T-type Ca2+ channels and the urinary and male genital tracts

  • C. H. FryEmail author
  • R. I. Jabr
Invited Review


T-type Ca2+ channels are widely expressed throughout the urinary and male genital tracts, generally alongside L-type Ca2+ channels. The use of pharmacological blockers of these channels has suggested functional roles in all regions, with the possible exception of the ureter. Their functional expression is apparent not just in smooth muscle cells but also in interstitial cells that lie in close proximity to muscle, nerve and epithelial components of these tissues. Thus, T-type Ca2+ channels can contribute directly to modulation of muscle function and indirectly to changes of epithelial and nerve function. T-type Ca2+ channel activity modulates phasic contractile activity, especially in conjunction with Ca2+-activated K+ channels, and also to agonist-dependent responses in different tissues. Upregulation of channel density occurs in pathological conditions associated with enhanced contractile responses, e.g. overactive bladder, but it is unclear if this is causal or a response to the pathological state. Moreover, T-type Ca2+ channels may have a role in the development of prostate tumours regulating the secretion of mitogens from neuroendocrine cells. Although a number of selective channel blockers exist, their relative selectivity over L-type Ca2+ channels is often low and makes evaluation of T-type Ca2+ channel function in the whole organism difficult.


T-type Ca2+ channels Urinary tract Bladder Kidney Prostate Urethra Ureter Genital tract 


  1. 1.
    Akino H, Chapple CR, McKay N, Cross RL, Murakami S, Yokoyama O, Chess-Williams R, Sellers DJ (2008) Spontaneous contractions of the pig urinary bladder: the effect of ATP-sensitive potassium channels and the role of the mucosa. BJU Int 102:1168–1174PubMedCrossRefGoogle Scholar
  2. 2.
    Amobi N, Guillebaud J, Smith CH (2009) Comparative effects of T-type and L-type Ca2+-antagonists against noradrenaline-induced contractions of human vas deferens. BJU Int 106:578–585PubMedCrossRefGoogle Scholar
  3. 3.
    Andersson KE (2001) Pharmacology of penile erection. Pharmacol Rev 53:417–450PubMedGoogle Scholar
  4. 4.
    Ashoori F, Tomita T (1983) Mechanical response to noradrenaline in calcium-free solution in the rat vas deferens. J Physiol 338:165–178PubMedCentralPubMedGoogle Scholar
  5. 5.
    Badawi JK, Li H, Langbein S, Kamp S, Guzman S, Bross S (2006) Inhibitory effects of various L-type and T-type calcium antagonists on electrically generated, potassium-induced and carbachol-induced contractions of porcine detrusor muscle. J Comp Physiol B 176:429–439PubMedCrossRefGoogle Scholar
  6. 6.
    Badawi JK, Li H, Langbein S, Kwon ST, Kamp S, Bross S (2006) Inhibitory effects of L- and T-type calcium antagonists on contractions of human detrusor muscle. Eur J Clin Pharmacol 62:347–354PubMedCrossRefGoogle Scholar
  7. 7.
    Bean BP (1985) Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol 86:1–30PubMedCrossRefGoogle Scholar
  8. 8.
    Berjukow S, Margreiter E, Marksteiner R, Strasser H, Bartsch G, Hering S (2004) Membrane properties of single muscle cells of the rhabdosphincter of the male urethra. Prostate 58:238–247PubMedCrossRefGoogle Scholar
  9. 9.
    Bijlenga P, Liu JH, Espinos E, Haenggeli CA, Fischer-Lougheed J, Bader CR, Bernheim L (2000) T-type alpha 1H Ca2+ channels are involved in Ca2+ signalling during terminal differentiation (fusion) of human myoblasts. Proc Natl Acad Sci U S A 97:7627–7632PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Bradley JE, Anderson UA, Woolsey SM, Thornbury KD, McHale NG, Hollywood MA (2004) Characterization of T-type calcium current and its contribution to electrical activity in rabbit urethra. Am J Physiol Cell Physiol 286:C1078–C1088PubMedCrossRefGoogle Scholar
  11. 11.
    Bradley E, Hollywood MA, Johnston L, Large RJ, Matsuda T, Baba A, McHale NG, Thornbury KD, Sergeant GP (2006) Contribution of reverse Na+-Ca2+ exchange to spontaneous activity in interstitial cells of Cajal in the rabbit urethra. J Physiol 574:651–661PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bradley E, Hollywood MA, McHale NG, Thornbury KD, Sergeant GP (2005) Pacemaker activity in urethral interstitial cells is not dependent on capacitative calcium entry. Am J Physiol Cell Physiol 289:C625–632PubMedCrossRefGoogle Scholar
  13. 13.
    Brain KL, Cuprian AM, Williams DJ, Cunnane TC (2003) The sources and sequestration of Ca2+ contributing to neuroeffector Ca2+ transients in the mouse vas deferens. J Physiol 553:627–635PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Choi JY, Seo HN, Lee MJ, Park SJ, Park SJ, Jeon JY, Kang JH, Pae AN, Rhim H, Lee JY (2007) Synthesis and biological evaluation of novel T-type calcium channel blockers. Bioorg Med Chem Lett 17:471–475PubMedCrossRefGoogle Scholar
  15. 15.
    Chow KY, Wu C, Sui GP, Fry CH (2003) Role of the T-type Ca2+ current on the contractile performance of guinea pig detrusor smooth muscle. Neurourol Urodyn 22:77–82PubMedCrossRefGoogle Scholar
  16. 16.
    Clozel JP, Ertel EA, Ertel SI (1997) Discovery and main pharmacological properties of mibefradil (Ro 40–5967), the first selective T-type calcium channel blocker. J Hypertens Suppl 15:S17–S25PubMedCrossRefGoogle Scholar
  17. 17.
    Deng J, He P, Zhong X, Wang Q, Li L, Song B (2012) Identification of T-type calcium channels in the interstitial cells of Cajal in rat bladder. Urology 280:1389.e1–1389.e7Google Scholar
  18. 18.
    Díaz-Lezama N, Hernández-Elvira M, Sandoval A, Monroy A, Felix R, Monjaraz E (2010) Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells. Biochem Biophys Res Comm 403:24–29PubMedCrossRefGoogle Scholar
  19. 19.
    Ekman M, Andersson K-E, Arner A (2009) Receptor-induced phasic activity of newborn mouse bladders is inhibited by protein kinase C and involves T-type Ca2+ channels. BJU Int 104:690–697PubMedCrossRefGoogle Scholar
  20. 20.
    Fry CH, Chacko S, Chess-Williams R, de Wachter S, Kanai AJ, Takeda M, Young JS (2013) Cell biology. In Incontinence, 5th edition, ed Paul Abrams, Linda Cardozo, Saad Khoury and Alan Wein, ISBN: 978-9953-493-21-3Google Scholar
  21. 21.
    Furukawa T, Nukada T, Miura R, Ooga K, Honda M, Watanabe S, Koganesawa S, Isshiki T (2005) Differential blocking action of dihydropyridine Ca2+ antagonists on a T-type Ca2+ channel (alpha1G) expressed in Xenopus oocytes. J Cardiovasc Pharmacol 45:241–246PubMedCrossRefGoogle Scholar
  22. 22.
    Gackiere F, Bidaux G, Delcourt P, van Coppenolle F, Katsogiannou M, Dewailly E, Bavencoffe A, Tran Van Chuoï-Mariot M, Mauroy B, Prevarskaya N, Mariot P (2008) CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 283:10162–10173PubMedCrossRefGoogle Scholar
  23. 23.
    Gackiere F, Warnier M, Katsogiannou M, Derouiche S, Delcourt P, Dewailly E, Slomianny C, Humez S, Prevarskaya N, Roudbaraki M, Mariot P (2013) Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth. Biol Open 2:941–951PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hashitani H, Suzuki H (2007) Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ. J Physiol 583:505–519PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Heady TN, Gomora JC, Macdonald TL, Perez-Reyes E (2001) Molecular pharmacology of T-type Ca2+ channels. Jpn J Pharmacol 85:339–350PubMedCrossRefGoogle Scholar
  26. 26.
    Hollywood MA, Woolsey S, Walsh IK, Keane PF, McHale NG, Thornbury KD (2003) T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra. J Physiol 550:753–764PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    House SJ, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signalling and phenotypic switching during vascular disease. Pflüg Archiv 456:769–785CrossRefGoogle Scholar
  28. 28.
    Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, Zhang M, Ragsdale DS, Li M (2004) NNC 55–0396 [(1S, 2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methyl amino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropane carboxy-late dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Ther 309:193–199PubMedCrossRefGoogle Scholar
  29. 29.
    Igawa Y, Kumano S, Aizawa N, Saito Y, Ito H, Watanabe S, Takahashi N, Tajimi M, Nishimatsu H, Homma Y (2013) Changes in the function and expression of T-type and N-type calcium channels in the rat bladder after bladder outlet obstruction. J Urol In the Press. doi: 10.1016/j.juro.2013.10.027
  30. 30.
    Imaizumi Y, Muraki K, Watanabe M (1989) Ionic currents in single smooth muscle cells from the ureter of the guinea-pig. J Physiol 411:131–159PubMedCentralPubMedGoogle Scholar
  31. 31.
    Jacus MO, Uebele VN, Renger JJ, Todorovic SM (2012) Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci 32:9374–9382PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Jeffery PL, Herington AC, Chopin LK (2002) Expression and action of the growth hormone releasing peptide ghrelin and its receptor in prostate cancer cell lines. J Endocrinol 172:7–11CrossRefGoogle Scholar
  33. 33.
    Jiang X, Luttrell I, Chitaley K, Yang CC (2014) T- and L-type voltage-gated calcium channels: their role in diabetic bladder dysfunction. Neurourol Urodyn 33:147–152Google Scholar
  34. 34.
    Klöckner U, Lee JH, Cribbs LL, Daud A, Hescheler J, Pereverzev A, Perez-Reyes E, Schneider T (1999) Comparison of the Ca2+ currents induced by expression of three cloned α1 subunits, α1G, α1H and α1I, of low-voltage-activated T-type Ca2+ channels. Eur J Neurosci 11:4171–4178PubMedCrossRefGoogle Scholar
  35. 35.
    Lam M, Shigemasa Y, Exintaris B, Lang RJ, Hashitani H (2011) Spontaneous Ca2+ signaling of interstitial cells in the guinea pig prostate. J Urol 186:2478–2486PubMedCrossRefGoogle Scholar
  36. 36.
    Lang RJ (1989) Identification of the major membrane currents in freshly dispersed single smooth muscle cells of guinea-pig ureter. J Physiol 412:375–395PubMedCentralPubMedGoogle Scholar
  37. 37.
    Lang RJ (1990) The whole-cell Ca2+ channel current in single smooth muscle cells of the guinea-pig ureter. J Physiol 423:453–473PubMedCentralPubMedGoogle Scholar
  38. 38.
    Lang F, Föller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157PubMedCrossRefGoogle Scholar
  39. 39.
    Lang RJ, Hashitani H, Tonta MA, Parkington HC, Suzuki H (2007) Spontaneous electrical and Ca2+ signals in typical and atypical smooth muscle cells and interstitial cell of Cajal-like cells of mouse renal pelvis. J Physiol 583:1049–1068PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Lang RJ, Mulholland E, Exintaris B (2004) Characterization of the ion channel currents in single myocytes of the guinea pig prostate. J Urol 172:1179–1187PubMedCrossRefGoogle Scholar
  41. 41.
    Lang RJ, Tonta MA, Takano H, Hashitani H (2014) Voltage-operated Ca2+ currents and Ca2+-activated Cl currents in single interstitial cells of the guinea-pig prostate. BJUIntGoogle Scholar
  42. 42.
    Lang RJ, Tonta MA, Zoltkowski BZ, Meeker WF, Wendt I, Parkington HC (2006) Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers. J Physiol 576:695–705PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Lee JH, Gomora JC, Cribbs LL, Perez-Reyes E (1999) Nickel block of three cloned T-type calcium channels: low concentrations selectively block α1H. Biophys J 77:3034–3042PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Lee HK, Sanders KM (1993) Comparison of ionic currents from interstitial cells and smooth muscle cells of canine colon. J Physiol 460:135–152PubMedCentralPubMedGoogle Scholar
  45. 45.
    Li L, Jiang C, Hao P, Li W, Fan L, Zhou Z, Song B (2007) Changes in T-type calcium channel and its subtypes in overactive detrusor of the rats with partial bladder outflow obstruction. Neurourol Urodyn 26:870–878PubMedCrossRefGoogle Scholar
  46. 46.
    Maggi CA, Giuliani S (1995) A pharmacological analysis of calcium channels involved in phasic and tonic responses of the guinea-pig ureter to high potassium. J Auton Pharmacol 15:55–64PubMedCrossRefGoogle Scholar
  47. 47.
    Mariot P, Vanoverberghe K, Lalevée N, Rossier MF, Prevarskaya N (2002) Differentiation of human prostate cancer calcium channel during neuroendocrine overexpression. J Biol Chem 277:10824–10833PubMedCrossRefGoogle Scholar
  48. 48.
    Martin-Cano FE, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2009) Spontaneous calcium oscillations in urinary bladder smooth muscle cells. J Physiol Pharmacol 60:93–99PubMedGoogle Scholar
  49. 49.
    Matsunami M, Miki T, Nishiura K, Hayashi Y, Okawa Y, Nishikawa H, Sekiguchi F, Kubo L, Ozaki T, Tsujiuchi T, Kawabata A (2012) Involvement of the endogenous hydrogen sulfide/Cav3.2 T-type Ca2+ channel pathway in cystitis-related bladder pain in mice. Br J Pharmacol 167:917–928PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    McCloskey C, Cagney V, Large R, Hollywood M, Sergeant G, McHale N, Thornbury K (2009) Voltage-dependent Ca2+ currents contribute to spontaneous Ca2+ waves in rabbit corpus cavernosum myocytes. J Sex Med 6:3019–3031PubMedCrossRefGoogle Scholar
  51. 51.
    Montgomery BS, Fry CH (1992) The action potential and net membrane currents in isolated human detrusor smooth muscle cells. J Urol 147:176–184PubMedGoogle Scholar
  52. 52.
    Nilius B, Prenen J, Kamouchi M, Viana F, Voets T, Droogmans G (1997) Inhibition by mibefradil, a novel calcium channel antagonist, of Ca2+- and volume-activated Cl channels in macrovascular endothelial cells. Br J Pharmacol 121:547–555PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Oh SJ, Kim KM, Chung YS, Hong EK, Shin SY, Kim SJ (2003) Ion-channel currents of smooth muscle cells isolated from the prostate of guinea-pig. BJU Int 92:1022–1030PubMedCrossRefGoogle Scholar
  54. 54.
    Panner A, Wurster RD (2006) T-type calcium channels and tumor proliferation. Cell Calcium 40:253–259PubMedCrossRefGoogle Scholar
  55. 55.
    Park SY, Lee MY, Keum EM, Myung SC, Kim SC (2004) Ionic currents in single smooth muscle cells of the human vas deferens. J Urol 172:628–633PubMedCrossRefGoogle Scholar
  56. 56.
    Perchenet L, Clément-Chomienne O (2000) Characterization of mibefradil block of the human heart delayed rectifier hKv1.5. J Pharmacol Exp Ther 295:771–8PubMedGoogle Scholar
  57. 57.
    Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161PubMedGoogle Scholar
  58. 58.
    Pirisino R, Banchelli G, Ignesti G, Mantelli L, Matucci R, Raimondi L, Buffoni F (1993) Calcium modulatory properties of 2,6-dibutylbenzylamine (B25) in rat isolated vas deferens, cardiac and smooth muscle preparations. Br J Pharmacol 109:1038–1045PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Rodman DM, Reese K, Harral J, Fouty B, Wu S, West J, Hoedt-Miller M, Tada Y, Li KX, Cool C, Fagan K, Cribbs L (2005) Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes. Circ Res 96:864–872PubMedCrossRefGoogle Scholar
  60. 60.
    Roosen A, Wu C, Sui G, Chowdhury RA, Patel PM, Fry CH (2009) Characteristics of spontaneous activity in the bladder trigone. Eur Urol 56:346–353PubMedCrossRefGoogle Scholar
  61. 61.
    Sergeant GP, Hollywood MA, McCloskey KD, McHale NG, Thornbury KD (2001) Role of IP3 in modulation of spontaneous activity in pacemaker cells of rabbit urethra. Am J Physiol Cell Physiol 280:C1349–C1356PubMedGoogle Scholar
  62. 62.
    Sergeant GP, McCloskey KD, Hollywood MA, Thornbury KD, McHale NG (2000) Specialised pacemaking cells in the rabbit urethra. J Physiol 526:359–366PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Seto SW, Docherty JR (2010) Effects of T-type calcium channel blockers and thalidomide on contractions of rat vas deferens. Br J Pharmacol 159:1211–1216PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Shishido T, Sakai S, Tosaka T (2009) T- and L-type calcium channels mediate α1-adrenoceptor-evoked contraction in the guinea-pig vas deferens. Neurourol Urodyn 28:447–454PubMedCrossRefGoogle Scholar
  65. 65.
    Smith RD, Borisova L, Wray S, Burdyga T (2002) Characterisation of the ionic currents in freshly isolated rat ureter smooth muscle cells: evidence for species-dependent currents. Pflugers Arch 445:444–453PubMedCrossRefGoogle Scholar
  66. 66.
    Sneddon P, Westfall DP (1984) Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens. J Physiol 347:561–580PubMedCentralPubMedGoogle Scholar
  67. 67.
    Strasser H, Frauscher F, Helweg G, Colleselli K, Reissigl A, Bartsch G (1998) Transurethral ultrasound: evaluation of anatomy and function of the rhabdosphincter of the male urethra. J Urol 159:100–105PubMedCrossRefGoogle Scholar
  68. 68.
    Strege PR, Bernard CE, Ou Y, Gibbons SJ, Farrugia G (2005) Effect of mibefradil on sodium and calcium currents. Am J Physiol Gastrointest Liver Physiol 289:G249–G253PubMedCrossRefGoogle Scholar
  69. 69.
    Sui G, Fry CH, Malone-Lee J, Wu C (2009) Aberrant Ca2+ oscillations in smooth muscle cells from overactive human bladders. Cell Calcium 45:456–464PubMedCrossRefGoogle Scholar
  70. 70.
    Sui GP, Wu C, Fry CH (2001) Inward calcium currents in cultured and freshly isolated detrusor muscle cells: evidence of a T-type calcium current. J Urol 165:621–626PubMedCrossRefGoogle Scholar
  71. 71.
    Sui GP, Wu C, Fry CH (2003) A description of Ca2+ channels in human detrusor smooth muscle. BJU Int 92:476–482PubMedCrossRefGoogle Scholar
  72. 72.
    Sui GP, Wu C, Fry CH (2004) Ca2+ currents in smooth muscle cells isolated from human prostate. Prostate 59:275–281PubMedCrossRefGoogle Scholar
  73. 73.
    Sui GP, Wu C, Severs N, Newgreen D, Fry CH (2007) The association between T-type Ca2+ current and outward current in isolated human detrusor cells from stable and overactive bladders. BJU Int 99:436–441PubMedCrossRefGoogle Scholar
  74. 74.
    Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, Scruggs JA, Sikka SS, Li M (2008) Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 14:4984–4991PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Wang JP, Ding GF, Wang QZ (2013) Interstitial cells of Cajal mediate excitatory sympathetic neurotransmission in guinea pig prostate. Cell Tissue Res 352:479–486PubMedCrossRefGoogle Scholar
  76. 76.
    Williams BA, Sims SM (2007) Calcium sparks activate calcium-dependent Cl current in rat corpus cavernosum smooth muscle cells. Am J Physiol 293:C1239–C1251CrossRefGoogle Scholar
  77. 77.
    Wu C, Sui G, Fry CH (2002) The role of the L-type Ca2+ channel in refilling functional intracellular Ca2+ stores in guinea-pig detrusor smooth muscle. J Physiol 538:357–369PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Xi Q, Angus JA (2001) Evidence against an action of mibefradil at N-type voltage-operated calcium channels. Naunyn Schmiedebergs Arch Pharmacol 364:430–436PubMedCrossRefGoogle Scholar
  79. 79.
    Xi Q, Ziogas J, Roberts JA, Evans RJ, Angus JA (2002) Involvement of T-type calcium channels in excitatory junction potentials in rat resistance mesenteric arteries. Br J Pharmacol 137:805–812PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Yanai Y, Hashitani H, Kubota Y, Sasaki S, Kohri K, Suzuki H (2006) The role of Ni2+-sensitive T-type Ca2+ channels in the regulation of spontaneous excitation in detrusor smooth muscles of the guinea-pig bladder. BJU Int 97:182–189PubMedCrossRefGoogle Scholar
  81. 81.
    Yeh AH, Jeffery PL, Duncan RP, Herington AC, Chopin LK (2005) Ghrelin and a novel preproghrelin isoform are highly expressed in prostate cancer and ghrelin activates mitogen-activated protein kinase in prostate cancer. Clin Cancer Res 2011:8295–8303CrossRefGoogle Scholar
  82. 82.
    Zeng X, Keyser B, Li M, Sikka SC (2005) T-type (α1G) low voltage-activated calcium channel interactions with nitric oxide-cyclic guanosine monophosphate pathway and regulation of calcium homeostasis in human cavernosal cells. J Sex Med 2:620–630PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang Y, Jiang X, Snutch TP, Tao J (2013) Modulation of low-voltage-activated T-type Ca2+ channels. Biochim Biophys Acta 1828:1550–1559PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and PhysiologyUniversity of SurreyGuildfordUK

Personalised recommendations