Advertisement

Role for T-type Ca2+ channels in sleep waves

  • Vincenzo CrunelliEmail author
  • Francois David
  • Nathalie Leresche
  • Régis C. LambertEmail author
Invited Review

Abstract

Since their discovery more than 30 years ago, low-threshold T-type Ca2+ channels (T channels) have been suggested to play a key role in many EEG waves of non-REM sleep, which has remained exclusively linked to the ability of these channels to generate low-threshold Ca2+ potentials and associated high-frequency bursts of action potentials. Our present understanding of the biophysics and physiology of T channels, however, highlights a much more diverse and complex picture of the pivotal contributions that they make to different sleep rhythms. In particular, recent experimental evidence has conclusively demonstrated the essential contribution of thalamic T channels to the expression of slow waves of natural sleep and the key role played by Ca2+ entry through these channels in the activation or modulation of other voltage-dependent channels that are important for the generation of both slow waves and sleep spindles. However, the precise contribution to sleep rhythms of T channels in cortical neurons and other sleep-controlling neuronal networks remains unknown, and a full understanding of the cellular and network mechanisms of sleep delta waves is still lacking.

Keywords

Cortex Thalamus Sleep slow oscillation Sleep spindles Delta waves Slow waves Theta waves ITwindow Ih ICAN Sleep waves Ca2+ channels Neural networks 

Notes

Acknowledgments

VC work in this field is supported by The Wellcome Trust (grant 91882); NL and RCL work by Agence Nationale de la Recherche (grant MNMP-2009) and CNRS (LEA 528).

References

  1. 1.
    Achermann P, Borbely AA (1997) Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81:213–222PubMedCrossRefGoogle Scholar
  2. 2.
    Amzica F, Steriade M (1997) The K-complex: its slow (<1-Hz) rhythmicity and relation to delta waves. Neurology 49:952–959PubMedCrossRefGoogle Scholar
  3. 3.
    Amzica F, Steriade M (2002) The functional significance of K-complexes. Sleep Med Rev 6:139–149PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson MP, Mochizuki T, Xie J, Fischler W, Manger JP, Talley EM, Scammell TE, Tonegawa S (2005) Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc Natl Acad Sci U S A 102:1743–1748PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Astori S, Wimmer RD, Luthi A (2013) Manipulating sleep spindles—expanding views on sleep, memory, and disease. Trends Neurosci 36:738–748PubMedCrossRefGoogle Scholar
  6. 6.
    Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Luthi A (2011) The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci U S A 108:13823–13828PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Bal T, von Krosigk M, McCormick DA (1995) Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. J Physiol Lond 483:665–685PubMedCentralPubMedGoogle Scholar
  8. 8.
    Bal T, von Krosigk M, McCormick DA (1995) Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. J Physiol Lond 483:641–663PubMedCentralPubMedGoogle Scholar
  9. 9.
    Bessaih T, Leresche N, Lambert RC (2008) T current potentiation increases the occurrence and temporal fidelity of synaptically evoked burst firing in sensory thalamic neurons. Proc Natl Acad Sci U S A 105:11376–11381PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Blethyn KL, Hughes SW, Tóth TI, Cope DW, Crunelli V (2006) Neuronal basis of the slow (<1Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. J Neurosci 26:2474–2486PubMedCrossRefGoogle Scholar
  11. 11.
    Bossu JL, Feltz A (1986) Inactivation of the low-threshold transient calcium current in rat sensory neurones: evidence for a dual process. J Physiol 376:341–357PubMedCentralPubMedGoogle Scholar
  12. 12.
    Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92:1087–1187PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310:501–502PubMedCrossRefGoogle Scholar
  14. 14.
    Chauvette S, Crochet S, Volgushev M, Timofeev I (2011) Properties of slow oscillation during slow-wave sleep and anesthesia in cats. J Neurosci Off J Soc Neurosci 31:14998–15008CrossRefGoogle Scholar
  15. 15.
    Chemin J, Monteil A, Perez-Reyes E, Bourinet E, Nargeot J, Lory P (2002) Specific contribution of human T-type calcium channel isotypes (alpha(1G), alpha(1H) and alpha(1I)) to neuronal excitability. J Physiol 540:3–14PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15:604–622PubMedGoogle Scholar
  17. 17.
    Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP states in the neocortex. Nature 423:283–288PubMedCrossRefGoogle Scholar
  18. 18.
    Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (1998) Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 83:103–109PubMedCrossRefGoogle Scholar
  19. 19.
    Crunelli V, Blethyn KL, Cope DW, Hughes SW, Parri HR, Turner JP, Toth TI, Williams SR (2002) Novel neuronal and astrocytic mechanisms in thalamocortical loop dynamics. Philos Trans R Soc London B-Biol Sci 357:1675–1693PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Crunelli V, Cope DW, Hughes SW (2006) Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 40:175–190PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13:9–17PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW (2005) The 'window' T-type calcium current in brain dynamics of different behavioural states. J Physiol 562:121–129PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Cueni L, Canepari M, Adelman JP, Luthi A (2009) Ca(2+) signaling by T-type Ca(2+) channels in neurons. Arch Eur J Physiol 457:1161–1172CrossRefGoogle Scholar
  24. 24.
    Cueni L, Canepari M, Lujan R, Emmenegger Y, Watanabe M, Bond CT, Franken P, Adelman JP, Luthi A (2008) T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 11:683–692PubMedCrossRefGoogle Scholar
  25. 25.
    Cvetkovic-Lopes V, Eggermann E, Uschakov A, Grivel J, Bayer L, Jones BE, Serafin M, Muhlethaler M (2010) Rat hypocretin/orexin neurons are maintained in a depolarized state by TRPC channels. PLoS ONE 5:e15673PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    David F, Schmiedt JT, Taylor HL, Orban G, Di Giovanni G, Uebele VN, Renger JJ, Lambert RC, Leresche N, Crunelli V (2013) Essential thalamic contribution to slow waves of natural sleep. J Neurosci Off J Soc Neurosci 33:19599–19610CrossRefGoogle Scholar
  27. 27.
    De Gennaro L, Ferrara M (2003) Sleep spindles: an overview. Sleep Med Rev 7:423–440PubMedCrossRefGoogle Scholar
  28. 28.
    de la Pena E, Geijo-Barrientos E (1996) Laminar localization, morphology, and physiological properties of pyramidal neurons that have the low-threshold calcium current in the guinea-pig medial frontal cortex. J Neurosci Off J Soc Neurosci 16:5301–5311Google Scholar
  29. 29.
    Deleuze C, David F, Behuret S, Sadoc G, Shin HS, Uebele VN, Renger JJ, Lambert RC, Leresche N, Bal T (2012) T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex. J Neurosci Off J Soc Neurosci 32:12228–12236CrossRefGoogle Scholar
  30. 30.
    Deschenes M, Paradis M, Roy JP, Steriade M (1984) Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol 51:1196–1219PubMedGoogle Scholar
  31. 31.
    Destexhe A, Neubig M, Ulrich D, Huguenard J (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574–3588PubMedGoogle Scholar
  32. 32.
    Domich L, Oakson G, Steriade M (1986) Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurones. J Physiol Lond 379:429–449PubMedCentralPubMedGoogle Scholar
  33. 33.
    Dossi RC, Nunez A, Steriade M (1992) Electrophysiology of a slow (0.5-4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J Physiol Lond 447:215–234PubMedCentralPubMedGoogle Scholar
  34. 34.
    Dreyfus FM, Tscherter A, Errington AC, Renger JJ, Shin HS, Uebele VN, Crunelli V, Lambert RC, Leresche N (2010) Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window. J Neurosci Off J Soc Neurosci 30:99–109CrossRefGoogle Scholar
  35. 35.
    Eggermann E, Bayer L, Serafin M, Saint-Mleux B, Bernheim L, Machard D, Jones BE, Muhlethaler M (2003) The wake-promoting hypocretin-orexin neurons are in an intrinsic state of membrane depolarization. J Neurosci Off J Soc Neurosci 23:1557–1562Google Scholar
  36. 36.
    Fedulova SA, Kostyuk PG, Veselovsky NS (1985) Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol 359:431–446PubMedCentralPubMedGoogle Scholar
  37. 37.
    Ferri R, Rundo F, Bruni O, Terzano MG, Stam CJ (2005) Dynamics of the EEG slow-wave synchronization during sleep. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 116:2783–2795CrossRefGoogle Scholar
  38. 38.
    Friedman A, Gutnick MJ (1987) Low-threshold calcium electrogenesis in neocortical neurons. Neurosci Lett 81:117–122PubMedCrossRefGoogle Scholar
  39. 39.
    Fuentealba P, Timofeev I, Steriade M (2004) Prolonged hyperpolarizing potentials precede spindle oscillations in the thalamic reticular nucleus. Proc Natl Acad Sci U S A 101:9816–9821PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlethaler M, Serafin M (2000) Identification of sleep-promoting neurons in vitro. Nature 404:992–995PubMedCrossRefGoogle Scholar
  41. 41.
    Hamill OP, Huguenard JR, Prince DA (1991) Patch-clamp studies of voltage-gated currents in identified neurons of the rat cerebral cortex. Cereb Cortex 1:48–61PubMedCrossRefGoogle Scholar
  42. 42.
    Hirsch JC, Fourment A, Marc ME (1983) Sleep-related variations of membrane potential in the lateral geniculate body relay neurons of the cat. Brain Res 259:308–312PubMedCrossRefGoogle Scholar
  43. 43.
    Hughes SW, Cope DW, Blethyn KL, Crunelli V (2002) Cellular mechanisms of the slow (1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 33:947–958PubMedCrossRefGoogle Scholar
  44. 44.
    Hughes SW, Cope DW, Toth TI, Williams SR, Crunelli V (1999) All thalamocortical neurones possess a T-type Ca2+ 'window' current that enables the expression of bistability-mediated activities. J Physiol Lond 517:805–815PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12:3804–17PubMedGoogle Scholar
  46. 46.
    Jahnsen H, Llinas R (1984) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–26PubMedCentralPubMedGoogle Scholar
  47. 47.
    Jahnsen H, Llinas R (1984) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227–47PubMedCentralPubMedGoogle Scholar
  48. 48.
    Kawaguchi Y, Kubota Y (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J Neurophysiol 70:387–396PubMedGoogle Scholar
  49. 49.
    Kraus RL, Li Y, Gregan Y, Gotter AL, Uebele VN, Fox SV, Doran SM, Barrow JC, Yang ZQ, Reger TS, Koblan KS, Renger JJ (2010) In vitro characterization of T-type calcium channel antagonist TTA-A2 and in vivo effects on arousal in mice. J Pharmacol Exp Ther 335:409–417PubMedCrossRefGoogle Scholar
  50. 50.
    Lee J, Kim D, Shin HS (2004) Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha1G-subunit of T-type calcium channels. Proc Natl Acad Sci U S A 101:18195–18199PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Lee J, Song K, Lee K, Hong J, Lee H, Chae S, Cheong E, Shin HS (2013) Sleep spindles are generated in the absence of T-type calcium channel-mediated low-threshold burst firing of thalamocortical neurons. Proc Natl Acad Sci U S A 110:20266–20271PubMedCrossRefGoogle Scholar
  52. 52.
    Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klockner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T- type calcium channel family. J Neurosci 19:1912–1921PubMedGoogle Scholar
  53. 53.
    Leresche N, Jassik-Gerschenfeld D, Haby M, Soltesz I, Crunelli V (1990) Pacemaker-like and other types of spontaneous membrane potential oscillations of thalamocortical cells. Neurosci Lett 113:72–77PubMedCrossRefGoogle Scholar
  54. 54.
    Leresche N, Lightowler S, Soltesz I, Jassik-Gerschenfeld D, Crunelli V (1991) Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol Lond 441:155–174PubMedCentralPubMedGoogle Scholar
  55. 55.
    Llinas R, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature 297:406–408PubMedCrossRefGoogle Scholar
  56. 56.
    Lüthi A, McCormick DA (1998) Periodicity of thalamic synchronized oscillations: the role of Ca2+- mediated upregulation of Ih. Neuron 20:553–563PubMedCrossRefGoogle Scholar
  57. 57.
    Lüthi A, McCormick DA (1999) Modulation of a pacemaker current through Ca(2+)-induced stimulation of cAMP production. Nat Neurosci 2:634–641PubMedCrossRefGoogle Scholar
  58. 58.
    Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave. J Neurosci Off J Soc Neurosci 24:6862–6870CrossRefGoogle Scholar
  59. 59.
    McCafferty C, David F, Venzi M, Di Giovanni G, Orban G, Uebele VN, Renger JJ, Lambert RC, Leresche N, V C (2012) T-type calcium channels of cortical and thalamocortical neurons are necessary for absence seizures.Society for Neuroscience. New Orleans USAGoogle Scholar
  60. 60.
    McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388PubMedCrossRefGoogle Scholar
  61. 61.
    McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol Lond 431:291–318PubMedCentralPubMedGoogle Scholar
  62. 62.
    Molle M, Marshall L, Gais S, Born J (2002) Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci Off J Soc Neurosci 22:10941–10947Google Scholar
  63. 63.
    Monteggia LM, Eisch AJ, Tang MD, Kaczmarek LK, Nestler EJ (2000) Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain Res Mol Brain Res 81:129–139PubMedCrossRefGoogle Scholar
  64. 64.
    Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol 471:241–276PubMedCrossRefGoogle Scholar
  65. 65.
    Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443PubMedCrossRefGoogle Scholar
  66. 66.
    Nunez A, Amzica F, Steriade M (1992) Intrinsic and synaptically generated delta (1-4 Hz) rhythms in dorsal lateral geniculate neurons and their modulation by light-induced fast (30-70 Hz) events. Neuroscience 51:269–284PubMedCrossRefGoogle Scholar
  67. 67.
    Nunez A, Curro Dossi R, Contreras D, Steriade M (1992) Intracellular evidence for incompatibility between spindle and delta oscillations in thalamocortical neurons of cat. Neuroscience 48:75–85PubMedCrossRefGoogle Scholar
  68. 68.
    Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161PubMedGoogle Scholar
  69. 69.
    Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391:896–900PubMedCrossRefGoogle Scholar
  70. 70.
    Pirchio M, Turner JP, Williams SR, Asprodini E, Crunelli V (1997) Postnatal development of membrane properties and delta oscillations in thalamocortical neurons of the cat dorsal lateral geniculate nucleus. J Neurosci 17:5428–5444PubMedGoogle Scholar
  71. 71.
    Porter JT, Cauli B, Tsuzuki K, Lambolez B, Rossier J, Audinat E (1999) Selective excitation of subtypes of neocortical interneurons by nicotinic receptors. J Neurosci Off J Soc Neurosci 19:5228–5235Google Scholar
  72. 72.
    Rateau Y, Ropert N (2006) Expression of a functional hyperpolarization-activated current (Ih) in the mouse nucleus reticularis thalami. J Neurophysiol 95:3073–3085PubMedCrossRefGoogle Scholar
  73. 73.
    Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034PubMedCrossRefGoogle Scholar
  74. 74.
    Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68:1023–1042PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Simon NR, Manshanden I, da Silva FH L (2000) A MEG study of sleep. Brain Res 860:64–76PubMedCrossRefGoogle Scholar
  76. 76.
    Soltesz I, Lightowler S, Leresche N, Jassik-Gerschenfeld D, Pollard CE, Crunelli V (1991) Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells. J Physiol Lond 441:175–197PubMedCentralPubMedGoogle Scholar
  77. 77.
    Steriade M (2003) The corticothalamic system in sleep. Front Biosci J Virtual Libr 8:d878–d899CrossRefGoogle Scholar
  78. 78.
    Steriade M, Amzica F, Nunez A (1993) Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. J Neurophysiol 70:1385–1400PubMedGoogle Scholar
  79. 79.
    Steriade M, Contreras D, Curro Dossi R, Nunez A (1993) The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 13:3284–3299PubMedGoogle Scholar
  80. 80.
    Steriade M, Deschênes M (1998) Cellular thalamic mechanisms. Elsevier, AmsterdamGoogle Scholar
  81. 81.
    Steriade M, Deschenes M, Domich L, Mulle C (1985) Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54:1473–1497PubMedGoogle Scholar
  82. 82.
    Steriade M, Domich L, Oakson G, Deschenes M (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57:260–273PubMedGoogle Scholar
  83. 83.
    Steriade M, Dossi RC, Nunez A (1991) Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J Neurosci 11:3200–3217PubMedGoogle Scholar
  84. 84.
    Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685PubMedCrossRefGoogle Scholar
  85. 85.
    Steriade M, Nunez A, Amzica F (1993) Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13:3266–3283PubMedGoogle Scholar
  86. 86.
    Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265PubMedGoogle Scholar
  87. 87.
    Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911PubMedGoogle Scholar
  88. 88.
    Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10:1185–1199PubMedCrossRefGoogle Scholar
  89. 89.
    Timofeev I, Grenier F, Steriade M (2001) Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A 98:1924–1929PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Timofeev I, Steriade M (1996) Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol 76:4152–4168PubMedGoogle Scholar
  91. 91.
    Toth TI, Hughes SW, Crunelli V (1998) Analysis and biophysical interpretation of bistable behaviour in thalamocortical neurons. Neuroscience 87:519–523PubMedCrossRefGoogle Scholar
  92. 92.
    von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361–364CrossRefGoogle Scholar
  93. 93.
    Williams SR, Toth TI, Turner JP, Hughes SW, Crunelli V (1997) The 'window' component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J Physiol Lond 505:689–705PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Wimmer RD, Astori S, Bond CT, Rovo Z, Chatton JY, Adelman JP, Franken P, Luthi A (2012) Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold. J Neurosci Off J Soc Neurosci 32:13917–13928CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of BiosciencesCardiff UniversityCardiffUK
  2. 2.Sorbonne Universités, UPMC Univ Paris 06ParisFrance
  3. 3.CNRSParisFrance
  4. 4.INSERMParisFrance

Personalised recommendations