Pflügers Archiv - European Journal of Physiology

, Volume 466, Issue 11, pp 2077–2087 | Cite as

Coordinated regulation of TRPV5-mediated Ca2+ transport in primary distal convolution cultures

  • Eline A. E. van der Hagen
  • Marla Lavrijsen
  • Femke van Zeeland
  • Jeppe Praetorius
  • Olivier Bonny
  • René J. M. Bindels
  • Joost G. J. Hoenderop
Ion channels, receptors and transporters


Fine-tuning of renal calcium ion (Ca2+) reabsorption takes place in the distal convoluted and connecting tubules (distal convolution) of the kidney via transcellular Ca2+ transport, a process controlled by the epithelial Ca2+ channel Transient Receptor Potential Vanilloid 5 (TRPV5). Studies to delineate the molecular mechanism of transcellular Ca2+ transport are seriously hampered by the lack of a suitable cell model. The present study describes the establishment and validation of a primary murine cell model of the distal convolution. Viable kidney tubules were isolated from mice expressing enhanced Green Fluorescent Protein (eGFP) under the control of a TRPV5 promoter (pTRPV5-eGFP), using Complex Object Parametric Analyser and Sorting (COPAS) technology. Tubules were grown into tight monolayers on semi-permeable supports. Radioactive 45Ca2+ assays showed apical-to-basolateral transport rates of 13.5 ± 1.2 nmol/h/cm2, which were enhanced by the calciotropic hormones parathyroid hormone and 1,25-dihydroxy vitamin D3. Cell cultures lacking TRPV5, generated by crossbreeding pTRPV5-eGFP with TRPV5 knockout mice (TRPV5−/−), showed significantly reduced transepithelial Ca2+ transport (26 % of control), for the first time directly confirming the key role of TRPV5. Most importantly, using this cell model, a novel molecular player in transepithelial Ca2+ transport was identified: mRNA analysis revealed that ATP-dependent Ca2+-ATPase 4 (PMCA4) instead of PMCA1 was enriched in isolated tubules and downregulated in TRPV5−/− material. Immunohistochemical stainings confirmed co-localization of PMCA4 with TRPV5 in the distal convolution. In conclusion, a novel primary cell model with TRPV5-dependent Ca2+ transport characteristics was successfully established, enabling comprehensive studies of transcellular Ca2+ transport.


Kidney TRPV5 PMCA4 COPAS Calcium Primary culture 



We are grateful to the ‘COPAS sorting team’: Hans Meijer, Thomas van der Velden, AnneMiete van der Kemp and Laura Klein for maintenance of mice and/or subsequent sorting of the tubule material. We thank Sjoerd Verkaart for critical reading of the manuscript. We thank Nicolas Markadieu for help with setting up the primary cultures. We thank Rico Bongaarts from Union Biometrica for technical assistance with the COPAS. We thank Candice Stoudmann for technical help.


This work was financially supported by the Netherlands Organization for Scientific Research (NWO 819.02.012), the European Science Foundation (EURYI 2006) and EURenOmics funding from the European Union Seventh Framework Programme (FP7/2007–2013, agreement no. 305608).


The authors declare no conflict of interest.


  1. 1.
    Alexander RT, Woudenberg-Vrenken TE, Buurman J, Dijkman H, van der Eerden BC, van Leeuwen JP, Bindels RJ, Hoenderop JG (2009) Klotho prevents renal calcium loss. J Am Soc Nephrol 20:2371–2379PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Arthur JM (2000) The MDCK cell line is made up of populations of cells with diverse resistive and transport properties. Tissue Cell 32:446–450PubMedCrossRefGoogle Scholar
  3. 3.
    Bindels RJ, Hartog A, Timmermans J, Van Os CH (1991) Active Ca2+ transport in primary cultures of rabbit kidney CCD: stimulation by 1,25-dihydroxyvitamin D3 and PTH. Am J Physiol 261:F799–807PubMedGoogle Scholar
  4. 4.
    Bonny O, Edwards A (2013) Calcium reabsorption in the distal tubule: regulation by sodium, pH, and flow. Am J Physiol Renal Physiol 304:F585–600PubMedCrossRefGoogle Scholar
  5. 5.
    Brini M, Carafoli E (2011) The plasma membrane Ca(2) + ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol 3Google Scholar
  6. 6.
    Cha SK, Wu T, Huang CL (2008) Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. Am J Physiol Renal Physiol 294:F1212–1221PubMedCrossRefGoogle Scholar
  7. 7.
    Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310:490–493PubMedCrossRefGoogle Scholar
  8. 8.
    de Groot T, Lee K, Langeslag M, Xi Q, Jalink K, Bindels RJ, Hoenderop JG (2009) Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J Am Soc Nephrol 20:1693–1704PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Diepens RJ, den Dekker E, Bens M, Weidema AF, Vandewalle A, Bindels RJ, Hoenderop JG (2003) Characterization of a murine renal distal convoluted tubule cell line for the study of transcellular calcium transport. Am J Physiol Renal Physiol 286:F483–489PubMedCrossRefGoogle Scholar
  10. 10.
    Dimke H, Hoenderop JG, Bindels RJ (2010) Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+. Clin Sci (Lond) 118:1–18CrossRefGoogle Scholar
  11. 11.
    Gkika D, Topala CN, Chang Q, Picard N, Thebault S, Houillier P, Hoenderop JG, Bindels RJ (2006) Tissue kallikrein stimulates Ca(2+) reabsorption via PKC-dependent plasma membrane accumulation of TRPV5. EMBO J 25:4707–4716PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hoenderop JG, Dardenne O, Van Abel M, Van Der Kemp AW, Van Os CH, St -Arnaud R, Bindels RJ (2002) Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice. FASEB J 16:1398–1406PubMedCrossRefGoogle Scholar
  13. 13.
    Hoenderop JG, De Pont JJ, Bindels RJ, Willems PH (1999) Hormone-stimulated Ca2+ reabsorption in rabbit kidney cortical collecting system is cAMP-independent and involves a phorbol ester-insensitive PKC isotype. Kidney Int 55:225–233PubMedCrossRefGoogle Scholar
  14. 14.
    Hoenderop JG, Hartog A, Stuiver M, Doucet A, Willems PH, Bindels RJ (2000) Localization of the epithelial Ca(2+) channel in rabbit kidney and intestine. J Am Soc Nephrol 11:1171–1178PubMedGoogle Scholar
  15. 15.
    Hoenderop JG, Nilius B, Bindels RJ (2002) Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol 64:529–549PubMedCrossRefGoogle Scholar
  16. 16.
    Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422PubMedCrossRefGoogle Scholar
  17. 17.
    Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, Bindels RJ (1999) Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 274:8375–8378PubMedCrossRefGoogle Scholar
  18. 18.
    Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, Waarsing JH, Rossier BC, Vallon V, Hummler E, Bindels RJ (2003) Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112:1906–1914PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hofmeister MV, Fenton RA, Praetorius J (2009) Fluorescence isolation of mouse late distal convoluted tubules and connecting tubules: effects of vasopressin and vitamin D3 on Ca2+ signaling. Am J Physiol Renal Physiol 296:F194–203PubMedCrossRefGoogle Scholar
  20. 20.
    Kim HJ, Prasad V, Hyung SW, Lee ZH, Lee SW, Bhargava A, Pearce D, Lee Y, Kim HH (2012) Plasma membrane calcium ATPase regulates bone mass by fine-tuning osteoclast differentiation and survival. J Cell Biol 199:1145–1158PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kip SN, Strehler EE (2003) Characterization of PMCA isoforms and their contribution to transcellular Ca2+ flux in MDCK cells. Am J Physiol Renal Physiol 284:F122–132PubMedGoogle Scholar
  22. 22.
    Kip SN, Strehler EE (2004) Vitamin D3 upregulates plasma membrane Ca2 + −ATPase expression and potentiates apico-basal Ca2+ flux in MDCK cells. Am J Physiol Renal Physiol 286:F363–369PubMedCrossRefGoogle Scholar
  23. 23.
    Lambers TT, Mahieu F, Oancea E, Hoofd L, de Lange F, Mensenkamp AR, Voets T, Nilius B, Clapham DE, Hoenderop JG, Bindels RJ (2006) Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport. EMBO J 25:2978–2988PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lau K, Bourdeau JE (1989) Evidence for cAMP-dependent protein kinase in mediating the parathyroid hormone-stimulated rise in cytosolic free calcium in rabbit connecting tubules. J Biol Chem 264:4028–4032PubMedGoogle Scholar
  25. 25.
    Magyar CE, White KE, Rojas R, Apodaca G, Friedman PA (2002) Plasma membrane Ca2 + −ATPase and NCX1 Na+/Ca2+ exchanger expression in distal convoluted tubule cells. Am J Physiol Renal Physiol 283:F29–40PubMedCrossRefGoogle Scholar
  26. 26.
    Markadieu N, Bindels RJ, Hoenderop JG (2011) The renal connecting tubule: resolved and unresolved issues in Ca(2+) transport. Int J Biochem Cell Biol 43:1–4PubMedCrossRefGoogle Scholar
  27. 27.
    Markadieu N, San-Cristobal P, Nair AV, Verkaart S, Lenssen E, Tudpor K, van Zeeland F, Loffing J, Bindels RJ, Hoenderop JG (2012) A primary culture of distal convoluted tubules expressing functional thiazide-sensitive NaCl transport. Am J Physiol Renal Physiol 303:F886–892PubMedCrossRefGoogle Scholar
  28. 28.
    Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O'Connor KT, Neumann JC, Andringa A, Miller DA, Prasad V, Doetschman T, Paul RJ, Shull GE (2004) Targeted ablation of plasma membrane Ca2 + −ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 279:33742–33750PubMedCrossRefGoogle Scholar
  29. 29.
    Renkema KY, Nijenhuis T, van der Eerden BC, van der Kemp AW, Weinans H, van Leeuwen JP, Bindels RJ, Hoenderop JG (2005) Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol 16:3188–3195PubMedCrossRefGoogle Scholar
  30. 30.
    Tudpor K, Lainez S, Kwakernaak AJ, Kovalevskaya NV, Verkaart S, van Genesen S, van der Kemp A, Navis G, Bindels RJ, Hoenderop JG (2012) Urinary plasmin inhibits TRPV5 in nephrotic-range proteinuria. J Am Soc Nephrol 23:1824–1834PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    van Abel M, Hoenderop JG, van der Kemp AW, Friedlaender MM, van Leeuwen JP, Bindels RJ (2005) Coordinated control of renal Ca(2+) transport proteins by parathyroid hormone. Kidney Int 68:1708–1721PubMedCrossRefGoogle Scholar
  32. 32.
    van Baal J, de Jong MD, Zijlstra FJ, Willems PH, Bindels RJ (1996) Endogenously produced prostanoids stimulate calcium reabsorption in the rabbit cortical collecting system. J Physiol 497(Pt 1):229–239PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eline A. E. van der Hagen
    • 1
  • Marla Lavrijsen
    • 1
  • Femke van Zeeland
    • 1
  • Jeppe Praetorius
    • 2
  • Olivier Bonny
    • 3
  • René J. M. Bindels
    • 1
  • Joost G. J. Hoenderop
    • 1
  1. 1.Department of Physiology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
  2. 2.Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
  3. 3.Department of Pharmacology and ToxicologyUniversity of LausanneLausanneSwitzerland

Personalised recommendations