Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 466, Issue 9, pp 1659–1671 | Cite as

The STARS signaling pathway: a key regulator of skeletal muscle function

  • Séverine LamonEmail author
  • Marita A. Wallace
  • Aaron P. Russell
Invited Review

Abstract

During the last decade, the striated muscle activator of Rho signaling (STARS), a muscle-specific protein, has been proposed to play an increasingly important role in skeletal muscle growth, metabolism, regeneration and stress adaptation. STARS influences actin dynamics and, as a consequence, regulates the myocardin-related transcription factor A/serum response factor (MRTF-A/SRF) transcriptional program, a well-known pathway controlling skeletal muscle development and function. Muscle-specific stress conditions, such as exercise, positively regulates, while disuse and degenerative muscle diseases are associated with a downregulation of STARS and its downstream partners, suggesting a pivotal role for STARS in skeletal muscle health. This review provides a comprehensive overview of the known role and regulation of STARS and the members of its signaling pathway, RhoA, MRTF-A and SRF, in skeletal muscle.

Keywords

STARS ABRA MS1 Skeletal muscle 

Notes

Acknowledgments

Séverine Lamon is supported by an Alfred Deakin postdoctoral fellowship from Deakin University.

References

  1. 1.
    Aline G, Sotiropoulos A (2012) Srf: a key factor controlling skeletal muscle hypertrophy by enhancing the recruitment of muscle stem cells. Bioarchitecture 2(3):88–90PubMedCentralPubMedGoogle Scholar
  2. 2.
    Allen DL, Sartorius CA, Sycuro LK, Leinwand LA (2001) Different pathways regulate expression of the skeletal myosin heavy chain genes. J Biol Chem 276:43524–43533PubMedGoogle Scholar
  3. 3.
    Arai A, Spencer JA, Olson EN (2002) STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J Biol Chem 277:24453–24459PubMedGoogle Scholar
  4. 4.
    Aravind L, Koonin EV (2000) SAP — a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 25(3):112–114PubMedGoogle Scholar
  5. 5.
    Arsenian S, Weinhold B, Oelgeschlager M, Ruther U, Nordheim A (1998) Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J 17(21):6289–6299PubMedCentralPubMedGoogle Scholar
  6. 6.
    Barrientos T, Frank D, Kuwahara K, Bezprozvannaya S, Pipes GCT, Bassel-Duby R, Richardson JA, Katus HA, Olson EN, Frey N (2007) Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin. J Biol Chem 282:8393–8403PubMedGoogle Scholar
  7. 7.
    Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37PubMedGoogle Scholar
  8. 8.
    Blaker AL, Taylor JM, Mack CP (2009) PKA-dependent phosphorylation of serum response factor inhibits smooth muscle-specific gene expression. Arterioscler Thromb Vasc Biol 29(12):2153–2160PubMedCentralPubMedGoogle Scholar
  9. 9.
    Boateng SY, Belin RJ, Geenen DL, Margulies KB, Martin JL, Hoshijima M, de Tombe PP, Russell B (2007) Cardiac dysfunction and heart failure are associated with abnormalities in the subcellular distribution and amounts of oligomeric muscle LIM protein. Am J Physiol Heart Circ Physiol 292(1):H259–H269PubMedGoogle Scholar
  10. 10.
    Boppart MD, Burkin DJ, Kaufman SJ (2006) Alpha7beta1-integrin regulates mechanotransduction and prevents skeletal muscle injury. Am J Physiol Cell Physiol 290(6):C1660–C1665PubMedGoogle Scholar
  11. 11.
    Buchwalter G, Gross C, Wasylyk B (2004) Ets ternary complex transcription factors. Gene 324:1–14PubMedGoogle Scholar
  12. 12.
    Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179PubMedGoogle Scholar
  13. 13.
    Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119(2):285–298PubMedGoogle Scholar
  14. 14.
    Calderwood DA, Shattil SJ, Ginsberg MH (2000) Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem 275(30):22607–22610PubMedGoogle Scholar
  15. 15.
    Carnac G, Primig M, Kitzmann M, Chafey P, Tuil D, Lamb N, Fernandez A (1998) RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts. Mol Biol Cell 9:1891–1902PubMedCentralPubMedGoogle Scholar
  16. 16.
    Carson JA, Schwartz RJ, Booth FW (1996) SRF and TEF-1 control of chicken skeletal alpha-actin gene during slow-muscle hypertrophy. Am J Physiol 270:C1624–C1633PubMedGoogle Scholar
  17. 17.
    Carson JA, Wei L (2000) Integrin signaling’s potential for mediating gene expression in hypertrophying skeletal muscle. J Appl Physiol 88(1):337–343PubMedGoogle Scholar
  18. 18.
    Castellani L, Salvati E, Alema S, Falcone G (2006) Fine regulation of RhoA and ROCK is required for skeletal muscle differentiation. J Biol Chem 281:15249–15257PubMedGoogle Scholar
  19. 19.
    Cen B, Selvaraj A, Burgess RC, Hitzler JK, Ma Z, Morris SW, Prywes R (2003) Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Mol Cell Biol 23:6597–6608PubMedCentralPubMedGoogle Scholar
  20. 20.
    Charrasse S, Comunale F, Grumbach Y, Poulat F, Blangy A, Gauthier-Rouviere C (2006) RhoA GTPase regulates M-cadherin activity and myoblast fusion. Mol Biol Cell 17(2):749–759PubMedCentralPubMedGoogle Scholar
  21. 21.
    Charvet C, Houbron C, Parlakian A, Giordani J, Lahoute C, Bertrand A, Sotiropoulos A, Renou L, Schmitt A, Melki J, Li Z, Daegelen D, Tuil D (2006) New role for serum response factor in postnatal skeletal muscle growth and regeneration via the interleukin 4 and insulin-like growth factor 1 pathways. Mol Cell Biol 26:6664–6674PubMedCentralPubMedGoogle Scholar
  22. 22.
    Chen H, Bernstein BW, Bamburg JR (2000) Regulating actin-filament dynamics in vivo. Trends Biochem Sci 25:19–23PubMedGoogle Scholar
  23. 23.
    Chockalingam PS, Cholera R, Oak SA, Zheng Y, Jarrett HW, Thomason DB (2002) Dystrophin–glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy. Am J Physiol Cell Physiol 283(2):C500–C511PubMedGoogle Scholar
  24. 24.
    Chong NW, Koekemoer AL, Ounzain S, Samani NJ, Shin JT, Shaw SY (2012) STARS is essential to maintain cardiac development and function in vivo via a SRF pathway. PLoS One 7(7):e40966PubMedCentralPubMedGoogle Scholar
  25. 25.
    Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268(5208):233–239PubMedGoogle Scholar
  26. 26.
    Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18:637–706PubMedGoogle Scholar
  27. 27.
    Cooper JA, Schafer DA (2000) Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol 12:97–103PubMedGoogle Scholar
  28. 28.
    Copeland JW, Treisman R (2002) The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol Biol Cell 13:4088–4099PubMedCentralPubMedGoogle Scholar
  29. 29.
    Dhawan J, Helfman DM (2004) Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation. J Cell Sci 117(17):3735–3748PubMedGoogle Scholar
  30. 30.
    Diguet N, Mallat Y, Ladouce R, Clodic G, Prola A, Tritsch E, Blanc J, Larcher JC, Delcayre C, Samuel JL, Friguet B, Bolbach G, Li Z, Mericskay M (2011) Muscle creatine kinase deficiency triggers both actin depolymerization and desmin disorganization by advanced glycation end products in dilated cardiomyopathy. J Biol Chem 286(40):35007–35019PubMedCentralPubMedGoogle Scholar
  31. 31.
    Ecarnot-Laubriet A, De Luca K, Vandroux D, Moisant M, Bernard C, Assem M, Rochette L, Teyssier JR (2000) Downregulation and nuclear relocation of MLP during the progression of right ventricular hypertrophy induced by chronic pressure overload. J Mol Cell Cardiol 32(12):2385–2395PubMedGoogle Scholar
  32. 32.
    Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635PubMedGoogle Scholar
  33. 33.
    Favier FB, Benoit H, Freyssenet D (2008) Cellular and molecular events controlling skeletal muscle mass in response to altered use. Pflugers Arch-Eur J Physiol 456(3):587–600Google Scholar
  34. 34.
    Flick MJ, Konieczny SF (2000) The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of betaI-spectrin. J Cell Sci 113(Pt 9):1553–1564PubMedGoogle Scholar
  35. 35.
    Fluck M, Booth FW, Waxham MN (2000) Skeletal muscle CaMKII enriches in nuclei and phosphorylates myogenic factor SRF at multiple sites. Biochem Biophys Res Commun 270(2):488–494PubMedGoogle Scholar
  36. 36.
    Fluck M, Carson JA, Schwartz RJ, Booth FW (1999) SRF protein is upregulated during stretch-induced hypertrophy of rooster ALD muscle. Journal Of Applied Physiology (Bethesda, MD: 1985) 86:1793–1799Google Scholar
  37. 37.
    Fluck M, Waxham MN, Hamilton MT, Booth FW (2000) Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running. J Appl Physiol 88(1):352–358PubMedGoogle Scholar
  38. 38.
    Fogl C, Puckey L, Hinssen U, Zaleska M, El-Mezgueldi M, Croasdale R, Bowman A, Matsukawa A, Samani NJ, Savva R, Pfuhl M (2011) A structural and functional dissection of the cardiac stress response factor MS1. Proteins 80:398–409Google Scholar
  39. 39.
    Gautel M (2008) The sarcomere and the nucleus: functional links to hypertrophy, atrophy and sarcopenia. Adv Exp Med Biol 642:176–191PubMedGoogle Scholar
  40. 40.
    Gautel M (2011) The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol 23(1):39–46PubMedGoogle Scholar
  41. 41.
    Gauthier-Rouviere C, Vandromme M, Tuil D, Lautredou N, Morris M, Soulez M, Kahn A, Fernandez A, Lamb N (1996) Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts. Mol Biol Cell 7(5):719–729PubMedCentralPubMedGoogle Scholar
  42. 42.
    Giger JM, Bodell PW, Zeng M, Baldwin KM, Haddad F (2009) Rapid muscle atrophy response to unloading: pretranslational processes involving MHC and actin. J Appl Physiol 107(4):1204–1212PubMedCentralPubMedGoogle Scholar
  43. 43.
    Gineitis D, Treisman R (2001) Differential usage of signal transduction pathways defines two types of serum response factor target gene. J Biol Chem 276:24531–24539PubMedGoogle Scholar
  44. 44.
    Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37(10):1974–1984PubMedGoogle Scholar
  45. 45.
    Gordon SE, Fluck M, Booth FW (2001) Selected contribution: skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol 90(3):1174–1183, discussion 1165PubMedGoogle Scholar
  46. 46.
    Guerci A, Lahoute C, Hebrard S, Collard L, Graindorge D, Favier M, Cagnard N, Batonnet-Pichon S, Precigout G, Garcia L, Tuil D, Daegelen D, Sotiropoulos A (2012) Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 15(1):25–37PubMedGoogle Scholar
  47. 47.
    Han Z, Li X, Wu J, Olson EN (2004) A myocardin-related transcription factor regulates activity of serum response factor in Drosophila. Proc Natl Acad Sci U S A 101:12567–12572PubMedCentralPubMedGoogle Scholar
  48. 48.
    Hawley JA, Hargreaves M, Zierath JR (2006) Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation. Essays Biochem 42:1–12PubMedGoogle Scholar
  49. 49.
    Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170PubMedGoogle Scholar
  50. 50.
    Hoshijima M (2006) Mechanical stress–strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol 290(4):H1313–H1325PubMedCentralPubMedGoogle Scholar
  51. 51.
    Irrcher I, Hood DA (2004) Regulation of Egr-1, SRF, and Sp1 mRNA expression in contracting skeletal muscle cells. J Appl Physiol 97(6):2207–2213PubMedGoogle Scholar
  52. 52.
    Iwasaki K, Hayashi K, Fujioka T, Sobue K (2008) Rho/Rho-associated kinase signal regulates myogenic differentiation via myocardin-related transcription factor-A/Smad-dependent transcription of the Id3 gene. J Biol Chem 283(30):21230PubMedCentralPubMedGoogle Scholar
  53. 53.
    Iyer D, Belaguli N, Fluck M, Rowan BG, Wei L, Weigel NL, Booth FW, Epstein HF, Schwartz RJ, Balasubramanyam A (2003) Novel phosphorylation target in the serum response factor MADS box regulates alpha-actin transcription. Biochemistry 42(24):7477–7486PubMedGoogle Scholar
  54. 54.
    Jagoe RT, Goldberg AL (2001) What do we really know about the ubiquitin–proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 4(3):183–190PubMedGoogle Scholar
  55. 55.
    Janknecht R, Ernst WH, Pingoud V, Nordheim A (1993) Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J 12:5097–5104PubMedCentralPubMedGoogle Scholar
  56. 56.
    Janknecht R, Hipskind RA, Houthaeve T, Nordheim A, Stunnenberg HG (1992) Identification of multiple SRF N-terminal phosphorylation sites affecting DNA binding properties. EMBO J 11:1045–1054PubMedCentralPubMedGoogle Scholar
  57. 57.
    Jin W, Goldfine AB, Boes T, Henry RR, Ciaraldi TP, Kim EY, Emecan M, Fitzpatrick C, Sen A, Shah A, Mun E, Vokes V, Schroeder J, Tatro E, Jimenez-Chillaron J, Patti ME (2011) Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance. J Clin Investig 121(3):918–929PubMedCentralPubMedGoogle Scholar
  58. 58.
    Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585PubMedGoogle Scholar
  59. 59.
    Kaibuchi K, Kuroda S, Amano M (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68:459–486PubMedGoogle Scholar
  60. 60.
    Klossner S, Li R, Ruoss S, Durieux AC, Fluck M (2013) Quantitative changes in focal adhesion kinase and its inhibitor, FRNK, drive load-dependent expression of costamere components. Am J Physiol Regul Integr Comp Physiol 305(6):R647–R657PubMedGoogle Scholar
  61. 61.
    Knoll R, Buyandelger B, Lab M (2011) The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011:569628PubMedCentralPubMedGoogle Scholar
  62. 62.
    Kuwahara K, Barrientos T, Pipes GCT, Li S, Olson EN (2005) Muscle-specific signaling mechanism that links actin dynamics to serum response factor. Mol Cell Biol 25:3173–3181PubMedCentralPubMedGoogle Scholar
  63. 63.
    Kuwahara K, Pipes GC, McAnally J, Richardson JA, Hill JA, Bassel-Duby R, Olson EN (2007) Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. J Clin Investig 117:1324–1334PubMedCentralPubMedGoogle Scholar
  64. 64.
    Lahoute C, Sotiropoulos A, Favier M, Guillet-Deniau I, Charvet C, Ferry A, Butler-Browne G, Metzger D, Tuil D, Daegelen D (2008) Premature aging in skeletal muscle lacking serum response factor. PLoS One 3(12):e3910PubMedCentralPubMedGoogle Scholar
  65. 65.
    Lamon S, Wallace MA, Leger B, Russell AP (2009) Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. J Physiol 587(Pt 8):1795–1803PubMedCentralPubMedGoogle Scholar
  66. 66.
    Lamon S, Wallace MA, Leger B, Russell AP (2009) Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. J Physiol 587(8):1795–1803PubMedCentralPubMedGoogle Scholar
  67. 67.
    Lamon S, Wallace MA, Stefanetti RJ, Rahbek SK, Vendelbo MH, Russell AP, Vissing K (2013) Regulation of the STARS signaling pathway in response to endurance and resistance exercise and training. Pflugers Archiv: European journal of physiologyGoogle Scholar
  68. 68.
    Lamon S, Wallace MA, Stefanetti RJ, Rahbek SK, Vendelbo MH, Russell AP, Vissing K (2013) Regulation of the STARS signaling pathway in response to endurance and resistance exercise and training. Pflugers Arch 465(9):1317–1325PubMedGoogle Scholar
  69. 69.
    Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B, Gautel M (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308Google Scholar
  70. 70.
    Le Grand F, Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19(6):628–633PubMedCentralPubMedGoogle Scholar
  71. 71.
    Lee TC, Chow KL, Fang P, Schwartz RJ (1991) Activation of skeletal alpha-actin gene transcription: the cooperative formation of serum response factor-binding complexes over positive cis-acting promoter serum response elements displaces a negative-acting nuclear factor enriched in replicating myoblasts and nonmyogenic cells. Mol Cell Biol 11(10):5090–5100PubMedCentralPubMedGoogle Scholar
  72. 72.
    Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP (2006) Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576(3):923–933PubMedCentralPubMedGoogle Scholar
  73. 73.
    Lewis A, Riddoch-Contreras J, Natanek SA, Donaldson A, Man WD, Moxham J, Hopkinson NS, Polkey MI, Kemp PR (2012) Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax 67(1):26–34PubMedCentralPubMedGoogle Scholar
  74. 74.
    Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, Wiebel FF, Nordheim A, Olson EN (2005) Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci U S A 102:1082–1087PubMedCentralPubMedGoogle Scholar
  75. 75.
    Liu HW, Halayko AJ, Fernandes DJ, Harmon GS, McCauley JA, Kocieniewski P, McConville J, Fu Y, Forsythe SM, Kogut P, Bellam S, Dowell M, Churchill J, Lesso H, Kassiri K, Mitchell RW, Hershenson MB, Camoretti-Mercado B, Solway J (2003) The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. Am J Respir Cell Mol Biol 29:39–47PubMedGoogle Scholar
  76. 76.
    MacNeil LG, Melov S, Hubbard AE, Baker SK, Tarnopolsky MA (2010) Eccentric exercise activates novel transcriptional regulation of hypertrophic signaling pathways not affected by hormone changes. PLoS One 5(5):e10695PubMedCentralPubMedGoogle Scholar
  77. 77.
    Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895–898PubMedGoogle Scholar
  78. 78.
    Mahadeva H, Brooks G, Lodwick D, Chong NW, Samani NJ (2002) ms1, a novel stress-responsive, muscle-specific gene that is up-regulated in the early stages of pressure overload-induced left ventricular hypertrophy. FEBS Lett 521:100–104PubMedGoogle Scholar
  79. 79.
    McClung JM, Lee WJ, Thompson RW, Lowe LL, Carson JA (2003) RhoA induction by functional overload and nandrolone decanoate administration in rat skeletal muscle. Pflugers Arch-Eur J Physiol 447:345–355Google Scholar
  80. 80.
    McClung JM, Thompson RW, Lowe LL, Carson JA (2004) RhoA expression during recovery from skeletal muscle disuse. J Appl Physiol 96:1341–1348, Bethesda, MD: 1985PubMedGoogle Scholar
  81. 81.
    Miano JM, Long X, Fujiwara K (2007) Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 292:C70–C81PubMedGoogle Scholar
  82. 82.
    Miralles F, Posern G, Zaromytidou A-I, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342PubMedGoogle Scholar
  83. 83.
    Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin–proteasome pathway. N Engl J Med 335(25):1897–1905PubMedGoogle Scholar
  84. 84.
    Mokalled MH, Johnson AN, Creemers EE, Olson EN (2012) MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev 26(2):190–202PubMedCentralPubMedGoogle Scholar
  85. 85.
    Moore ML, Wang GL, Belaguli NS, Schwartz RJ, McMillin JB (2001) GATA-4 and serum response factor regulate transcription of the muscle-specific carnitine palmitoyltransferase I beta in rat heart. J Biol Chem 276(2):1026–1033PubMedGoogle Scholar
  86. 86.
    Muehlich S, Wang R, Lee SM, Lewis TC, Dai C, Prywes R (2008) Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Mol Cell Biol 28(20):6302–6313PubMedCentralPubMedGoogle Scholar
  87. 87.
    Murai K, Treisman R (2002) Interaction of serum response factor (SRF) with the Elk-1 B box inhibits RhoA-actin signaling to SRF and potentiates transcriptional activation by Elk-1. Mol Cell Biol 22:7083–7092PubMedCentralPubMedGoogle Scholar
  88. 88.
    Narumiya S, Ishizaki T, Watanabe N (1997) Rho effectors and reorganization of actin cytoskeleton. FEBS Lett 410:68–72PubMedGoogle Scholar
  89. 89.
    Niu Z, Yu W, Zhang SX, Barron M, Belaguli NS, Schneider MD, Parmacek M, Nordheim A, Schwartz RJ (2005) Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets. J Biol Chem 280:32531–32538PubMedGoogle Scholar
  90. 90.
    Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11(5):353–365PubMedCentralPubMedGoogle Scholar
  91. 91.
    Peng YB, Guan HP, Fan B, Zhao SH, Xu XW, Li K, Zhu MJ, Yerle M, Liu B (2008) Molecular characterization and expression pattern of the porcine STARS, a striated muscle-specific expressed gene. Biochem Genet 46(9–10):644–651PubMedGoogle Scholar
  92. 92.
    Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20(12):1545–1556PubMedGoogle Scholar
  93. 93.
    Pipes GCT, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20:1545–1556PubMedGoogle Scholar
  94. 94.
    Pollanen E, Fey V, Tormakangas T, Ronkainen PH, Taaffe DR, Takala T, Koskinen S, Cheng S, Puolakka J, Kujala UM, Suominen H, Sipila S, Kovanen V (2010) Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle. Age 32(3):347–363PubMedCentralPubMedGoogle Scholar
  95. 95.
    Posern G, Miralles F, Guettler S, Treisman R (2004) Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL. EMBO J 23:3973–3983PubMedCentralPubMedGoogle Scholar
  96. 96.
    Posern G, Sotiropoulos A, Treisman R (2002) Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Mol Biol Cell 13:4167–4178PubMedCentralPubMedGoogle Scholar
  97. 97.
    Posern G, Treisman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16(11):588–596PubMedGoogle Scholar
  98. 98.
    Rando OJ, Zhao K, Crabtree GR (2000) Searching for a function for nuclear actin. Trends Cell Biol 10:92–97PubMedGoogle Scholar
  99. 99.
    Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399PubMedGoogle Scholar
  100. 100.
    Rivera VM, Miranti CK, Misra RP, Ginty DD, Chen RH, Blenis J, Greenberg ME (1993) A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol Cell Biol 13(10):6260–6273PubMedCentralPubMedGoogle Scholar
  101. 101.
    Rose AJ, Frosig C, Kiens B, Wojtaszewski JF, Richter EA (2007) Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans. J Physiol 583(Pt 2):785–795PubMedCentralPubMedGoogle Scholar
  102. 102.
    Sakuma K, Akiho M, Nakashima H, Akima H, Yasuhara M (2008) Age-related reductions in expression of serum response factor and myocardin-related transcription factor A in mouse skeletal muscles. Biochim Biophys Acta 1782(7–8):453–461PubMedGoogle Scholar
  103. 103.
    Sakuma K, Nishikawa J, Nakao R, Nakano H, Sano M, Yasuhara M (2003) Serum response factor plays an important role in the mechanically overloaded plantaris muscle of rats. Histochem Cell Biol 119:149–160PubMedGoogle Scholar
  104. 104.
    Sakuma K, Watanabe K, Hotta N, Koike T, Ishida K, Katayama K, Akima H (2009) The adaptive responses in several mediators linked with hypertrophy and atrophy of skeletal muscle after lower limb unloading in humans. Acta Physiol 197(2):151–159Google Scholar
  105. 105.
    Schmidt A, Hall MN (1998) Signaling to the actin cytoskeleton. Annu Rev Cell Dev Biol 14:305–338PubMedGoogle Scholar
  106. 106.
    Selvaraj A, Prywes R (2003) Megakaryoblastic leukemia-1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation. J Biol Chem 278:41977–41987PubMedGoogle Scholar
  107. 107.
    Selvaraj A, Prywes R (2004) Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Mol Biol 5:13–27PubMedCentralPubMedGoogle Scholar
  108. 108.
    Sipila S, Taaffe DR, Cheng S, Puolakka J, Toivanen J, Suominen H (2001) Effects of hormone replacement therapy and high-impact physical exercise on skeletal muscle in post-menopausal women: a randomized placebo-controlled study. Clin Sci (Lond) 101(2):147–157Google Scholar
  109. 109.
    Sorokina EM, Chernoff J (2005) Rho-GTPases: new members, new pathways. J Cell Biochem 94:225–231PubMedGoogle Scholar
  110. 110.
    Sotiropoulos A, Gineitis D, Copeland J, Treisman R (1999) Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98:159–169PubMedGoogle Scholar
  111. 111.
    Sun Q, Chen G, Streb JW, Long X, Yang Y, Stoeckert CJ Jr, Miano JM (2006) Defining the mammalian CArGome. Genome Res 16(2):197–207PubMedCentralPubMedGoogle Scholar
  112. 112.
    Takano H, Komuro I, Oka T, Shiojima I, Hiroi Y, Mizuno T, Yazaki Y (1998) The Rho family G proteins play a critical role in muscle differentiation. Mol Cell Biol 18:1580–1589PubMedCentralPubMedGoogle Scholar
  113. 113.
    Treisman R (1995) DNA-binding proteins. Inside the MADS box. Nature 376:468–469PubMedGoogle Scholar
  114. 114.
    Troidl K, Ruding I, Cai WJ, Mucke Y, Grossekettler L, Piotrowska I, Apfelbeck H, Schierling W, Volger OL, Horrevoets AJ, Grote K, Schmitz-Rixen T, Schaper W, Troidl C (2009) Actin-binding rho activating protein (Abra) is essential for fluid shear stress-induced arteriogenesis. Arterioscler Thromb Vasc Biol 29(12):2093–2101PubMedGoogle Scholar
  115. 115.
    Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322PubMedGoogle Scholar
  116. 116.
    Vartiainen MK, Guettler S, Larijani B, Treisman R (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316(5832):1749–1752PubMedGoogle Scholar
  117. 117.
    Visegrady B, Machesky LM (2010) Myopathy-causing actin mutations promote defects in serum-response factor signalling. Biochem J 427(1):41–48PubMedCentralPubMedGoogle Scholar
  118. 118.
    Vissing K, Rahbek SK, Lamon S, Farup J, Stefanetti RJ, Wallace MA, Vendelbo MH, Russell A (2013) Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway. J Physiol 591(Pt 15):3749–3763PubMedCentralPubMedGoogle Scholar
  119. 119.
    Wadley GD, Lee-Young RS, Canny BJ, Wasuntarawat C, Chen ZP, Hargreaves M, Kemp BE, McConell GK (2006) Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. Am J Physiol Endocrinol Metab 290(4):E694–E702PubMedGoogle Scholar
  120. 120.
    Wallace MA, Hock MB, Hazen BC, Kralli A, Snow RJ, Russell AP (2011) Striated muscle activator of Rho signalling (STARS) is a PGC-1alpha/oestrogen-related receptor-alpha target gene and is upregulated in human skeletal muscle after endurance exercise. J Physiol 589(Pt 8):2027–2039PubMedCentralPubMedGoogle Scholar
  121. 121.
    Wallace MA, Russell AP (2013) Striated muscle activator of Rho signaling (STARS) is required for myotube survival but does not influence basal protein synthesis or degradation. Am J Physiol Cell PhysiolGoogle Scholar
  122. 122.
    Wallace MA, Russell AP (2013) Striated muscle activator of Rho signaling is required for myotube survival but does not influence basal protein synthesis or degradation. Am J Physiol Cell Physiol 305(4):C414–C426PubMedGoogle Scholar
  123. 123.
    Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105:851–862PubMedGoogle Scholar
  124. 124.
    Wang D-Z, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN (2002) Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci U S A 99:14855–14860PubMedCentralPubMedGoogle Scholar
  125. 125.
    Wang DZ, Olson EN (2004) Control of smooth muscle development by the myocardin family of transcriptional coactivators. Curr Opin Genet Dev 14:558–566PubMedGoogle Scholar
  126. 126.
    Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN (2004) Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428:185–189PubMedGoogle Scholar
  127. 127.
    Wei L, Zhou W, Croissant JD, Johansen FE, Prywes R, Balasubramanyam A, Schwartz RJ (1998) RhoA signaling via serum response factor plays an obligatory role in myogenic differentiation. J Biol Chem 273:30287–30294PubMedGoogle Scholar
  128. 128.
    Wei L, Zhou W, Wang L, Schwartz RJ (2000) beta(1)-Integrin and PI 3-kinase regulate RhoA-dependent activation of skeletal alpha-actin promoter in myoblasts. Am J Physiol Heart Circ Physiol 278(6):H1736–H1743PubMedGoogle Scholar
  129. 129.
    Williamson DL, Kubica N, Kimball SR, Jefferson LS (2006) Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle. J Physiol 573(Pt 2):497–510PubMedCentralPubMedGoogle Scholar
  130. 130.
    Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54(11):1177PubMedGoogle Scholar
  131. 131.
    Zhang SJ, Truskey GA, Kraus WE (2007) Effect of cyclic stretch on beta1D-integrin expression and activation of FAK and RhoA. Am J Physiol Cell Physiol 292(6):C2057–C2069PubMedGoogle Scholar
  132. 132.
    Zhang X, Chai J, Azhar G, Sheridan P, Borras AM, Furr MC, Khrapko K, Lawitts J, Misra RP, Wei JY (2001) Early postnatal cardiac changes and premature death in transgenic mice overexpressing a mutant form of serum response factor. J Biol Chem 276:40033–40040PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Séverine Lamon
    • 1
    Email author
  • Marita A. Wallace
    • 1
  • Aaron P. Russell
    • 1
  1. 1.Centre for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityBurwoodAustralia

Personalised recommendations