T-type channel-mediated neurotransmitter release

  • Emilio CarboneEmail author
  • Chiara Calorio
  • David H. F. Vandael
Invited Review


Besides controlling a wide variety of cell functions, T-type channels have been shown to regulate neurotransmitter release in peripheral and central synapses and neuroendocrine cells. Growing evidence over the last 10 years suggests a key role of Cav3.2 and Cav3.1 channels in controlling basal neurosecretion near resting conditions and sustained release during mild stimulations. In some cases, the contribution of low-voltage-activated (LVA) channels is not directly evident but requires either the activation of coupled presynaptic receptors, block of ion channels, or chelation of metal ions. Concerning the coupling to the secretory machinery, T-type channels appear loosely coupled to neurotransmitter and hormone release. In neurons, Cav3.2 and Cav3.1 channels mainly control the asynchronous appearance of “minis” [miniature inhibitory postsynaptic currents (mIPSCs) and miniature excitatory postsynaptic currents (mEPSCs)]. The same loose coupling is evident from membrane capacity and amperometric recordings in chromaffin cells and melanotropes where the low-threshold-driven exocytosis possesses the same linear Ca2+ dependence of the other voltage-gated Ca2+ channels (Cav1 and Cav2) that is strongly attenuated by slow calcium buffers. The intriguing issue is that, despite not expressing a consensus “synprint” site, Cav3.2 channels do interact with syntaxin 1A and SNAP-25 and, thus, may form nanodomains with secretory vesicles that can be regulated at low voltages. In this review, we discuss all the past and recent issues related to T-type channel-secretion coupling in neurons and neuroendocrine cells.


LVA calcium channels T-type channel-secretion coupling Vesicle exocytosis Neurons Synaptic transmission Neuroendocrine chromaffin cells 



The authors thank the Italian M.I.U.R., Regione Piemonte, Università di Torino, Compagnia di San Paolo di Torino for funding.


  1. 1.
    Albillos A, Garcia AG, Gandia L (1993) omega-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells. FEBS Lett 336:259–262PubMedGoogle Scholar
  2. 2.
    Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JDT, Hameed S, Zamponi GW, Turner RW (2010) Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosci 13:333–337. doi: 10.1038/nn.2493 Google Scholar
  3. 3.
    Angstadt JD, Calabrese RL (1991) Calcium currents and graded synaptic transmission between heart interneurons of the leech. J Neurosci 11:746–759PubMedGoogle Scholar
  4. 4.
    Artalejo CR, Dahmer MK, Perlman RL, Fox AP (1991) Two types of Ca2+ currents are found in bovine chromaffin cells: facilitation is due to the recruitment of one type. J Physiol 432:681–707PubMedCentralPubMedGoogle Scholar
  5. 5.
    Bao JP, Li JJ, Perl ER (1998) Differences in Ca2+ channels governing generation of miniature and evoked excitatory synaptic currents in spinal laminae I and II. J Neurosci 18:8740–8750PubMedGoogle Scholar
  6. 6.
    Berntson A, Taylor WR, Morgans CW (2002) Molecular identity, synaptic localization, and physiology of calcium channels in retinal bipolar cells. J Neurosci Res 71:146–151. doi: 10.1002/jnr.10459 Google Scholar
  7. 7.
    Blasco-Ibanez JM, Martinez-Guijarro FJ, Freund TF (2000) Recurrent mossy fibers preferentially innervate parvalbumin-immunoreactive interneurons in the granule cell layer of the rat dentate gyrus. Neuroreport 11:3219–3225PubMedGoogle Scholar
  8. 8.
    Borland G, Smith BO, Yarwood SJ (2009) EPAC proteins transduce diverse cellular actions of cAMP. Br J Pharmacol 158:70–86. doi: 10.1111/j.1476-5381.2008.00087.x, Epub 2009 Feb 6PubMedCentralPubMedGoogle Scholar
  9. 9.
    Bournaud R, Hidalgo J, Yu H, Jaimovich E, Shimahara T (2001) Low threshold T-type calcium current in rat embryonic chromaffin cells. J Physiol 537:35–44PubMedCentralPubMedGoogle Scholar
  10. 10.
    Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D (2003) Alpha1E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci U S A 100:12450–12455. doi: 10.1073/pnas.2035117100 PubMedCentralPubMedGoogle Scholar
  11. 11.
    Bucurenciu I, Kulik A, Schwaller B, Frotscher M, Jonas P (2008) Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron 57:536–545. doi: 10.1016/j.neuron.2007.12.026 PubMedGoogle Scholar
  12. 12.
    Buttigieg J, Brown S, Holloway AC, Nurse CA (2009) Chronic nicotine blunts hypoxic sensitivity in perinatal rat adrenal chromaffin cells via upregulation of KATP channels: role of alpha7 nicotinic acetylcholine receptor and hypoxia-inducible factor-2alpha. J Neurosci 29:7137–7147. doi: 10.1523/jneurosci.0544-09.2009 PubMedGoogle Scholar
  13. 13.
    Carabelli V, Carra I, Carbone E (1998) Localized secretion of ATP and opioids revealed through single Ca2+ channel modulation in bovine chromaffin cells. Neuron 20:1255–1268PubMedGoogle Scholar
  14. 14.
    Carabelli V, Giancippoli A, Baldelli P, Carbone E, Artalejo AR (2003) Distinct potentiation of L-type currents and secretion by cAMP in rat chromaffin cells. Biophys J 85:1326–1337. doi: 10.1016/s0006-3495(03)74567-6 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Carabelli V, Marcantoni A, Comunanza V, Carbone E (2007) Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+-dependence. Eur Biophys J 36:753–762. doi: 10.1007/s00249-007-0138-2 PubMedGoogle Scholar
  16. 16.
    Carabelli V, Marcantoni A, Comunanza V, de Luca A, Diaz J, Borges R, Carbone E (2007) Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol 584:149–165. doi: 10.1113/jphysiol.2007.132274 PubMedCentralPubMedGoogle Scholar
  17. 17.
    Carbone E, Giancippoli A, Marcantoni A, Guido D, Carabelli V (2006) A new role for T-type channels in fast “low-threshold” exocytosis. Cell Calcium 40:147–154. doi: 10.1016/j.ceca.2006.04.019 PubMedGoogle Scholar
  18. 18.
    Carbone E, Lux HD (1984) A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J 46:413–418. doi: 10.1016/s0006-3495(84)84037-0 PubMedCentralPubMedGoogle Scholar
  19. 19.
    Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310:501–502PubMedGoogle Scholar
  20. 20.
    Carbone E, Lux HD (1987) Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones. J Physiol 386:547–570PubMedCentralPubMedGoogle Scholar
  21. 21.
    Carbone E, Marcantoni A, Giancippoli A, Guido D, Carabelli V (2006) T-type channels-secretion coupling: evidence for a fast low-threshold exocytosis. Pflugers Arch 453:373–383. doi: 10.1007/s00424-006-0100-7 PubMedGoogle Scholar
  22. 22.
    Catterall WA (1999) Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann N Y Acad Sci 868:144–159PubMedGoogle Scholar
  23. 23.
    Cena V, Nicolas GP, Sanchez-Garcia P, Kirpekar SM, Garcia AG (1983) Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release. Neuroscience 10:1455–1462PubMedGoogle Scholar
  24. 24.
    Cesetti T, Hernandez-Guijo JM, Baldelli P, Carabelli V, Carbone E (2003) Opposite action of beta1- and beta2-adrenergic receptors on Ca(V)1 L-channel current in rat adrenal chromaffin cells. J Neurosci 23:73–83PubMedGoogle Scholar
  25. 25.
    Colomer C, Lafont C, Guerineau NC (2008) Stress-induced intercellular communication remodeling in the rat adrenal medulla. In: Kvetnansky R, Aguilera G, Goldstein D, Jezova D, Krizanova O, Sabban EL, Pacak K (eds) Stress, neurotransmitters, and hormones: neuroendocrine and genetic mechanisms. pp. 106-111Google Scholar
  26. 26.
    Comunanza V, Carbone E, Marcantoni A, Sher E, Ursu D (2011) Calcium-dependent inhibition of T-type calcium channels by TRPV1 activation in rat sensory neurons. Pflugers Arch 462:709–722. doi: 10.1007/s00424-011-1023-5 PubMedGoogle Scholar
  27. 27.
    Comunanza V, Marcantoni A, Vandael DH, Mahapatra S, Gavello D, Carabelli V, Carbone E (2010) CaV1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis? Channels (Austin) 4:440–446Google Scholar
  28. 28.
    Cueni L, Canepari M, Adelman JP, Luthi A (2008) Ca(2+) signaling by T-type Ca(2+) channels in neurons. Pflugers Arch 457:1161–1172. doi: 10.1007/s00424-008-0582-6 PubMedGoogle Scholar
  29. 29.
    Day NC, Shaw PJ, McCormack AL, Craig PJ, Smith W, Beattie R, Williams TL, Ellis SB, Ince PG, Harpold MM, Lodge D, Volsen SG (1996) Distribution of alpha 1A, alpha 1B and alpha 1E voltage-dependent calcium channel subunits in the human hippocampus and parahippocampal gyrus. Neuroscience 71:1013–1024PubMedGoogle Scholar
  30. 30.
    Del Toro R, Levitsky KL, Lopez-Barneo J, Chiara MD (2003) Induction of T-type calcium channel gene expression by chronic hypoxia. J Biol Chem 278:22316–22324. doi: 10.1074/jbc.M212576200 PubMedGoogle Scholar
  31. 31.
    Dietrich D, Kirschstein T, Kukley M, Pereverzev A, von der Brelie C, Schneider T, Beck H (2003) Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39:483–496PubMedGoogle Scholar
  32. 32.
    Egger V, Svoboda K, Mainen ZF (2003) Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J Neurosci 23:7551–7558PubMedGoogle Scholar
  33. 33.
    Egger V, Svoboda K, Mainen ZF (2005) Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike. J Neurosci 25:3521–3530. doi: 10.1523/jneurosci.4746-04.2005 PubMedGoogle Scholar
  34. 34.
    Engbers JDT, Anderson D, Asmara H, Rehak R, Mehaffey WH, Hameed S, McKay BE, Kruskic M, Zamponi GW, Turner RW (2012) Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 109:2601–2606. doi: 10.1073/pnas.1115024109 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Gackiere F, Bidaux G, Delcourt P, Van Coppenolle F, Katsogiannou M, Dewailly E, Bavencoffe A, Van Chuoi-Mariot MT, Mauroy B, Prevarskaya N, Mariot P (2008) CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 283:10162–10173. doi: 10.1074/jbc.M707159200 PubMedGoogle Scholar
  36. 36.
    Garcia-Palomero E, Renart J, Andres-Mateos E, Solis-Garrido LM, Matute C, Herrero CJ, Garcia AG, Montiel C (2001) Differential expression of calcium channel subtypes in the bovine adrenal medulla. Neuroendocrinology 74:251–261PubMedGoogle Scholar
  37. 37.
    Gasparini S, Kasyanov AM, Pietrobon D, Voronin LL, Cherubini E (2001) Presynaptic R-type calcium channels contribute to fast excitatory synaptic transmission in the rat hippocampus. J Neurosci 21:8715–8721PubMedGoogle Scholar
  38. 38.
    Giancippoli A, Novara M, de Luca A, Baldelli P, Marcantoni A, Carbone E, Carabelli V (2006) Low-threshold exocytosis induced by cAMP-recruited CaV3.2 (alpha1H) channels in rat chromaffin cells. Biophys J 90:1830–1841. doi: 10.1529/biophysj.105.071647 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Giordanetto F, Knerr L, Wallberg A (2011) T-type calcium channels inhibitors: a patent review. Exp Opin Ther Patents 21:85–101. doi: 10.1517/13543776.2011.536532 Google Scholar
  40. 40.
    Gosso S, Gavello D, Giachello CN, Franchino C, Carbone E, Carabelli V (2011) The effect of CdSe-ZnS quantum dots on calcium currents and catecholamine secretion in mouse chromaffin cells. Biomaterials 32:9040–9050. doi: 10.1016/j.biomaterials.2011.08.031 PubMedGoogle Scholar
  41. 41.
    Grauert A, Engel D, Ruiz AJ (2014) Endogenous zinc depresses GABAergic transmission via T-type Ca2+ channels and broadens the time window for integration of glutamatergic inputs in dentate granule cells. J Physiol Lond 592:67–86. doi: 10.1113/jphysiol.2013.261420 PubMedGoogle Scholar
  42. 42.
    Guerineau NC, Desarmenien MG (2010) Developmental and stress-induced remodeling of cell-cell communication in the adrenal medullary tissue. Cell Mol Neurobiol 30:1425–1431. doi: 10.1007/s10571-010-9583-z PubMedCentralPubMedGoogle Scholar
  43. 43.
    Guerineau NC, Desarmenien MG, Carabelli V, Carbone E (2012) Functional chromaffin cell plasticity in response to stress: focus on nicotinic, gap junction, and voltage-gated Ca2+ channels. J Mol Neurosci 48:368–386. doi: 10.1007/s12031-012-9707-7 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Harkins AB, Cahill AL, Powers JF, Tischler AS, Fox AP (2003) Expression of recombinant calcium channels support secretion in a mouse pheochromocytoma cell line. J Neurophysiol 90:2325–2333. doi: 10.1152/jn.00425.2003 PubMedGoogle Scholar
  45. 45.
    Hernandez-Guijo JM, de Pascual R, Garcia AG, Gandia L (1998) Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions. Pflugers Arch 436:75–82PubMedGoogle Scholar
  46. 46.
    Hill J, Chan SA, Kuri B, Smith C (2011) Pituitary adenylate cyclase-activating peptide (PACAP) recruits low voltage-activated T-type calcium influx under acute sympathetic stimulation in mouse adrenal chromaffin cells. J Biol Chem 286:42459–42469. doi: 10.1074/jbc.M111.289389 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Hollins B, Ikeda SR (1996) Inward currents underlying action potentials in rat adrenal chromaffin cells. J Neurophysiol 76:1195–1211PubMedGoogle Scholar
  48. 48.
    Huang Z, Lujan R, Kadurin I, Uebele VN, Renger JJ, Dolphin AC, Shah MM (2011) Presynaptic HCN1 channels regulate Ca(V)3.2 activity and neurotransmission at select cortical synapses. Nat Neurosci 14:478. doi: 10.1038/nn.2757, U114PubMedCentralPubMedGoogle Scholar
  49. 49.
    Ikeda H, Heinke B, Ruscheweyh R, Sandkuhler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237–1240. doi: 10.1126/science.1080659 PubMedGoogle Scholar
  50. 50.
    Ivanov AI, Calabrese RL (2000) Intracellular Ca2+ dynamics during spontaneous and evoked activity of leech heart interneurons: low-threshold Ca currents and graded synaptic transmission. J Neurosci 20:4930–4943PubMedGoogle Scholar
  51. 51.
    Iwasaki S, Takahashi T (1998) Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J Physiol 509(Pt 2):419–423PubMedCentralPubMedGoogle Scholar
  52. 52.
    Jacus MO, Uebele VN, Renger JJ, Todorovic SM (2012) Presynaptic Ca(V)3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci 32:9374–9382. doi: 10.1523/jneurosci.0068-12.2012 PubMedCentralPubMedGoogle Scholar
  53. 53.
    Jensen K, Jensen MS, Lambert JD (1999) Role of presynaptic L-type Ca2+ channels in GABAergic synaptic transmission in cultured hippocampal neurons. J Neurophysiol 81:1225–1230PubMedGoogle Scholar
  54. 54.
    Jensen K, Mody I (2001) L-type Ca2+ channel-mediated short-term plasticity of GABAergic synapses. Nat Neurosci 4:975–976. doi: 10.1038/nn722 PubMedGoogle Scholar
  55. 55.
    Kamp MA, Krieger A, Henry M, Hescheler J, Weiergraber M, Schneider T (2005) Presynaptic ‘Ca2.3-containing’ E-type Ca channels share dual roles during neurotransmitter release. Eur J Neurosci 21:1617–1625. doi: 10.1111/j.1460-9568.2005.03984.x PubMedGoogle Scholar
  56. 56.
    Kerckhove N, Mallet C, Francois A, Boudes M, Chemin J, Voets T, Bourinet E, Alloui A, Eschalier A (2014) Ca3.2 calcium channels: the key protagonist in the supraspinal effect of paracetamol. Pain  10.1016/j.pain.2014.01.015
  57. 57.
    Kim Y, Park MK, Uhm D-Y, Chung S (2007) Modulation of T-type Ca2+ channels by corticotropin-releasing factor through protein kinase C pathway in MN9D dopaminergic cells. Biochem Biophys Res Commun 358:796–801. doi: 10.1016/j.bbrc.2007.04.198 PubMedGoogle Scholar
  58. 58.
    Klingauf J, Neher E (1997) Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys J 72:674–690PubMedCentralPubMedGoogle Scholar
  59. 59.
    Kuri BA, Chan SA, Smith CB (2009) PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway. J Neurochem 110:1214–1225. doi: 10.1111/j.1471-4159.2009.06206.x PubMedCentralPubMedGoogle Scholar
  60. 60.
    Lalevee N, Pluciennik F, Joffre M (1997) Voltage-dependent calcium current with properties of T-type current in Sertoli cells from immature rat testis in primary cultures. Biol Reprod 56:680–687PubMedGoogle Scholar
  61. 61.
    Lambert RC, Bessaih T, Crunelli V, Leresche N (2013) The many faces of T-type calcium channels. Pflugers Arch. doi: 10.1007/s00424-013-1353-6 PubMedCentralGoogle Scholar
  62. 62.
    Leuranguer V, Bourinet E, Lory P, Nargeot J (1998) Antisense depletion of beta-subunits fails to affect T-type calcium channels properties in a neuroblastoma cell line. Neuropharmacology 37:701–708PubMedGoogle Scholar
  63. 63.
    Levic S, Dulon D (2012) The temporal characteristics of Ca2+ entry through L-type and T-type Ca2+ channels shape exocytosis efficiency in chick auditory hair cells during development. J Neurophysiol 108:3116–3123. doi: 10.1152/jn.00555.2012 PubMedGoogle Scholar
  64. 64.
    Levitsky KL, Lopez-Barneo J (2009) Developmental change of T-type Ca2+ channel expression and its role in rat chromaffin cell responsiveness to acute hypoxia. J Physiol 587:1917–1929. doi: 10.1113/jphysiol.2009.168989 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Mahapatra S, Calorio C, Vandael DH, Marcantoni A, Carabelli V, Carbone E (2012) Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis. Cell Calcium 51:321–330. doi: 10.1016/j.ceca.2012.01.005 PubMedGoogle Scholar
  66. 66.
    Mahapatra S, Marcantoni A, Zuccotti A, Carabelli V, Carbone E (2012) Equal sensitivity of Cav1.2 and Cav1.3 channels to the opposing modulations of PKA and PKG in mouse chromaffin cells. J Physiol 590:5053–5073. doi: 10.1113/jphysiol.2012.236729 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Mansvelder HD, Kits KS (2000) All classes of calcium channel couple with equal efficiency to exocytosis in rat melanotropes, inducing linear stimulus-secretion coupling. J Physiol 526(Pt 2):327–339PubMedCentralPubMedGoogle Scholar
  68. 68.
    Marcantoni A, Carabelli V, Comunanza V, Hoddah H, Carbone E (2008) Calcium channels in chromaffin cells: focus on L and T types. Acta Physiol (Oxf) 192:233–246. doi: 10.1111/j.1748-1716.2007.01815.x Google Scholar
  69. 69.
    Marcantoni A, Carabelli V, Vandael DH, Comunanza V, Carbone E (2009) PDE type-4 inhibition increases L-type Ca(2+) currents, action potential firing, and quantal size of exocytosis in mouse chromaffin cells. Pflugers Arch 457:1093–1110. doi: 10.1007/s00424-008-0584-4 PubMedGoogle Scholar
  70. 70.
    Marcantoni A, Vandael DH, Mahapatra S, Carabelli V, Sinnegger-Brauns MJ, Striessnig J, Carbone E (2010) Loss of Cav1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells. J Neurosci 30:491–504. doi: 10.1523/jneurosci.4961-09.2010 PubMedGoogle Scholar
  71. 71.
    Murakami N, Ishibashi H, Katsurabayashi S, Akaike N (2002) Calcium channel subtypes on single GABAergic presynaptic terminal projecting to rat hippocampal neurons. Brain Res 951:121–129PubMedGoogle Scholar
  72. 72.
    Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A 79:6712–6716PubMedCentralPubMedGoogle Scholar
  73. 73.
    Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861–872. doi: 10.1016/j.neuron.2008.08.019 PubMedGoogle Scholar
  74. 74.
    Nilius B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium-channel in ventricular cells. Nature 316:443–446. doi: 10.1038/316443a0 PubMedGoogle Scholar
  75. 75.
    Nilius B, Talavera K, Verkhratsky A (2006) T-type calcium channels: the never ending story. Cell Calcium 40:81–88. doi: 10.1016/j.ceca.2006.04.011 PubMedGoogle Scholar
  76. 76.
    Novara M, Baldelli P, Cavallari D, Carabelli V, Giancippoli A, Carbone E (2004) Exposure to cAMP and beta-adrenergic stimulation recruits Ca(V)3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins. J Physiol 558:433–449. doi: 10.1113/jphysiol.2004.061184 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Pan ZH, Hu HJ, Perring P, Andrade R (2001) T-type Ca2+ channels mediate neurotransmitter release in retinal bipolar cells. Neuron 32:89–98. doi: 10.1016/s0896-6273(01)00454-8 PubMedGoogle Scholar
  78. 78.
    Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161. doi: 10.1152/physrev.00018.2002 PubMedGoogle Scholar
  79. 79.
    Rehak R, Bartoletti TM, Engbers JDT, Berecki G, Turner RW, Zamponi GW (2013) Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One 8: doi:  10.1371/journal.pone.0061844
  80. 80.
    Remondes M, Schuman EM (2004) Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature 431:699–703. doi: 10.1038/nature02965 PubMedGoogle Scholar
  81. 81.
    Rozanski GM, Kim H, Li Q, Wong FK, Stanley EF (2012) Slow chemical transmission between dorsal root ganglion neuron somata. Eur J Neurosci 36:3314–3321. doi: 10.1111/j.1460-9568.2012.08233.x PubMedGoogle Scholar
  82. 82.
    Rozanski GM, Li Q, Kim H, Stanley EF (2013) Purinergic transmission and transglial signaling between neuron somata in the dorsal root ganglion. Eur J Neurosci 37:359–365. doi: 10.1111/ejn.12082 PubMedGoogle Scholar
  83. 83.
    Rozanski GM, Li Q, Stanley EF (2013) Transglial transmission at the dorsal root ganglion sandwich synapse: glial cell to postsynaptic neuron communication. Eur J Neurosci 37:1221–1228. doi: 10.1111/ejn.12132 PubMedGoogle Scholar
  84. 84.
    Rozanski GM, Nath AR, Adams ME, Stanley EF (2013) Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse. J Physiol Lond 591:5575–5583. doi: 10.1113/jphysiol.2013.260281 PubMedGoogle Scholar
  85. 85.
    Seidler FJ, Slotkin TA (1985) Adrenomedullary function in the neonatal rat: responses to acute hypoxia. J Physiol Lond 358:1–16PubMedCentralPubMedGoogle Scholar
  86. 86.
    Seress L, Gallyas F (2000) The use of a sodium tungstate developer markedly improves the electron microscopic localization of zinc by the Timm method. J Neurosci Methods 100:33–39PubMedGoogle Scholar
  87. 87.
    Shipe WD, Barrow JC, Yang Z-Q, Lindsley CW, Yang FV, Schlegel K-AS, Shu Y, Rittle KE, Bock MG, Hartman GD, Tang C, Ballard JE, Kuo Y, Adarayan ED, Prueksaritanont T, Zrada MM, Uebele VN, Nuss CE, Connolly TM, Doran SM, Fox SV, Kraus RL, Marino MJ, Gratifelds VK, Vargas HM, Bunting PB, Hasbun-Manning M, Evans RM, Koblan KS, Renger JJ (2008) Design, synthesis, and evaluation of a novel 4-aminomethyl-4-fluoropiperidine as a T-type Ca(2+) channel antagonist. J Med Chem 51:3692–3695. doi: 10.1021/jm800419w PubMedGoogle Scholar
  88. 88.
    Singer JH, Diamond JS (2003) Sustained Ca2+ entry elicits transient postsynaptic currents at a retinal ribbon synapse. J Neurosci 23:10923–10933PubMedGoogle Scholar
  89. 89.
    Smith CB, Eiden LE (2012) Is PACAP the major neurotransmitter for stress transduction at the adrenomedullary synapse? J Mol Neurosci 48:403–412. doi: 10.1007/s12031-012-9749-x PubMedGoogle Scholar
  90. 90.
    Souvannakitti D, Nanduri J, Yuan G, Kumar GK, Fox AP, Prabhakar NR (2010) NADPH oxidase-dependent regulation of T-type Ca2+ channels and ryanodine receptors mediate the augmented exocytosis of catecholamines from intermittent hypoxia-treated neonatal rat chromaffin cells. J Neurosci 30:10763–10772. doi: 10.1523/jneurosci.2307-10.2010 PubMedGoogle Scholar
  91. 91.
    Sun HS, Hui K, Lee DW, Feng ZP (2007) Zn2+ sensitivity of high- and low-voltage activated calcium channels. Biophys J 93:1175–1183. doi: 10.1529/biophysj.106.103333 PubMedCentralPubMedGoogle Scholar
  92. 92.
    Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911PubMedGoogle Scholar
  93. 93.
    Tang A-H, Karson MA, Nagode DA, McIntosh JM, Uebele VN, Renger JJ, Klugmann M, Milner TA, Alger BE (2011) Nerve terminal nicotinic acetylcholine receptors initiate quantal GABA release from perisomatic interneurons by activating axonal T-type (Ca(v)3) Ca2+ channels and Ca2+ release from stores. J Neurosci 31:13546–13561. doi: 10.1523/jneurosci.2781-11.2011 PubMedCentralPubMedGoogle Scholar
  94. 94.
    Todorovic SM, Jevtovic-Todorovic V (2013) Neuropathic pain: role for presynaptic T-type channels in nociceptive signaling. Pflugers Arch Eur J Physiol 465:921–927. doi: 10.1007/s00424-012-1211-y Google Scholar
  95. 95.
    Traboulsie A, Chemin J, Chevalier M, Quignard JF, Nargeot J, Lory P (2006) Subunit-specific modulation of T-type calcium channels by zinc. J Physiol 578:159–171. doi: 10.1113/jphysiol.2006.114496 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Uebele VN, Nuss CE, Santarelli VP, Garson SL, Kraus RL, Barrow JC, Stauffer SR, Koblan KS, Renger JJ, Aton S, Seibt J, Dumoulin M, Jha SK, Coleman T, Frank MG (2009) T-type calcium channels regulate cortical plasticity in-vivo (vol 20, pg 257, 2009). Neuroreport 20:973. doi: 10.1097/WNR.0b013e32832f573b Google Scholar
  97. 97.
    Urbano FJ, Piedras-Renteria ES, Jun K, Shin HS, Uchitel OD, Tsien RW (2003) Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q-type Ca2+ channels. Proc Natl Acad Sci U S A 100:3491–3496. doi: 10.1073/pnas.0437991100 PubMedCentralPubMedGoogle Scholar
  98. 98.
    Vandael DH, Zuccotti A, Striessnig J, Carbone E (2012) Ca(V)1.3-driven SK channel activation regulates pacemaking and spike frequency adaptation in mouse chromaffin cells. J Neurosci 32:16345–16359. doi: 10.1523/jneurosci.3715-12.2012 PubMedGoogle Scholar
  99. 99.
    Weber AM, Wong FK, Tufford AR, Schlichter LC, Matveev V, Stanley EF (2010) N-type Ca2+ channels carry the largest current: implications for nanodomains and transmitter release. Nat Neurosci 13:1348–1350. doi: 10.1038/nn.2657 PubMedGoogle Scholar
  100. 100.
    Weiss N, Hameed S, Fernandez-Fernandez JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M (2012) A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 287:2810–2818. doi: 10.1074/jbc.M111.290882 PubMedCentralPubMedGoogle Scholar
  101. 101.
    Weiss N, Zamponi GW (2012) Regulation of voltage-gated calcium channels by synaptic proteins. Adv Exp Med Biol 740:759–775. doi: 10.1007/978-94-007-2888-2_33 PubMedGoogle Scholar
  102. 102.
    Weiss N, Zamponi GW (2013) Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta Biomembr 1828:1579–1586. doi: 10.1016/j.bbamem.2012.07.031 Google Scholar
  103. 103.
    Wilkinson MF, Barnes S (1996) The dihydropyridine-sensitive calcium channel subtype in cone photoreceptors. J Gen Physiol 107:621–630PubMedGoogle Scholar
  104. 104.
    Wu LG, Borst JG, Sakmann B (1998) R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc Natl Acad Sci U S A 95:4720–4725PubMedCentralPubMedGoogle Scholar
  105. 105.
    Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR (2008) Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol 217:674–685. doi: 10.1002/jcp.21537 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Zanatta AP, Zanatta L, Goncalves R, Zamoner A, Silva FR (2013) Rapid responses to reverse T(3) hormone in immature rat Sertoli cells: calcium uptake and exocytosis mediated by integrin. PLoS One 8:e77176. doi: 10.1371/journal.pone.0077176 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Emilio Carbone
    • 1
    Email author
  • Chiara Calorio
    • 1
  • David H. F. Vandael
    • 1
  1. 1.Department of Drug Science, Lab of Cellular Physiology and Molecular Neuroscience, NIS Center, CNISM UnitUniversity of TorinoTorinoItaly

Personalised recommendations