Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 466, Issue 1, pp 155–172 | Cite as

The SLC38 family of sodium–amino acid co-transporters

  • Stefan BröerEmail author
Invited Review

Abstract

Transporters of the SLC38 family are found in all cell types of the body. They mediate Na+-dependent net uptake and efflux of small neutral amino acids. As a result they are particularly expressed in cells that grow actively, or in cells that carry out significant amino acid metabolism, such as liver, kidney and brain. SLC38 transporters occur in membranes that face intercellular space or blood vessels, but do not occur in the apical membrane of absorptive epithelia. In the placenta, they play a significant role in the transfer of amino acids to the foetus. Members of the SLC38 family are highly regulated in response to amino acid depletion, hypertonicity and hormonal stimuli. SLC38 transporters play an important role in amino acid signalling and have been proposed to act as transceptors independent of their transport function. The structure of SLC38 transporters is characterised by the 5 + 5 inverted repeat fold, which is observed in a wide variety of transport proteins.

Keywords

Transceptor Transporter structure Amino acid response element Endoplasmic reticulum stress Unfolded protein response Placenta Intrauterine growth restriction Diabetes Metabolic acidosis Gluconeogenesis Urea cycle Stem cells 

References

  1. 1.
    Albers A, Broer A, Wagner CA, Setiawan I, Lang PA, Kranz EU, Lang F, Broer S (2001) Na+ transport by the neural glutamine transporter ATA1. Pflugers Arch 443(1):92–101PubMedGoogle Scholar
  2. 2.
    Areta JL, Burke LM, Ross ML, Camera DM, West DW, Broad EM, Jeacocke NA, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG (2013) Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol 591(Pt 9):2319–2331. doi: 10.1113/jphysiol.2012.244897 PubMedGoogle Scholar
  3. 3.
    Armano S, Coco S, Bacci A, Pravettoni E, Schenk U, Verderio C, Varoqui H, Erickson JD, Matteoli M (2002) Localization and functional relevance of system a neutral amino acid transporters in cultured hippocampal neurons. J Biol Chem 277(12):10467–10473PubMedGoogle Scholar
  4. 4.
    Arthur S, Saha P, Sundaram S, Kekuda R, Sundaram U (2012) Regulation of sodium–glutamine cotransport in villus and crypt cells by glucocorticoids during chronic enteritis. Inflamm Bowel Dis 18(11):2149–2157. doi: 10.1002/ibd.22924 PubMedGoogle Scholar
  5. 5.
    Audette MC, Challis JR, Jones RL, Sibley CP, Matthews SG (2011) Antenatal dexamethasone treatment in midgestation reduces system A-mediated transport in the late-gestation murine placenta. Endocrinology 152(9):3561–3570. doi: 10.1210/en.2011-0104 PubMedGoogle Scholar
  6. 6.
    Audette MC, Greenwood SL, Sibley CP, Jones CJ, Challis JR, Matthews SG, Jones RL (2010) Dexamethasone stimulates placental system A transport and trophoblast differentiation in term villous explants. Placenta 31(2):97–105. doi: 10.1016/j.placenta.2009.11.016 PubMedGoogle Scholar
  7. 7.
    Bacci A, Sancini G, Verderio C, Armano S, Pravettoni E, Fesce R, Franceschetti S, Matteoli M (2002) Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus. J Neurophysiol 88(5):2302–2310PubMedGoogle Scholar
  8. 8.
    Back SH, Kaufman RJ (2012) Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem 81:767–793. doi: 10.1146/annurev-biochem-072909-095555 PubMedCentralPubMedGoogle Scholar
  9. 9.
    Baird FE, Beattie KJ, Hyde AR, Ganapathy V, Rennie MJ, Taylor PM (2004) Bidirectional substrate fluxes through the system N (SNAT5) glutamine transporter may determine net glutamine flux in rat liver. J Physiol 559(Pt 2):367–381PubMedGoogle Scholar
  10. 10.
    Baird FE, Bett KJ, MacLean C, Tee AR, Hundal HS, Taylor PM (2009) Tertiary active transport of amino acids reconstituted by coexpression of System A and L transporters in Xenopus oocytes. Am J Physiol Endocrinol Meta 297(3):E822–E829. doi: 10.1152/ajpendo.00330.2009 Google Scholar
  11. 11.
    Baird FE, Pinilla-Tenas JJ, Ogilvie WL, Ganapathy V, Hundal HS, Taylor PM (2006) Evidence for allosteric regulation of pH-sensitive system A (SNAT2) and system N (SNAT5) amino acid transporter activity involving a conserved histidine residue. Biochem J 397(2):369–375PubMedGoogle Scholar
  12. 12.
    Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653PubMedGoogle Scholar
  13. 13.
    Balkrishna S, Broer A, Kingsland A, Broer S (2010) Rapid downregulation of the rat glutamine transporter SNAT3 by a caveolin-dependent trafficking mechanism in Xenopus laevis oocytes. Am J Physiol Cell Physio 299(5):C1047–C1057. doi: 10.1152/ajpcell.00209.2010 Google Scholar
  14. 14.
    Blot A, Billups D, Bjorkmo M, Quazi AZ, Uwechue NM, Chaudhry FA, Billups B (2009) Functional expression of two system A glutamine transporter isoforms in rat auditory brainstem neurons. Neuroscience 164(3):998–1008. doi: 10.1016/j.neuroscience.2009.09.015 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Bode BP (2001) Recent molecular advances in mammalian glutamine transport. J Nutr 131(9 Suppl)):2475S–2485S, discussion 2486S-2477SPubMedGoogle Scholar
  16. 16.
    Boeuf P, Aitken EH, Chandrasiri U, Chua CL, McInerney B, McQuade L, Duffy M, Molyneux M, Brown G, Glazier J, Rogerson SJ (2013) Plasmodium falciparum malaria elicits inflammatory responses that dysregulate placental amino acid transport. PLoS Pathog 9(2):e1003153. doi: 10.1371/journal.ppat.1003153 PubMedCentralPubMedGoogle Scholar
  17. 17.
    Boulland JL, Osen KK, Levy LM, Danbolt NC, Edwards RH, Storm-Mathisen J, Chaudhry FA (2002) Cell-specific expression of the glutamine transporter SN1 suggests differences in dependence on the glutamine cycle. Eur J Neurosci 15(10):1615–1631PubMedGoogle Scholar
  18. 18.
    Broer A, Albers A, Setiawan I, Edwards RH, Chaudhry FA, Lang F, Wagner CA, Broer S (2002) Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions. J Physiol 539(Pt 1):3–14PubMedGoogle Scholar
  19. 19.
    Broer A, Deitmer JW, Broer S (2004) Astroglial glutamine transport by system N is upregulated by glutamate. Glia 48:298–310Google Scholar
  20. 20.
    Broer S (2002) Adaptation of plasma membrane amino acid transport mechanisms to physiological demands. Pflugers Arch 444(4):457–466PubMedGoogle Scholar
  21. 21.
    Broer S (2005) Lactate transportation is required for lymphocyte activation. Nat Chem Biol 1(7):356PubMedGoogle Scholar
  22. 22.
    Broer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88(1):249–286PubMedGoogle Scholar
  23. 23.
    Broer S, Brookes N (2001) Transfer of glutamine between astrocytes and neurons. J Neurochem 77(3):705–719PubMedGoogle Scholar
  24. 24.
    Broer S, Gether U (2012) The solute carrier 6 family of transporters. Br J Pharmacol 167(2):256–278. doi: 10.1111/j.1476-5381.2012.01975.x PubMedGoogle Scholar
  25. 25.
    Broer S, Palacin M (2011) The role of amino acid transporters in inherited and acquired diseases. Biochem J 436(2):193–211. doi: 10.1042/BJ20101912 PubMedGoogle Scholar
  26. 26.
    Broer S, Schneider HP, Broer A, Deitmer JW (2009) Mutation of asparagine 76 in the center of glutamine transporter SNAT3 modulates substrate-induced conductances and Na + binding. J Biol Chem 284(38):25823–25831. doi: 10.1074/jbc.M109.031013 PubMedGoogle Scholar
  27. 27.
    Brown MN, Mathews GC (2010) Activity- and age-dependent modulation of GABAergic neurotransmission by system A-mediated glutamine uptake. J Neurochem 114(3):909–920. doi: 10.1111/j.1471-4159.2010.06823.x PubMedCentralPubMedGoogle Scholar
  28. 28.
    Burkhalter J, Fiumelli H, Erickson JD, Martin JL (2007) A critical role for system A amino acid transport in the regulation of dendritic development by brain-derived neurotrophic factor (BDNF). J Biol Chem 282(8):5152–5159. doi: 10.1074/jbc.M608548200 PubMedGoogle Scholar
  29. 29.
    Busque SM, Wagner CA (2009) Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney. Am J Physiol Renal Physiol 297(2):F440–F450. doi: 10.1152/ajprenal.90318.2008 PubMedGoogle Scholar
  30. 30.
    Cantor J, Browne CD, Ruppert R, Feral CC, Fassler R, Rickert RC, Ginsberg MH (2009) CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat Immunol 10(4):412–419. doi: 10.1038/ni.1712 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, Turay AM, Frauwirth KA (2010) Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 185(2):1037–1044. doi: 10.4049/jimmunol.0903586 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Chapel A, Kieffer-Jaquinod S, Sagne C, Verdon Q, Ivaldi C, Mellal M, Thirion J, Jadot M, Bruley C, Garin J, Gasnier B, Journet A (2013) An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol Cell Proteomics : MCP 12(6):1572–1588. doi: 10.1074/mcp.M112.021980 PubMedGoogle Scholar
  33. 33.
    Chaudhry FA, Krizaj D, Larsson P, Reimer RJ, Wreden C, Storm-Mathisen J, Copenhagen D, Kavanaugh M, Edwards RH (2001) Coupled and uncoupled proton movement by amino acid transport system N. Embo J 20(24):7041–7051PubMedGoogle Scholar
  34. 34.
    Chaudhry FA, Reimer RJ, Edwards RH (2002) The glutamine commute: take the N line and transfer to the A. J Cell Biol 157(3):349–355PubMedGoogle Scholar
  35. 35.
    Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99(7):769–780PubMedGoogle Scholar
  36. 36.
    Chaudhry FA, Schmitz D, Reimer RJ, Larsson P, Gray AT, Nicoll R, Kavanaugh M, Edwards RH (2002) Glutamine uptake by neurons: interaction of protons with system a transporters. J Neurosci 22(1):62–72PubMedGoogle Scholar
  37. 37.
    Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70(1):43–77PubMedGoogle Scholar
  38. 38.
    Cleal JK, Lewis RM (2008) The mechanisms and regulation of placental amino acid transport to the human foetus. J Neuroendocrinol 20(4):419–426. doi: 10.1111/j.1365-2826.2008.01662.x PubMedGoogle Scholar
  39. 39.
    Coan PM, Angiolini E, Sandovici I, Burton GJ, Constancia M, Fowden AL (2008) Adaptations in placental nutrient transfer capacity to meet fetal growth demands depend on placental size in mice. J Physiol 586(Pt 18):4567–4576. doi: 10.1113/jphysiol.2008.156133 PubMedGoogle Scholar
  40. 40.
    Conti F, Melone M (2006) The glutamine commute: lost in the tube? Neurochem Int 48(6–7):459–464PubMedGoogle Scholar
  41. 41.
    Cubelos B, Gonzalez-Gonzalez IM, Gimenez C, Zafra F (2005) Amino acid transporter SNAT5 localizes to glial cells in the rat brain. Glia 49(2):230–244PubMedGoogle Scholar
  42. 42.
    Curthoys NP, Gstraunthaler G (2001) Mechanism of increased renal gene expression during metabolic acidosis. Am J Physiol Renal Physiol 281(3):F381–F390PubMedGoogle Scholar
  43. 43.
    Curthoys NP, Shapiro RA (1978) Effect of metabolic acidosis and of phosphate on the presence of glutamine within the matrix space of rat renal mitochondria during glutamine transport. J Biol Chem 253(1):63–68PubMedGoogle Scholar
  44. 44.
    DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350. doi: 10.1073/pnas.0709747104 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18(1):54–61. doi: 10.1016/j.gde.2008.02.003 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Desforges M, Greenwood SL, Glazier JD, Westwood M, Sibley CP (2010) The contribution of SNAT1 to system A amino acid transporter activity in human placental trophoblast. Biochem Biophys Res Commun 398(1):130–134. doi: 10.1016/j.bbrc.2010.06.051 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Desforges M, Mynett KJ, Jones RL, Greenwood SL, Westwood M, Sibley CP, Glazier JD (2009) The SNAT4 isoform of the system A amino acid transporter is functional in human placental microvillous plasma membrane. J Physiol 587(Pt 1):61–72. doi: 10.1113/jphysiol.2008.161331 PubMedGoogle Scholar
  48. 48.
    Desforges M, Sibley CP (2010) Placental nutrient supply and fetal growth. Int J Dev Biol 54(2–3):377–390. doi: 10.1387/ijdb.082765md PubMedGoogle Scholar
  49. 49.
    Dickinson JM, Drummond MJ, Coben JR, Volpi E, Rasmussen BB (2013) Aging differentially affects human skeletal muscle amino acid transporter expression when essential amino acids are ingested after exercise. Clin Nutr 32(2):273–280. doi: 10.1016/j.clnu.2012.07.009 PubMedGoogle Scholar
  50. 50.
    Dransfeld O, Gehrmann T, Kohrer K, Kircheis G, Holneicher C, Haussinger D, Wettstein M (2005) Oligonucleotide microarray analysis of differential transporter regulation in the regenerating rat liver. Liver Int: Off J Int Assoc Study Liver 25(6):1243–1258. doi: 10.1111/j.1478-3231.2005.01158.x Google Scholar
  51. 51.
    Drummond MJ, Fry CS, Glynn EL, Timmerman KL, Dickinson JM, Walker DK, Gundermann DM, Volpi E, Rasmussen BB (2011) Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise. J Appl Physiol 111(1):135–142. doi: 10.1152/japplphysiol.01408.2010 PubMedGoogle Scholar
  52. 52.
    Drummond MJ, Glynn EL, Fry CS, Timmerman KL, Volpi E, Rasmussen BB (2010) An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle. Am J| Physiol Endocrinol Metab 298(5):E1011–E1018. doi: 10.1152/ajpendo.00690.2009 PubMedCentralPubMedGoogle Scholar
  53. 53.
    el Hamdani H, Gudbrandsen M, Bjorkmo M, Chaudhry FA (2012) The system N transporter SN2 doubles as a transmitter precursor furnisher and a potential regulator of NMDA receptors. Glia 60(11):1671–1683. doi: 10.1002/glia.22386 Google Scholar
  54. 54.
    Evans K, Nasim Z, Brown J, Butler H, Kauser S, Varoqui H, Erickson JD, Herbert TP, Bevington A (2007) Acidosis-sensing glutamine pump SNAT2 determines amino acid levels and mammalian target of rapamycin signalling to protein synthesis in L6 muscle cells. J Am Soc Nephrol: JASN 18(5):1426–1436. doi: 10.1681/ASN.2006091014 PubMedGoogle Scholar
  55. 55.
    Evans K, Nasim Z, Brown J, Clapp E, Amin A, Yang B, Herbert TP, Bevington A (2008) Inhibition of SNAT2 by metabolic acidosis enhances proteolysis in skeletal muscle. J Am Soc Nephrol: JASN 19(11):2119–2129. doi: 10.1681/ASN.2007101108 PubMedGoogle Scholar
  56. 56.
    Fei YJ, Sugawara M, Nakanishi T, Huang W, Wang H, Prasad PD, Leibach FH, Ganapathy V (2000) Primary structure, genomic organization, and functional and electrogenic characteristics of human system N 1, a Na + - and H + -coupled glutamine transporter. J Biol Chem 275(31):23707–23717PubMedGoogle Scholar
  57. 57.
    Felig P (1973) The glucose-alanine cycle. Metabolism 22(2):179–207PubMedGoogle Scholar
  58. 58.
    Forrest LR, Rudnick G (2009) The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda) 24:377–386. doi: 10.1152/physiol.00030.2009 Google Scholar
  59. 59.
    Forrest LR, Zhang YW, Jacobs MT, Gesmonde J, Xie L, Honig BH, Rudnick G (2008) Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci U S A 105(30):10338–10343PubMedCentralPubMedGoogle Scholar
  60. 60.
    Franchi-Gazzola R, Dall'Asta V, Sala R, Visigalli R, Bevilacqua E, Gaccioli F, Gazzola GC, Bussolati O (2006) The role of the neutral amino acid transporter SNAT2 in cell volume regulation. Acta physiologica 187(1–2):273–283. doi: 10.1111/j.1748-1716.2006.01552.x PubMedGoogle Scholar
  61. 61.
    Franchi-Gazzola R, Gaccioli F, Bevilacqua E, Visigalli R, Dall'Asta V, Sala R, Varoqui H, Erickson JD, Gazzola GC, Bussolati O (2004) The synthesis of SNAT2 transporters is required for the hypertonic stimulation of system A transport activity. Biochim Biophys Acta 1667(2):157–166. doi: 10.1016/j.bbamem.2004.09.012 PubMedGoogle Scholar
  62. 62.
    Franchi-Gazzola R, Visigalli R, Bussolati O, Dall'Asta V, Gazzola GC (1999) Adaptive increase of amino acid transport system A requires ERK1/2 activation. J Biol Chem 274(41):28922–28928PubMedGoogle Scholar
  63. 63.
    Fricke MN, Jones-Davis DM, Mathews GC (2007) Glutamine uptake by System A transporters maintains neurotransmitter GABA synthesis and inhibitory synaptic transmission. J Neurochem 102(6):1895–1904. doi: 10.1111/j.1471-4159.2007.04649.x PubMedGoogle Scholar
  64. 64.
    Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15(4):254–266. doi: 10.1016/j.semcancer.2005.04.005 PubMedGoogle Scholar
  65. 65.
    Fumarola C, La Monica S, Guidotti GG (2005) Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: role of glutamine and of cell shrinkage. J Cell Physiol 204(1):155–165. doi: 10.1002/jcp.20272 PubMedGoogle Scholar
  66. 66.
    Gaccioli F, Huang CC, Wang C, Bevilacqua E, Franchi-Gazzola R, Gazzola GC, Bussolati O, Snider MD, Hatzoglou M (2006) Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem 281(26):17929–17940. doi: 10.1074/jbc.M600341200 PubMedGoogle Scholar
  67. 67.
    Gammelsaeter R, Jenstad M, Bredahl MK, Gundersen V, Chaudhry FA (2009) Complementary expression of SN1 and SAT2 in the islets of Langerhans suggests concerted action of glutamine transport in the regulation of insulin secretion. Biochem Biophys Res Commun 381(3):378–382. doi: 10.1016/j.bbrc.2009.02.062 PubMedGoogle Scholar
  68. 68.
    Ganguly A, Collis L, Devaskar SU (2012) Placental glucose and amino acid transport in calorie-restricted wild-type and Glut3 null heterozygous mice. Endocrinology 153(8):3995–4007. doi: 10.1210/en.2011-1973 PubMedGoogle Scholar
  69. 69.
    Gao X, Lu F, Zhou L, Dang S, Sun L, Li X, Wang J, Shi Y (2009) Structure and mechanism of an amino acid antiporter. Science 324(5934):1565–1568. doi: 10.1126/science.1173654 PubMedGoogle Scholar
  70. 70.
    Gazzola GC, Franchi R, Saibene V, Ronchi P, Guidotti GG (1972) Regulation of amino acid transport in chick embryo heart cells. I. Adaptive system of mediation for neutral amino acids. Biochim Biophys Acta 266(2):407–421PubMedGoogle Scholar
  71. 71.
    Gjymishka A, Palii SS, Shan J, Kilberg MS (2008) Despite increased ATF4 binding at the C/EBP-ATF composite site following activation of the unfolded protein response, system A transporter 2 (SNAT2) transcription activity is repressed in HepG2 cells. J Biol Chem 283(41):27736–27747. doi: 10.1074/jbc.M803781200 PubMedGoogle Scholar
  72. 72.
    Glazier JD, Cetin I, Perugino G, Ronzoni S, Grey AM, Mahendran D, Marconi AM, Pardi G, Sibley CP (1997) Association between the activity of the system A amino acid transporter in the microvillous plasma membrane of the human placenta and severity of fetal compromise in intrauterine growth restriction. Pediatr Res 42(4):514–519. doi: 10.1203/00006450-199710000-00016 PubMedGoogle Scholar
  73. 73.
    Grewal S, Defamie N, Zhang X, De Gois S, Shawki A, Mackenzie B, Chen C, Varoqui H, Erickson JD (2009) SNAT2 amino acid transporter is regulated by amino acids of the SLC6 gamma-aminobutyric acid transporter subfamily in neocortical neurons and may play no role in delivering glutamine for glutamatergic transmission. J Biol Chem 284(17):11224–11236. doi: 10.1074/jbc.M806470200 PubMedGoogle Scholar
  74. 74.
    Grillo MA, Lanza A, Colombatto S (2008) Transport of amino acids through the placenta and their role. Amino Acids 34(4):517–523. doi: 10.1007/s00726-007-0006-5 PubMedGoogle Scholar
  75. 75.
    Gu S, Adan-Rice D, Leach RJ, Jiang JX (2001) A novel human amino acid transporter, hNAT3: cDNA cloning, chromosomal mapping, genomic structure, expression, and functional characterization. Genomics 74(3):262–272. doi: 10.1006/geno.2001.6567 PubMedGoogle Scholar
  76. 76.
    Gu S, Roderick HL, Camacho P, Jiang JX (2000) Identification and characterization of an amino acid transporter expressed differentially in liver. Proc Natl Acad Sci U S A 97(7):3230–3235PubMedCentralPubMedGoogle Scholar
  77. 77.
    Hagglund MG, Sreedharan S, Nilsson VC, Shaik JH, Almkvist IM, Backlin S, Wrange O, Fredriksson R (2011) Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem 286(23):20500–20511. doi: 10.1074/jbc.M110.162404 PubMedGoogle Scholar
  78. 78.
    Hartmann F, Plauth M (1989) Intestinal glutamine metabolism. Metabolism 38(8 Suppl 1):18–24PubMedGoogle Scholar
  79. 79.
    Hatanaka T, Hatanaka Y, Tsuchida J, Ganapathy V, Setou M (2006) Amino acid transporter ATA2 is stored at the trans-Golgi network and released by insulin stimulus in adipocytes. J Biol Chem 281(51):39273–39284. doi: 10.1074/jbc.M604534200 PubMedGoogle Scholar
  80. 80.
    Hatanaka T, Huang W, Ling R, Prasad PD, Sugawara M, Leibach FH, Ganapathy V (2001) Evidence for the transport of neutral as well as cationic amino acids by ATA3, a novel and liver-specific subtype of amino acid transport system A. Biochim Biophys Acta 1510(1–2):10–17PubMedGoogle Scholar
  81. 81.
    Heckel T, Broer A, Wiesinger H, Lang F, Broer S (2003) Asymmetry of glutamine transporters in cultured neural cells. Neurochem Int 43(4–5):289–298PubMedGoogle Scholar
  82. 82.
    Hundal HS, Taylor PM (2009) Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab 296(4):E603–E613. doi: 10.1152/ajpendo.91002.2008 PubMedGoogle Scholar
  83. 83.
    Hyde R, Christie GR, Litherland GJ, Hajduch E, Taylor PM, Hundal HS (2001) Subcellular localization and adaptive up-regulation of the System A (SAT2) amino acid transporter in skeletal-muscle cells and adipocytes. Biochem J 355(Pt 3):563–568PubMedGoogle Scholar
  84. 84.
    Hyde R, Cwiklinski EL, MacAulay K, Taylor PM, Hundal HS (2007) Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability. J Biol Chem 282(27):19788–19798. doi: 10.1074/jbc.M611520200 PubMedGoogle Scholar
  85. 85.
    Hyde R, Hajduch E, Powell DJ, Taylor PM, Hundal HS (2005) Ceramide down-regulates system A amino acid transport and protein synthesis in rat skeletal muscle cells. FASEB J: Off Publ Fed Am Soc Exp Biol 19(3):461–463. doi: 10.1096/fj.04-2284fje Google Scholar
  86. 86.
    Ihle JN (1996) STATs: signal transducers and activators of transcription. Cell 84(3):331–334PubMedGoogle Scholar
  87. 87.
    Iruloh CG, D'Souza SW, Fergusson WD, Baker PN, Sibley CP, Glazier JD (2009) Amino acid transport systems beta and A in fetal T lymphocytes in intrauterine growth restriction and with tumor necrosis factor-alpha treatment. Pediatr Res 65(1):51–56. doi: 10.1203/PDR.0b013e31818a0793 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Jack DL, Paulsen IT, Saier MH (2000) The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146(Pt 8):1797–1814PubMedGoogle Scholar
  89. 89.
    Jansson N, Pettersson J, Haafiz A, Ericsson A, Palmberg I, Tranberg M, Ganapathy V, Powell TL, Jansson T (2006) Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J Physiol 576(Pt 3):935–946. doi: 10.1113/jphysiol.2006.116509 PubMedGoogle Scholar
  90. 90.
    Jansson N, Rosario FJ, Gaccioli F, Lager S, Jones HN, Roos S, Jansson T, Powell TL (2013) Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab 98(1):105–113. doi: 10.1210/jc.2012-2667 PubMedGoogle Scholar
  91. 91.
    Jansson T (2001) Amino acid transporters in the human placenta. PediatrRes 49(2):141–147. doi: 10.1203/00006450-200102000-00003 Google Scholar
  92. 92.
    Jenstad M, Quazi AZ, Zilberter M, Haglerod C, Berghuis P, Saddique N, Goiny M, Buntup D, Davanger S, S Haug FM, Barnes CA, McNaughton BL, Ottersen OP, Storm-Mathisen J, Harkany T, Chaudhry FA (2009) System A transporter SAT2 mediates replenishment of dendritic glutamate pools controlling retrograde signaling by glutamate. Cereb Cortex 19(5):1092–1106. doi: 10.1093/cercor/bhn151 PubMedGoogle Scholar
  93. 93.
    Jones HN, Jansson T, Powell TL (2009) IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2. Am J Physiol Cell Physiol 297(5):C1228–C1235. doi: 10.1152/ajpcell.00195.2009 PubMedGoogle Scholar
  94. 94.
    Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL, Jansson T (2009) High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J: Off Publ Fed Am Soc Exp Biol 23(1):271–278. doi: 10.1096/fj.08-116889 Google Scholar
  95. 95.
    Kam K, Nicoll R (2007) Excitatory synaptic transmission persists independently of the glutamate–glutamine cycle. J Neurosci: Off J Soc Neurosci 27(34):9192–9200. doi: 10.1523/JNEUROSCI.1198-07.2007 Google Scholar
  96. 96.
    Karinch AM, Lin CM, Meng Q, Pan M, Souba WW (2007) Glucocorticoids have a role in renal cortical expression of the SNAT3 glutamine transporter during chronic metabolic acidosis. Am J Physiol Renal Physiol 292(1):F448–F455. doi: 10.1152/ajprenal.00168.2006 PubMedGoogle Scholar
  97. 97.
    Karinch AM, Lin CM, Wolfgang CL, Pan M, Souba WW (2002) Regulation of expression of the SN1 transporter during renal adaptation to chronic metabolic acidosis in rats. Am J Physiol Renal Physiol 283(5):F1011–F1019PubMedGoogle Scholar
  98. 98.
    Kilberg MS, Balasubramanian M, Fu L, Shan J (2012) The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr 3(3):295–306. doi: 10.3945/an.112.001891 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Kilberg MS, Handlogten ME, Christensen HN (1980) Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem 255(9):4011–4019PubMedGoogle Scholar
  100. 100.
    Kilberg MS, Shan J, Su N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20(9):436–443. doi: 10.1016/j.tem.2009.05.008 PubMedCentralPubMedGoogle Scholar
  101. 101.
    Kimball SR, Jefferson LS (2005) Role of amino acids in the translational control of protein synthesis in mammals. Semin Cell Dev Biol 16(1):21–27. doi: 10.1016/j.semcdb.2004.11.009 PubMedGoogle Scholar
  102. 102.
    King N, Lin H, Suleiman MS (2011) Oxidative stress increases SNAT1 expression and stimulates cysteine uptake in freshly isolated rat cardiomyocytes. Amino Acids 40(2):517–526. doi: 10.1007/s00726-010-0664-6 PubMedCentralPubMedGoogle Scholar
  103. 103.
    Kondoh N, Imazeki N, Arai M, Hada A, Hatsuse K, Matsuo H, Matsubara O, Ohkura S, Yamamoto M (2007) Activation of a system A amino acid transporter, ATA1/SLC38A1, in human hepatocellular carcinoma and preneoplastic liver tissues. Int J Oncol 31(1):81–87PubMedGoogle Scholar
  104. 104.
    Kondou H, Kawai M, Tachikawa K, Kimoto A, Yamagata M, Koinuma T, Yamazaki M, Nakayama M, Mushiake S, Ozono K, Michigami T (2013) Sodium-coupled neutral amino acid transporter 4 functions as a regulator of protein synthesis during liver development. Hepatol Res. doi:10.1111/hepr.12069Google Scholar
  105. 105.
    Kowalczyk L, Ratera M, Paladino A, Bartoccioni P, Errasti-Murugarren E, Valencia E, Portella G, Bial S, Zorzano A, Fita I, Orozco M, Carpena X, Vazquez-Ibar JL, Palacin M (2011) Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc Natl Acad Sci U S A 108(10):3935–3940. doi: 10.1073/pnas.1018081108 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Krokowski D, Han J, Saikia M, Majumder M, Yuan CL, Guan BJ, Bevilacqua E, Bussolati O, Broer S, Arvan P, Tchorzewski M, Snider MD, Puchowicz M, Croniger CM, Kimball SR, Pan T, Koromilas AE, Kaufman RJ, Hatzoglou M (2013) A self-defeating anabolic program leads to beta-cell apoptosis in endoplasmic reticulum stress-induced diabetes via regulation of amino acid flux. J Biol Chem 288(24):17202–17213. doi: 10.1074/jbc.M113.466920 PubMedGoogle Scholar
  107. 107.
    Kudo Y, Boyd CA (2002) Human placental amino acid transporter genes: expression and function. Reproduction 124(5):593–600PubMedGoogle Scholar
  108. 108.
    Li C, Buettger C, Kwagh J, Matter A, Daikhin Y, Nissim IB, Collins HW, Yudkoff M, Stanley CA, Matschinsky FM (2004) A signaling role of glutamine in insulin secretion. J Biol Chem 279(14):13393–13401. doi: 10.1074/jbc.M311502200 PubMedGoogle Scholar
  109. 109.
    Li C, Najafi H, Daikhin Y, Nissim IB, Collins HW, Yudkoff M, Matschinsky FM, Stanley CA (2003) Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem 278(5):2853–2858. doi: 10.1074/jbc.M210577200 PubMedGoogle Scholar
  110. 110.
    Li Z, Lai G, Deng L, Han Y, Zheng D, Song W (2012) Association of SLC38A4 and system A with abnormal fetal birth weight. Exp Ther Med 3(2):309–313. doi: 10.3892/etm.2011.392 PubMedCentralPubMedGoogle Scholar
  111. 111.
    Ling R, Bridges CC, Sugawara M, Fujita T, Leibach FH, Prasad PD, Ganapathy V (2001) Involvement of transporter recruitment as well as gene expression in the substrate-induced adaptive regulation of amino acid transport system A. Biochim Biophys Acta 1512(1):15–21PubMedGoogle Scholar
  112. 112.
    Ljungdahl PO (2009) Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc Trans 37(Pt 1):242–247. doi: 10.1042/BST0370242 PubMedGoogle Scholar
  113. 113.
    Lopez-Fontanals M, Rodriguez-Mulero S, Casado FJ, Derijard B, Pastor-Anglada M (2003) The osmoregulatory and the amino acid-regulated responses of system A are mediated by different signal transduction pathways. J Gen Physiol 122(1):5–16PubMedCentralPubMedGoogle Scholar
  114. 114.
    Luo JQ, Chen DW, Yu B (2013) Upregulation of amino acid transporter expression induced by L-leucine availability in L6 myotubes is associated with ATF4 signaling through mTORC1-dependent mechanism. Nutrition 29(1):284–290. doi: 10.1016/j.nut.2012.05.008 PubMedGoogle Scholar
  115. 115.
    Ma D, Lu P, Yan C, Fan C, Yin P, Wang J, Shi Y (2012) Structure and mechanism of a glutamate-GABA antiporter. Nature 483(7391):632–636. doi: 10.1038/nature10917 PubMedGoogle Scholar
  116. 116.
    Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (system N/A) transporters of the SLC38 gene family. Pflugers Arch 447(5):784–795PubMedGoogle Scholar
  117. 117.
    Mackenzie B, Schafer MK, Erickson JD, Hediger MA, Weihe E, Varoqui H (2003) Functional properties and cellular distribution of the system A glutamine transporter SNAT1 support specialized roles in central neurons. J Biol Chem 278(26):23720–23730PubMedGoogle Scholar
  118. 118.
    Mahendran D, Donnai P, Glazier JD, D'Souza SW, Boyd RD, Sibley CP (1993) Amino acid (system A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babies. Pediatr Res 34(5):661–665. doi: 10.1203/00006450-199311000-00019 PubMedGoogle Scholar
  119. 119.
    Martinez-Lozada Z, Guillem AM, Flores-Mendez M, Hernandez-Kelly LC, Vela C, Meza E, Zepeda RC, Caba M, Rodriguez A, Ortega A (2013) GLAST/EAAT1-induced glutamine release via SNAT3 in Bergmann glial cells: evidence of a functional and physical coupling. J Neurochem 125(4):545–554. doi: 10.1111/jnc.12211 PubMedGoogle Scholar
  120. 120.
    McGivan JD, Pastor-Anglada M (1994) Regulatory and molecular aspects of mammalian amino acid transport. Biochem J 299(Pt 2):321–334PubMedGoogle Scholar
  121. 121.
    Nakanishi T, Kekuda R, Fei YJ, Hatanaka T, Sugawara M, Martindale RG, Leibach FH, Prasad PD, Ganapathy V (2001) Cloning and functional characterization of a new subtype of the amino acid transport system N. Am J Physiol Cell Physiol 281(6):C1757–C1768PubMedGoogle Scholar
  122. 122.
    Nakanishi T, Sugawara M, Huang W, Martindale RG, Leibach FH, Ganapathy ME, Prasad PD, Ganapathy V (2001) Structure, function, and tissue expression pattern of human SN2, a subtype of the amino acid transport system N. Biochem Biophys Res Commun 281(5):1343–1348PubMedGoogle Scholar
  123. 123.
    Newsholme EA, Crabtree B, Ardawi MS (1985) The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep 5(5):393–400PubMedGoogle Scholar
  124. 124.
    Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534. doi: 10.1016/j.cell.2008.11.044 PubMedCentralPubMedGoogle Scholar
  125. 125.
    Nissen-Meyer LS, Popescu MC, el Hamdani H, Chaudhry FA (2011) Protein kinase C-mediated phosphorylation of a single serine residue on the rat glial glutamine transporter SN1 governs its membrane trafficking. J Neurosci: Off J Soc Neurosci 31(17):6565–6575. doi: 10.1523/JNEUROSCI.3694-10.2011 Google Scholar
  126. 126.
    Ogura M, Kakuda T, Takarada T, Nakamichi N, Fukumori R, Kim YH, Hinoi E, Yoneda Y (2012) Promotion of both proliferation and neuronal differentiation in pluripotent P19 cells with stable overexpression of the glutamine transporter slc38a1. PLoS ONE 7(10):e48270. doi: 10.1371/journal.pone.0048270 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Ogura M, Takarada T, Nakamichi N, Kawagoe H, Sako A, Nakazato R, Yoneda Y (2011) Exacerbated vulnerability to oxidative stress in astrocytic C6 glioma cells with stable overexpression of the glutamine transporter slc38a1. Neurochem Int 58(4):504–511. doi: 10.1016/j.neuint.2011.01.007 PubMedGoogle Scholar
  128. 128.
    Ogura M, Taniura H, Nakamichi N, Yoneda Y (2007) Upregulation of the glutamine transporter through transactivation mediated by cAMP/protein kinase A signals toward exacerbation of vulnerability to oxidative stress in rat neocortical astrocytes. J Cell Physiol 212(2):375–385. doi: 10.1002/jcp.21031 PubMedGoogle Scholar
  129. 129.
    Oh RS, Pan WC, Yalcin A, Zhang H, Guilarte TR, Hotamisligil GS, Christiani DC, Lu Q (2012) Functional RNA interference (RNAi) screen identifies system A neutral amino acid transporter 2 (SNAT2) as a mediator of arsenic-induced endoplasmic reticulum stress. J Biol Chem 287(8):6025–6034. doi: 10.1074/jbc.M111.311217 PubMedGoogle Scholar
  130. 130.
    Ortiz V, Aleman G, Escamilla-Del-Arenal M, Recillas-Targa F, Torres N, Tovar AR (2011) Promoter characterization and role of CRE in the basal transcription of the rat SNAT2 gene. Am J Physiol Endocrinol Metab 300(6):E1092–E1102. doi: 10.1152/ajpendo.00459.2010 PubMedGoogle Scholar
  131. 131.
    Padmanabhan R, Gu S, Nicholson BJ, Jiang JX (2013) Identification of a disulfide bridge important for transport function of SNAT4 neutral amino acid transporter. PLoS ONE 8(2):e56792. doi: 10.1371/journal.pone.0056792 Google Scholar
  132. 132.
    Palii SS, Chen H, Kilberg MS (2004) Transcriptional control of the human sodium-coupled neutral amino acid transporter system A gene by amino acid availability is mediated by an intronic element. J Biol Chem 279(5):3463–3471PubMedGoogle Scholar
  133. 133.
    Palii SS, Thiaville MM, Pan YX, Zhong C, Kilberg MS (2006) Characterization of the amino acid response element within the human sodium-coupled neutral amino acid transporter 2 (SNAT2) System A transporter gene. Biochem J 395(3):517–527. doi: 10.1042/BJ20051867 PubMedGoogle Scholar
  134. 134.
    Pinilla J, Aledo JC, Cwiklinski E, Hyde R, Taylor PM, Hundal HS (2011) SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? Front Biosci 3:1289–1299Google Scholar
  135. 135.
    Rae C, Hare N, Bubb WA, McEwan SR, Broer A, McQuillan JA, Balcar VJ, Conigrave AD, Broer S (2003) Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 85(2):503–514PubMedGoogle Scholar
  136. 136.
    Reimann F, Williams L, da Silva XG, Rutter GA, Gribble FM (2004) Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 47(9):1592–1601. doi: 10.1007/s00125-004-1498-0 PubMedGoogle Scholar
  137. 137.
    Reimer RJ, Chaudhry FA, Gray AT, Edwards RH (2000) Amino acid transport system A resembles system N in sequence but differs in mechanism. Proc Natl Acad Sci U S A 97(14):7715–7720PubMedCentralPubMedGoogle Scholar
  138. 138.
    Rodriguez A, Berumen LC, Francisco Z, Gimenez C, Garcia-Alcocer MG (2011) Expression of the SNAT2 amino acid transporter during the development of rat cerebral cortex. Int J Dev Neurosci: Off J Int Soc Dev Neurosci 29(7):743–748. doi: 10.1016/j.ijdevneu.2011.05.010 Google Scholar
  139. 139.
    Rosario FJ, Jansson N, Kanai Y, Prasad PD, Powell TL, Jansson T (2011) Maternal protein restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and down-regulates placental amino acid transporters. Endocrinology 152(3):1119–1129. doi: 10.1210/en.2010-1153 PubMedGoogle Scholar
  140. 140.
    Rosario FJ, Kanai Y, Powell TL, Jansson T (2013) Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J Physiol 591(Pt 3):609–625. doi: 10.1113/jphysiol.2012.238014 PubMedGoogle Scholar
  141. 141.
    Ruderisch N, Virgintino D, Makrides V, Verrey F (2011) Differential axial localization along the mouse brain vascular tree of luminal sodium-dependent glutamine transporters Snat1 and Snat3. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 31(7):1637–1647. doi: 10.1038/jcbfm.2011.21 Google Scholar
  142. 142.
    Saha P, Arthur S, Kekuda R, Sundaram U (2012) Na-glutamine co-transporters B(0)AT1 in villus and SN2 in crypts are differentially altered in chronically inflamed rabbit intestine. Biochim Biophys Acta 1818(3):434–442. doi: 10.1016/j.bbamem.2011.11.005 PubMedGoogle Scholar
  143. 143.
    Schioth HB, Roshanbin S, Hagglund MG, Fredriksson R (2013) Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med 34(2–3):571–585. doi: 10.1016/j.mam.2012.07.012 PubMedGoogle Scholar
  144. 144.
    Schneider HP, Broer S, Broer A, Deitmer JW (2007) Heterologous expression of the glutamine transporter SNAT3 in Xenopus oocytes is associated with four modes of uncoupled transport. J Biol Chem 282(6):3788–3798PubMedGoogle Scholar
  145. 145.
    Schweikhard ES, Ziegler CM (2012) Amino acid secondary transporters: toward a common transport mechanism. Curr Top Membr 70:1–28. doi: 10.1016/B978-0-12-394316-3.00001-6 PubMedGoogle Scholar
  146. 146.
    Sengers BG, Please CP, Lewis RM (2010) Computational modelling of amino acid transfer interactions in the placenta. Exp Physiol 95(7):829–840. doi: 10.1113/expphysiol.2010.052902 PubMedGoogle Scholar
  147. 147.
    Shaffer PL, Goehring A, Shankaranarayanan A, Gouaux E (2009) Structure and mechanism of a Na + -independent amino acid transporter. Science 325(5943):1010–1014. doi: 10.1126/science.1176088 PubMedCentralPubMedGoogle Scholar
  148. 148.
    Shan J, Hamazaki T, Tang TA, Terada N, Kilberg MS (2013) Activation of the amino acid response modulates lineage specification during differentiation of murine embryonic stem cells. Am J Physiol Endocrinol Metab 305(3):E325–E335. doi: 10.1152/ajpendo.00136.2013 PubMedGoogle Scholar
  149. 149.
    Shi Q, Padmanabhan R, Villegas CJ, Gu S, Jiang JX (2011) Membrane topological structure of neutral system N/A amino acid transporter 4 (SNAT4) protein. J Biol Chem 286(44):38086–38094. doi: 10.1074/jbc.M111.220277 PubMedGoogle Scholar
  150. 150.
    Sibley CP, Turner MA, Cetin I, Ayuk P, Boyd CA, D'Souza SW, Glazier JD, Greenwood SL, Jansson T, Powell T (2005) Placental phenotypes of intrauterine growth. Pediatr Res 58(5):827–832. doi: 10.1203/01.PDR.0000181381.82856.23 PubMedGoogle Scholar
  151. 151.
    Sidoryk-Wegrzynowicz M, Lee ES, Ni M, Aschner M (2010) Manganese-induced downregulation of astroglial glutamine transporter SNAT3 involves ubiquitin-mediated proteolytic system. Glia 58(16):1905–1912. doi: 10.1002/glia.21060 PubMedGoogle Scholar
  152. 152.
    Solbu TT, Bjorkmo M, Berghuis P, Harkany T, Chaudhry FA (2010) SAT1, A Glutamine Transporter, is Preferentially Expressed in GABAergic Neurons. Front Neuroanat 4:1. doi: 10.3389/neuro.05.001.2010 PubMedCentralPubMedGoogle Scholar
  153. 153.
    Solbu TT, Boulland JL, Zahid W, Lyamouri Bredahl MK, Amiry-Moghaddam M, Storm-Mathisen J, Roberg BA, Chaudhry FA (2005) Induction and targeting of the glutamine transporter SN1 to the basolateral membranes of cortical kidney tubule cells during chronic metabolic acidosis suggest a role in pH regulation. J Am Soc Nephrol 16(4):869–877PubMedGoogle Scholar
  154. 154.
    Squires EJ, Hall DE, Brosnan JT (1976) Arteriovenous differences for amino acids and lactate across kidneys of normal and acidotic rats. Biochem J 160(1):125–128PubMedGoogle Scholar
  155. 155.
    Sugawara M, Nakanishi T, Fei Y, Martindale RG, Ganapathy ME, Leibach FH, Ganapathy V (2000) Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle. Biochim Biophys Acta 1509(1–2):7–13PubMedGoogle Scholar
  156. 156.
    Sugawara M, Nakanishi T, Fei YJ, Huang W, Ganapathy ME, Leibach FH, Ganapathy V (2000) Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A. J Biol Chem 275(22):16473–16477PubMedGoogle Scholar
  157. 157.
    Suryawan A, Davis TA (2011) Regulation of protein synthesis by amino acids in muscle of neonates. Front Biosci: J Virtual Libr 16:1445–1460Google Scholar
  158. 158.
    Tamarappoo BK, Raizada MK, Kilberg MS (1997) Identification of a system N-like Na(+)-dependent glutamine transport activity in rat brain neurons. J Neurochem 68(3):954–960PubMedGoogle Scholar
  159. 159.
    Tan BS, Lonic A, Morris MB, Rathjen PD, Rathjen J (2011) The amino acid transporter SNAT2 mediates L-proline-induced differentiation of ES cells. Am J PhysiolCell Physiol 300(6):C1270–C1279. doi: 10.1152/ajpcell.00235.2010 Google Scholar
  160. 160.
    Taylor L, Curthoys NP (2004) Glutamine metabolism: Role in acid-base balance*. Biochem Mol Biol Educ 32(5):291–304. doi: 10.1002/bmb.2004.494032050388 PubMedGoogle Scholar
  161. 161.
    Thwaites DT, Anderson CM (2007) Deciphering the mechanisms of intestinal imino (and amino) acid transport: the redemption of SLC36A1. Biochim Biophys Acta 1768(2):179–197PubMedGoogle Scholar
  162. 162.
    Umapathy NS, Dun Y, Martin PM, Duplantier JN, Roon P, Prasad P, Smith SB, Ganapathy V (2008) Expression and function of system N glutamine transporters (SN1/SN2 or SNAT3/SNAT5) in retinal ganglion cells. Invest Ophthalmol Vis Sci 49(11):5151–5160. doi: 10.1167/iovs.08-2245 PubMedCentralPubMedGoogle Scholar
  163. 163.
    Umapathy NS, Li W, Mysona BA, Smith SB, Ganapathy V (2005) Expression and function of glutamine transporters SN1 (SNAT3) and SN2 (SNAT5) in retinal Muller cells. Invest Ophthalmol Vis Sci 46(11):3980–3987. doi: 10.1167/iovs.05-0488 PubMedGoogle Scholar
  164. 164.
    Umbers AJ, Aitken EH, Rogerson SJ (2011) Malaria in pregnancy: small babies, big problem. Trends Parasitol 27(4):168–175. doi: 10.1016/j.pt.2011.01.007 PubMedGoogle Scholar
  165. 165.
    Uwechue NM, Marx MC, Chevy Q, Billups B (2012) Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes. J Physiol 590(Pt 10):2317–2331. doi: 10.1113/jphysiol.2011.226605 PubMedGoogle Scholar
  166. 166.
    Van den Berg CJ, Krzalic L, Mela P, Waelsch H (1969) Compartmentation of glutamate metabolism in brain. Evidence for the existence of two different tricarboxylic acid cycles in brain. Biochem J 113(2):281–290PubMedGoogle Scholar
  167. 167.
    Varoqui H, Erickson JD (2002) Selective up-regulation of system a transporter mRNA in diabetic liver. Biochem Biophys Res Commun 290(3):903–908. doi: 10.1006/bbrc.2001.6281 PubMedGoogle Scholar
  168. 168.
    Vaughan OR, Sferruzzi-Perri AN, Fowden AL (2012) Maternal corticosterone regulates nutrient allocation to fetal growth in mice. J Physiol 590(Pt 21):5529–5540. doi: 10.1113/jphysiol.2012.239426 PubMedGoogle Scholar
  169. 169.
    Wang K, Cao F, Fang W, Hu Y, Chen Y, Ding H, Yu G (2013) Activation of SNAT1/SLC38A1 in human breast cancer: correlation with p-Akt overexpression. BMC Cancer 13:343. doi: 10.1186/1471-2407-13-343 PubMedCentralPubMedGoogle Scholar
  170. 170.
    Washington JM, Rathjen J, Felquer F, Lonic A, Bettess MD, Hamra N, Semendric L, Tan BS, Lake JA, Keough RA, Morris MB, Rathjen PD (2010) L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 298(5):C982–C992. doi: 10.1152/ajpcell.00498.2009 PubMedGoogle Scholar
  171. 171.
    Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11(9):671–677. doi: 10.1038/nrc3110 PubMedGoogle Scholar
  172. 172.
    Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O'Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PC, Iwata S, Henderson PJ, Cameron AD (2008) Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322(5902):709–713PubMedCentralPubMedGoogle Scholar
  173. 173.
    Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na(+)/Cl(-)-dependent neurotransmitter transporters. Nature 437:215–223PubMedGoogle Scholar
  174. 174.
    Yao D, Mackenzie B, Ming H, Varoqui H, Zhu H, Hediger MA, Erickson JD (2000) A novel system A isoform mediating Na+/neutral amino acid cotransport. J Biol Chem 275(30):22790–22797PubMedGoogle Scholar
  175. 175.
    Yoshioka C, Yasuda S, Kimura F, Kobayashi M, Itagaki S, Hirano T, Iseki K (2009) Expression and role of SNAT3 in the placenta. Placenta 30(12):1071–1077. doi: 10.1016/j.placenta.2009.09.009 PubMedGoogle Scholar
  176. 176.
    Young SH, Rey O, Sternini C, Rozengurt E (2010) Amino acid sensing by enteroendocrine STC-1 cells: role of the Na + -coupled neutral amino acid transporter 2. Am J Physiol Cell Physiol 298(6):C1401–C1413. doi: 10.1152/ajpcell.00518.2009 PubMedGoogle Scholar
  177. 177.
    Zhang Z, Gameiro A, Grewer C (2008) Highly Conserved Asparagine 82 Controls the Interaction of Na + with the Sodium-coupled Neutral Amino Acid Transporter SNAT2. J Biol Chem 283(18):12284–12292PubMedGoogle Scholar
  178. 178.
    Zhang Z, Grewer C (2007) The sodium-coupled neutral amino acid transporter SNAT2 mediates an anion leak conductance that is differentially inhibited by transported substrates. Biophys J 92(7):2621–2632PubMedCentralPubMedGoogle Scholar
  179. 179.
    Zhang Z, Zander CB, Grewer C (2011) The C-terminal domain of the neutral amino acid transporter SNAT2 regulates transport activity through voltage-dependent processes. Biochem J 434(2):287–296. doi: 10.1042/BJ20100507 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Research School of BiologyAustralian National UniversityCanberraAustralia

Personalised recommendations