rectus abdominis muscle of young and older individuals. Biogerontology 9:261–268PubMedGoogle Scholar
  17. 17.
    Bowser M, Herberg S, Arounleut P, Shi X, Fulzele S, Hill WD, Isales CM, Hamrick MW (2013) Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells. Exp Gerontol 48:290–297PubMedCentralPubMedGoogle Scholar
  18. 18.
    Brault JJ, Jespersen JG, Goldberg AL (2010) Peroxisome proliferator-activated receptor gamma co-activator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem 285:19460–19471PubMedCentralPubMedGoogle Scholar
  19. 19.
    Butterfield GE, Thompson J, Rennie MJ, Marcus R, Hintz RL, Hoffman AR (1997) Effect of rhGH and rhIGF-I treatment on protein utilization in elderly women. Am J Physiol Endocrinol Metab 272:E94–E99Google Scholar
  20. 20.
    Candow DG, Chilibeck PD (2005) Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J Gerontol Series A Biol Sci Med Sci 60:148–156Google Scholar
  21. 21.
    Cao PR, Kim HJ, Lecker SH (2005) Ubiquitin-protein ligases in muscle wasting. Int J Biochem Cell Biol 37:2088–2097PubMedGoogle Scholar
  22. 22.
    Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors is old muscle stem cells. Nature 454:528–532PubMedGoogle Scholar
  23. 23.
    Charvet C, Houbron C, Parlakian A, Giordani J, Lahoute C, Bertrand A, Sotiropoulos A, Renou L, Schmitt A, Melki J, Li Z, Daegelen D, Tuil D (2006) New role for serum response factor in postnatal skeletal muscle growth and regeneration via the interleukin 4 and insulin-like growth factor 1 pathways. Mol Cell Biol 26:6664–6674PubMedCentralPubMedGoogle Scholar
  24. 24.
    Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8:18–30PubMedCentralPubMedGoogle Scholar
  25. 25.
    Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ (2007) The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6:376–385PubMedGoogle Scholar
  26. 26.
    Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B (2006) Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat tibialis anterior muscle. Mech Ageing Dev 127:794–801PubMedGoogle Scholar
  27. 27.
    Clemmons DR (2009) Role of IGF-I in skeletal muscle mass maintenance. Trends Endocrinol Metab 20:349–356PubMedGoogle Scholar
  28. 28.
    Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA (2006) Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20:190–192PubMedGoogle Scholar
  29. 29.
    Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185:1083–1095PubMedCentralPubMedGoogle Scholar
  30. 30.
    Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofibers hypertrophy in transgenic mice. J Biol Chem 270:12109–12116PubMedGoogle Scholar
  31. 31.
    Combaret L, Dardevet D, Béchet D, Taillandier D, Mosoni L, Attaix D (2009) Skeletal muscle proteolysis in aging. Curr Opin Clin Nutr Metab Care 12:37–41PubMedGoogle Scholar
  32. 32.
    Cong H, Sun L, Liu C, Tien P (2011) Inhibition of atrogin-1/MAFbx expression by adenovirus-delivered small hairpin RNAs attenuates muscle atrophy in fasting mice. Hum Gene Ther 22:313–324PubMedGoogle Scholar
  33. 33.
    Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263:55–72PubMedGoogle Scholar
  34. 34.
    Cuervo AM, Bergamini E, Brunk UT, Dröge FM, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140PubMedGoogle Scholar
  35. 35.
    Dardevet D, Sornet C, Attaix D, Baracos VE, Grizard J (1994) Insulin-like growth factor-1 and insulin resistance in skeletal muscles of adult and old rats. Endocrinology 134:1475–1484PubMedGoogle Scholar
  36. 36.
    Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM (2003) MyoD and myogenin protein expression in skeletal muscles of senile rats. Cell Tissue Res 311:401–416PubMedGoogle Scholar
  37. 37.
    De Palma C, Morisi F, Cheli S, Pambianco S, Cappello V, Vezzoli M, Rovere-Querini P, Moggio M, Ripolone M, Francolini M, Sandri M, Clementi E (2012) Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 3:e418PubMedCentralPubMedGoogle Scholar
  38. 38.
    DeRuisseau KC, Kavazis AN, Powers SK (2005) Selective downregulation of ubiquitin conjugation cascade mRNA occurs in the senescent rat soleus muscle. Exp Gerontol 40:526–531PubMedGoogle Scholar
  39. 39.
    Deschenes MR, Roby MA, Eason MK, Harris MB (2010) Remodeling of the neuromuscular junction precedes sarcopenia-related alterations in myofibers. Exp Gerontol 45:389–393PubMedCentralPubMedGoogle Scholar
  40. 40.
    Dodd SL, Hain B, Senf SM, Judge AR (2009) Hsp27 inhibits IKKbeta-induced NF-kappaB activity and skeletal muscle atrophy. FASEB J 23:3415–3423PubMedCentralPubMedGoogle Scholar
  41. 41.
    Dodd S, Hain B, Judge A (2009) Hsp70 prevents disuse muscle atrophy in senescent rats. Biogerontology 10:605–611PubMedGoogle Scholar
  42. 42.
    Donati A, Cavallini G, Paradiso C, Vittorini S, Pollera M, Gori Z, Bergamini E (2001) Age-related changes in the regulation of autophagic proteolysis in rat isolated hepatocytes. J Gerontol Series A Biol Sci Med Sci 56:B288–B293Google Scholar
  43. 43.
    Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587:1535–1546Google Scholar
  44. 44.
    Dubé JJ, Goodpaster BH (2006) Assessment of intramuscular triglycerides: contribution to metabolic abnormalities. Curr Opin Clin Nutr Metab Care 9:553–559PubMedGoogle Scholar
  45. 45.
    Edström E, Ulfhake B (2005) Sarcopenia is not due to lack of regenerative drive in senescent skeletal muscle. Aging Cell 4:65–77PubMedGoogle Scholar
  46. 46.
    Edström E, Altun M, Hägglund M, Ulfhake B (2006) Atrogin-1/MAFbx and MuRF1 are downregulated in ageing-related loss of skeletal muscle. J Gerontol Series A Biol Sci Med Sci 61:663–674Google Scholar
  47. 47.
    Evans WJ, Paolisso G, Abbatecola AM, Corsonello A, Bustacchini S, Strollo F, Lattanzio F (2010) Frailty and muscle metabolism dysregulation in the elderly. Biogerontology 11:527–536PubMedGoogle Scholar
  48. 48.
    Fernández-Celemín L, Pasko N, Blomart V, Thissen JP (2002) Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-alpha. Am J Physiol Endocrinol Metab 283:E1279–E1290Google Scholar
  49. 49.
    Ferrucci L, Penninx BW, Volpato S, Harris TB, Bandeen-Roche K, Balfour J, Leveille SG, Fried LP, Md JM (2002) Changes in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc 50:1947–1954PubMedGoogle Scholar
  50. 50.
    Foletta VC, White LJ, Larsen AE, Léger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461:325–335PubMedGoogle Scholar
  51. 51.
    Funai K, Parkington JD, Carambula S, Fielding RA (2006) Age-associated decrease in contraction-induced activation of downstream targets of Akt/mTOR signaling in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 290:R1080–R1086PubMedGoogle Scholar
  52. 52.
    Furuno K, Goodman MN, Goldberg AL (1990) Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. J Biol Chem 265:8550–8557PubMedGoogle Scholar
  53. 53.
    Gan B, Yoo Y, Guan JL (2006) Association of focal adhesion kinase with tuberous sclerosis complex 2 in the regulation of s6 kinase activation and cell growth. J Biol Chem 281:37321–37329PubMedGoogle Scholar
  54. 54.
    Gaugler M, Brown A, Merrell E, DiSanto-Rose M, Rathmacher JA, Reynolds TH 4th (2011) PKB signaling and atrogene expression in skeletal muscle of aged mice. J Appl Physiol 111:192–199PubMedCentralPubMedGoogle Scholar
  55. 55.
    Gauthier-Rouviére C, Vandromme M, Tuil D, Lautredou N, Morris M, Soulez M, Kahn A, Fernandez A, Lamb N (1996) Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts. Mol Biol Cell 7:719–729PubMedCentralPubMedGoogle Scholar
  56. 56.
    Glass DJ (2010) PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol 346:267–278PubMedGoogle Scholar
  57. 57.
    Gordon SE, Flück M, Booth FW (2001) Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol 90:1174–1183PubMedGoogle Scholar
  58. 58.
    Guerci A, Lahoute C, Hébrard S, Collard L, Graindorge D, Favier M, Cagnard N, Batonnet-Pichon S, Précigout G, Garcia L, Tuil D, Daegelen D, Sotiropoulos A (2012) Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 15:25–37PubMedGoogle Scholar
  59. 59.
    Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, Maraldi NM, Bernardi P, Sandri M, Bonaldo P (2010) Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 16:1313–1320PubMedGoogle Scholar
  60. 60.
    Haddad F, Adams GR (2006) Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol 100:1188–1203PubMedGoogle Scholar
  61. 61.
    Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282:30014–30021PubMedGoogle Scholar
  62. 62.
    Hasselgren PO (2007) Ubiquitination, phosphorylation, and acetylation—triple threat in muscle wasting. J Cell Physiol 213:679–689PubMedGoogle Scholar
  63. 63.
    Hittel DS, Berggren JR, Shearer J, Boyle K, Houmard JA (2009) Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes 58:30–38PubMedCentralPubMedGoogle Scholar
  64. 64.
    Hornberger TA, McLoughlin TJ, Leszczynski JK, Armstrong DD, Jameson RR, Bowen PE, Hwang ES, Hou H, Moustafa ME, Carlson BA, Hatfield DL, Diamond AM, Esser KA (2003) Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth. J Nutr 133:3091–3097PubMedGoogle Scholar
  65. 65.
    Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC (2002) Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 15:529–538Google Scholar
  66. 66.
    Hunter RB, Kandarian SC (2004) Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 114:1504–1511PubMedCentralPubMedGoogle Scholar
  67. 67.
    Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC (2014) Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age. Aging Cell 13:92–101PubMedGoogle Scholar
  68. 68.
    Hyatt JP, Roy RR, Baldwin KM, Edgerton VR (2003) Nerve activity-independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei. Am J Physiol Cell Physiol 285:C1161–C1173PubMedGoogle Scholar
  69. 69.
    Jogo M, Shiraishi S, Tamura TA (2009) Identification of MAFbx as a myogenin-engaged F-box protein in SCF ubiquitin ligase. FEBS Lett 583:2715–2719PubMedGoogle Scholar
  70. 70.
    Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7:310–315PubMedGoogle Scholar
  71. 71.
    Judge AR, Koncarevic A, Hunter RB, Liou HC, Jackman RW, Kandarian SC (2007) Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol 292:C372–C382PubMedGoogle Scholar
  72. 72.
    Kawabuchi M, Tan H, Wang S (2011) Age affects reciprocal cellular interactions in neuromuscular junction during aging. Aging Res Rev 10:43–53Google Scholar
  73. 73.
    Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C (2004) Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A 101:18135–18140PubMedCentralPubMedGoogle Scholar
  74. 74.
    Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q, Guan KL (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152:290–303PubMedCentralPubMedGoogle Scholar
  75. 75.
    Kimball SR, O’Malley JP, Anthony JC, Crozier SJ, Jefferson LS (2004) Assessment of biomarkers of protein anabolism in skeletal muscle during the life span of the rat: sarcopenia despite elevated protein synthesis. Am J Physiol Endocrinol Metab 287:E772–E780PubMedGoogle Scholar
  76. 76.
    Kostrominova TY, Macpherson PC, Carlson BM, Goldman D (2000) Regulation of myogenin protein expression in denervated muscles from young and old rats. Am J Physiol Regul Integr Comp Physiol 279:R179–R188PubMedGoogle Scholar
  77. 77.
    Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293PubMedCentralPubMedGoogle Scholar
  78. 78.
    Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med 82:434–448PubMedGoogle Scholar
  79. 79.
    Kuwahara K, Barrientos T, Pipes GC, Li S, Olson EN (2005) Muscle-specific signaling mechanism that links actin dynamics to serum response factor. Mol Cell Biol 25:3173–3181PubMedCentralPubMedGoogle Scholar
  80. 80.
    Kuwahara K, Teg Pipes GC, McAnally J, Richardson JA, Hill JA, Bassel-Duby R, Olson EN (2007) Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. J Clin Invest 117:1324–1334PubMedCentralPubMedGoogle Scholar
  81. 81.
    Kwak KS, Zhou X, Solomon V, Baracos VE, Davis J, Bannon AW, Boyle WJ, Lacey DL, Han HQ (2004) Regulation of protein catabolism by muscle-specific and cytokine-inducible ubiquitin ligases E3alpha-II during cancer cachexia. Cancer Res 64:8193–8198PubMedGoogle Scholar
  82. 82.
    Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT, Leibovitch SA (2008) The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 27:1266–1276PubMedCentralPubMedGoogle Scholar
  83. 83.
    Lagirand-Cantaloube J, Cornille K, Csibi A, Batonet-Pichon S, Leibovitch MP, Leibovitch SA (2009) Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS One 4:e4973PubMedCentralPubMedGoogle Scholar
  84. 84.
    Lahoute C, Sotiropoulos A, Favier M, Guilet-Deniau I, Charvet C, Ferry A, Butler-Browne G, Metzger D, Tuil D, Daegelen D (2008) Premature aging in skeletal muscle lacking serum response factor. PLoS One 3:e3910Google Scholar
  85. 85.
    Lai KM, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, Economides AN, Yancopoulos GD, Glass DJ (2004) Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24:9295–9304PubMedCentralPubMedGoogle Scholar
  86. 86.
    Lamon S, Wallace MA, Léger B, Russell AP (2009) Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. J Physiol 587:1795–1803PubMedCentralPubMedGoogle Scholar
  87. 87.
    Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edström L, Ehler E, Udd B, Gautel M (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308:1599–1603PubMedGoogle Scholar
  88. 88.
    Larsson L (1995) Motor units: remodeling in aged animals. J Gerontol Series A Biol Sci Med Sci 50:91–95Google Scholar
  89. 89.
    LeBrasseur NK, Schelhorn TM, Bernardo BL, Cosgrove PG, Loria PM, Brown TA (2009) Myostatin inhibition enhances the effects on performance and metabolic outcomes in aged mice. J Gerontol Series A Biol Sci Med Sci 64:940–948Google Scholar
  90. 90.
    LeBrasseur NK (2012) Building muscle, browning fat and preventing obesity by inhibiting myostatin. Diabetologia 55:13–17PubMedGoogle Scholar
  91. 91.
    Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51PubMedGoogle Scholar
  92. 92.
    Lee SJ (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20:61–86PubMedGoogle Scholar
  93. 93.
    Léger B, Derave W, De Bock K, Hespel P, Russell AP (2008) Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res 11:163–175PubMedGoogle Scholar
  94. 94.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42PubMedCentralPubMedGoogle Scholar
  95. 95.
    Lexell (1995) Human aging, muscle mass, and fiber type composition. J Gerontol Series A Biol Sci Med Sci 50:11–16Google Scholar
  96. 96.
    Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ, Patterson C (2004) Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 114:1058–1071PubMedCentralPubMedGoogle Scholar
  97. 97.
    Li H, Malhotra S, Kumar A (2008) Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med 86:1113–1126PubMedCentralPubMedGoogle Scholar
  98. 98.
    Lokireddy S, Wijesoma IW, Sze SK, McFarlane C, Kambadur R, Sharma M (2012) Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. Am J Physiol Cell Physiol 303:C512–C529PubMedGoogle Scholar
  99. 99.
    Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6:458–471PubMedGoogle Scholar
  100. 100.
    Marzetti E, Carter CS, Wohlgemuth SE, Lees HA, Giovannini S, Anderson B, Quinn LS, Leeuwenburgh C (2009) Changes in IL-15 expression and death-receptor apoptotic signaling in rat gastrocnemius muscle with aging and life-long calorie restriction. Mech Ageing Dev 130:272–280PubMedCentralPubMedGoogle Scholar
  101. 101.
    Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab 10:507–515PubMedGoogle Scholar
  102. 102.
    McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138:3657–3666PubMedCentralPubMedGoogle Scholar
  103. 103.
    McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209:501–514PubMedGoogle Scholar
  104. 104.
    McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G (2012) Myostatin is associated with age-related human muscle stem cell function. FASEB J 26:2509–2521PubMedGoogle Scholar
  105. 105.
    McMullen CA, Ferry AL, Gamboa JL, Andrade FH, Dupont-Versteegden EE (2009) Age-related changes of cell death pathways in rat extraocular muscle. Exp Gerontol 44:420–425PubMedGoogle Scholar
  106. 106.
    Melton LJ 3rd, Khosla S, Crowson CS, O’Connor MK, O’Fallon WM, Riggs BL (2000) Epidemiology of sarcopenia. J Am Geriat Soc 48:625–630PubMedGoogle Scholar
  107. 107.
    Meng SJ, Yu LJ (2010) Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 11:1509–1526PubMedCentralPubMedGoogle Scholar
  108. 108.
    Miralles F, Posern G, Zaromytidou AI, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342PubMedGoogle Scholar
  109. 109.
    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741PubMedGoogle Scholar
  110. 110.
    Mokalled MH, Johnson AN, Creemers EE, Olson EN (2012) MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev 26:190–202PubMedCentralPubMedGoogle Scholar
  111. 111.
    Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J, Shelton JM, Backs J, Klein WH, Richardson JA, Bassel-Duby R, Olson EN (2010) Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143:35–45PubMedCentralPubMedGoogle Scholar
  112. 112.
    Morissette MR, Cook SA, Buranasombati C, Rosenberg MA, Rosenzweig A (2009) Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt. Am J Physiol Cell Physiol 297:C1124–C1132PubMedGoogle Scholar
  113. 113.
    Mourkioti F, Kratsios P, Luedde T, Song YH, Delafontaine P, Adami R, Parente V, Bottinelli R, Pasparakis M, Rosenthal N (2006) Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J Clin Invest 116:2945–2954PubMedCentralPubMedGoogle Scholar
  114. 114.
    Murphy KT, Koopman R, Naim T, Léger B, Trieu J, Ibebunjo C, Lynch GS (2010) Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J 24:4433–4442PubMedGoogle Scholar
  115. 115.
    Musaró A, McCullagh K, Paul A, Houghton L, Dobtowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200PubMedGoogle Scholar
  116. 116.
    Neel BA, Lin Y, Pessin JE (2013) Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab 24:635–643PubMedGoogle Scholar
  117. 117.
    O’Connor RS, Pavlath GK (2007) Point: counterpoint: satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 103:1099–1100PubMedGoogle Scholar
  118. 118.
    Ochala J, Gustafson AM, Diez ML, Renaud G, Li M, Aare S, Qaisar R, Banduseela VC, Hedström Y, Tang X, Dworkin B, Ford GC, Nair KS, Perera S, Gautel M, Larsson L (2011) Preferential skeletal muscle myosin loss in response to mechanical silencing in a novel rat intensive care unit model: underlying mechanisms. J Physiol 589:2007–2026PubMedCentralPubMedGoogle Scholar
  119. 119.
    Ogata T, Machida S, Oishi Y, Higuchi M, Muraoka I (2008) Differential cell death regulation between adult-unloaded and aged rat soleus muscle. Mech Ageing Dev 130:328–336Google Scholar
  120. 120.
    Park C, Cuervo AM (2013) Selective autophagy: talking with the UPS. Cell Biochem Biophys 67:3–13PubMedCentralPubMedGoogle Scholar
  121. 121.
    Parkington JD, LeBrasseur NK, Siebert AP, Fielding RA (2004) Contraction-mediated mTOR, p70S6K, and ERK1/2 phosphorylation in aged skeletal muscle. J Appl Physiol 97:243–248PubMedGoogle Scholar
  122. 122.
    Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A (2010) Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 191:1395–1411PubMedCentralPubMedGoogle Scholar
  123. 123.
    Phillips T, Leeuwenburgh C (2005) Muscle fiber-specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J 19:668–670PubMedGoogle Scholar
  124. 124.
    Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20:1545–1556PubMedGoogle Scholar
  125. 125.
    Polge C, Heng AE, Jarzaguet M, Ventadour S, Claustre A, Combaret L, Béchet D, Matondo M, Uttenweiler-Joseph S, Monsarrat B, Attaix D, Taillandier D (2011) Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J 25:3790–3802Google Scholar
  126. 126.
    Puchner EM, Alexandrovich A, Kho AL, Hensen U, Schäfer LV, Brandmeier B, Gräter F, Grubmüller H, Gaub HE, Gautel M (2008) Mechanoenzymatics of titin kinase. Proc Natl Acad Sci U S A 105:13385–13390Google Scholar
  127. 127.
    Puigservez P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839Google Scholar
  128. 128.
    Rahnert JA, Luo Q, Balog EM, Sokoloff AJ, Burkholder TJ (2011) Changes in growth-related kinases in head, neck and limb muscles with age. Exp Gerontol 46:282–291PubMedCentralPubMedGoogle Scholar
  129. 129.
    Ratkevicius A, Joyson A, Selmer I, Dhanani T, Grierson C, Tommasi AM, DeVries A, Rauchhaus P, Crowther D, Alesci S, Yaworsky P, Gilbert F, Redpath TW, Brady J, Fearon KC, Reid DM, Greig CA, Wackerhage H (2011) Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. J Gerontol Series A Biol Sci Med Sci 66:620–626Google Scholar
  130. 130.
    Rieu I, Magne H, Savary-Auzeloux I, Averous J, Bos C, Peyron MA, Combaret L, Dardevet D (2009) Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J Physiol 587:5483–5492PubMedCentralPubMedGoogle Scholar
  131. 131.
    Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013PubMedGoogle Scholar
  132. 132.
    Rosenheimer JL (1990) Factors affecting denervation-like changes at the neuromuscular junction during aging. Int Dev Neurosci 8:643–654Google Scholar
  133. 133.
    Roubenoff R, Hughes VA (2000) Sarcopenia: current concepts. J Gerontol Series A Biol Sci Med Sci 55:M716–M724Google Scholar
  134. 134.
    Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP, Dériaz O (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2874–2881PubMedGoogle Scholar
  135. 135.
    Sakamoto K, Hirshman MF, Aschenbach WG, Goodyear LJ (2002) Contraction regulation of Akt in rat skeletal muscle. J Biol Chem 277:11910–11917PubMedGoogle Scholar
  136. 136.
    Sakuma K, Nishikawa J, Nakao R, Nakano H, Sano M, Watanabe K, Totsuka T (2003) Serum response factor plays an important role in the mechanically overloaded plantaris muscle of rats. Histochem Cell Biol 119:149–160PubMedGoogle Scholar
  137. 137.
    Sakuma K, Akiho M, Nakashima H, Akima H, Yasuhara M (2008) Age-related reductions in expression of serum response factor and myocardin-related transcription factor A in mouse skeletal muscles. Biochim Biophys Acta Mol Basis Dis 1782:453–461Google Scholar
  138. 138.
    Sakuma K, Watanabe K, Hotta N, Koike T, Ishida K, Katayama K, Akima H (2009) The adaptive response in several mediators linked with hypertrophy and atrophy of skeletal muscle after lower limb unloading in humans. Acta Physiol (Oxf) 197:151–159Google Scholar
  139. 139.
    Sakuma K, Yamaguchi A (2010) Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci 3:90–101PubMedGoogle Scholar
  140. 140.
    Sakuma K, Yamaguchi A (2011) Sarcopenia: molecular mechanisms and current therapeutic strategy. In: Perloft JW, Wong AH (eds) Cell aging. Nova Science Publisher, New York, pp 93–152Google Scholar
  141. 141.
    Sakuma K, Yamaguchi A (2011) Inhibitors of myostatin- and proteasome-dependent signaling for attenuating muscle wasting. Recent Pat Regen Med 1:284–298Google Scholar
  142. 142.
    Sakuma K, Yamaguchi A (2012). Serum response factor (SRF)-dependent pathway: potential mediators of skeletal muscle growth and development. In: Pandalai SG (ed) Recent Res Devel Life Sci 5th edn, Research Signpost, Kerala, India, pp 13–37Google Scholar
  143. 143.
    Sakuma K, Yamaguchi A (2012) Cellular and molecular mechanisms regulating the hypertrophy and atrophy of skeletal muscle. In: Willems M (ed) Skeletal muscle: physiology, classification, and disease. Nova Science Publisher, New York, pp 141–194Google Scholar
  144. 144.
    Sakuma K, Yamaguchi A (2012) Sarcopenia and cachexia: the adaptation of negative regulators of skeletal muscle mass. J Cachexia Sarcopenia Muscle 3:77–94PubMedCentralPubMedGoogle Scholar
  145. 145.
    Sakuma K, Yamaguchi A (2013) Serum response factor (SRF)-dependent signaling in regenerating, hypertrophied, and pathological skeletal muscle. Front Pathol Genet 1:1–8Google Scholar
  146. 146.
    Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412PubMedCentralPubMedGoogle Scholar
  147. 147.
    Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 103:16260–16265PubMedCentralPubMedGoogle Scholar
  148. 148.
    Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology 23:160–170PubMedGoogle Scholar
  149. 149.
    Sandri M (2010) Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol 298:C1291–C1297PubMedGoogle Scholar
  150. 150.
    Sandri M (2011) New findings of lysosomal proteolysis in skeletal muscle. Curr Opin Clin Nutr Metab Care 14:223–229PubMedGoogle Scholar
  151. 151.
    Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G, Mammucari C, Meskers CG, Pallafacchina G, Paoli A, Pion D, Roceri M, Romanello V, Serrano AL, Toniolo L, Larsson L, Maier AB, Munoz-Cánoves P, Musaró A, Pende M, Reggiani C, Rizzuto R, Schiaffino S (2013) Signaling pathways regulating muscle mass in ageing skeletal muscle. The role of IGF-1-Akt-mTOR-FoxO pathway. Biogerontology 14:303–323Google Scholar
  152. 152.
    Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296:C1248–C1257PubMedGoogle Scholar
  153. 153.
    Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638PubMedGoogle Scholar
  154. 154.
    Schaap LA, Pluijim SM, Deeg DJ, Harris TB, Kritchevsky SB, Newman AB, Colbert LH, Pahor M, Rubin SM, Tylavsky FA, Visser M (2009) Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol Series A Biol Sci Med Sci 64A:1183–1189Google Scholar
  155. 155.
    Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294–4314PubMedGoogle Scholar
  156. 156.
    Senf SM, Dodd SL, Judge AR (2010) FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. Am J Physiol Cell Physiol 298:C38–C45PubMedCentralPubMedGoogle Scholar
  157. 157.
    Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20:21–30PubMedCentralPubMedGoogle Scholar
  158. 158.
    Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66PubMedCentralPubMedGoogle Scholar
  159. 159.
    Short KR, Vittone JL, Bigelow ML, Proctor DN, Nair KS (2004) Age, and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab 286:E92–E101PubMedGoogle Scholar
  160. 160.
    Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M (2006) Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 209:866–873PubMedGoogle Scholar
  161. 161.
    Siu PM, Pistilli EE, Murlasits Z, Always SE (2006) Hindlimb unloading increases muscle content of cytosolic but not nuclear Id2 and p53 proteins in young adult and aged rats. J Appl Physiol 100:907–916PubMedGoogle Scholar
  162. 162.
    Smith DO, Chapman MR (1987) Acetylcholine receptor binding properties at the rat neuromuscular junction during aging. J Neurochem 48:1834–1841PubMedGoogle Scholar
  163. 163.
    Späte U, Schulze PC (2004) Proinflammatory cytokines and skeletal muscle. Curr Opin Clin Nutr Metab Care 7:265–269PubMedGoogle Scholar
  164. 164.
    Spencer JA, Eliazer S, Ilaria RL Jr, Richardson JA, Olson EN (2000) Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J Cell Biol 150:771–784PubMedCentralPubMedGoogle Scholar
  165. 165.
    Sriram S, Subramanian S, Sathiakumar D, Venkatesh R, Salerno MS, McFarlane CD, Kambadur R, Sharma M (2011) Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-κB. Aging Cell 10:931–948PubMedGoogle Scholar
  166. 166.
    Staron RS, Leonardi MJ, Karapondo DL, Malicky ES, Falkel JE, Hagerman FC, Hikida RS (1991) Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. J Appl Physiol 70:631–640PubMedGoogle Scholar
  167. 167.
    Terman A, Brunk UT (2006) Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 8:197–204PubMedGoogle Scholar
  168. 168.
    Thomas MM, Vigna C, Betik AC, Tupling AR, Hepple RT (2010) Initiating treadmill training in late middle age offers modest adaptations in Ca2+ handling but enhances oxidative damage in senescent rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 298:R1269–R1278PubMedGoogle Scholar
  169. 169.
    Thomson DM, Gordon SE (2006) Impaired overload-induced muscle growth is associated with diminished translational signaling in aged rat fast-twitch skeletal muscle. J Physiol 574:291–305PubMedCentralPubMedGoogle Scholar
  170. 170.
    Treisman R (1987) Identification and purification of a polypeptide that binds to the c-fos serum response element. EMBO J 6:2711–2717PubMedCentralPubMedGoogle Scholar
  171. 171.
    Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296:C1258–C1270PubMedGoogle Scholar
  172. 172.
    Vainshtein A, Grumati P, Sandri M, Bonaldo P (2014) Skeletal muscle, autophagy, and physical activity: the ménage á trois of metabolic regulation in health and disease. J Mol Med 92:127–137PubMedGoogle Scholar
  173. 173.
    Van Gammeren D, Damrauer JS, Jackman RW, Kandarian SC (2009) The IkappaB kinases IKKalpha and IKKbeta are necessary and sufficient for skeletal muscle atrophy. FASEB J 23:362–370PubMedCentralPubMedGoogle Scholar
  174. 174.
    von Haehling S, Morley JE, Anker SD (2010) An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 1:129–133Google Scholar
  175. 175.
    Wehling M, Cai B, Tidball JG (2000) Modulation of myostatin expression during modified muscle use. FASEB J 14:103–110PubMedGoogle Scholar
  176. 176.
    Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA (2003) Gene expression profile of aging in human muscle. Physiol Genomics 14:149–159PubMedGoogle Scholar
  177. 177.
    Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 106:20405–20410PubMedCentralPubMedGoogle Scholar
  178. 178.
    White TA, LeBrasseur NK (2014) Myostatin and sarcopenia: opportunities and challenges—a mini-review. Gerontology (in press)Google Scholar
  179. 179.
    Whitman SA, Wacker MJ, Richmond SR, Godard MP (2005) Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflugers Arch 450:437–446PubMedGoogle Scholar
  180. 180.
    Wilkes EA, Selby AL, Atherton PJ, Patel R, Tankin D, Smith K, Rennie MJ (2009) Blunting of insulin inhibition of proteolysis in legs of older subjects may contribute to age-related sarcopenia. Am J Clin Nutr 90:1343–1350PubMedGoogle Scholar
  181. 181.
    Wohlgemuth SE, Julian D, Akin DE, Fried J, Toscano K, Leeuwenburgh C, Dunn WA Jr (2007) Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenat Res 10:281–292Google Scholar
  182. 182.
    Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45:138–148PubMedCentralPubMedGoogle Scholar
  183. 183.
    Wolfman NM, McPherron AC, Pappano WN, Davies MV, Song K, Tomkinson KN, Wright JF, Zhao L, Sebald SM, Greenspan DS, Lee SJ (2003) Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci U S A 100:15842–15846PubMedCentralPubMedGoogle Scholar
  184. 184.
    Yang W, Zhang Y, Li Y, Wu Z, Zhu D (2007) Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/Akt/GSK-3β pathway and is antagonized by insulin-like growth factor 1. J Biol Chem 282:3799–3808PubMedGoogle Scholar
  185. 185.
    Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF (2002) Serum myostatin-immunoreactive protein is increased in 60- to 92-year-old women and men with muscle wasting. J Nutr Health Aging 6:343–348PubMedGoogle Scholar
  186. 186.
    Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–483PubMedGoogle Scholar
  187. 187.
    Zhou J, Freeman TA, Ahmad F, Shang X, Mangano E, Gao E, Farber J, Wang Y, Ma X-L, Woodgett J, Vagnozzi RJ, Lai H, Force T (2013) GSK-3α is a central regulator of age-related pathologies in mice. J Clin Invest 123:1821–1832PubMedCentralPubMedGoogle Scholar
  188. 188.
    Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296:1486–1488Google Scholar
  189. 189.
    Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kunihiro Sakuma
    • 1
  • Wataru Aoi
    • 2
  • Akihiko Yamaguchi
    • 3
  1. 1.Research Center for Physical Fitness, Sports and HealthToyohashi University of TechnologyToyohashiJapan
  2. 2.Laboratory of Health Science, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
  3. 3.Department of Physical TherapyHealth Sciences University of HokkaidoKanazawa, Ishikari-TobetsuJapan

Personalised recommendations