Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 466, Issue 8, pp 1487–1499 | Cite as

Mechanism and synergism in epithelial fluid and electrolyte secretion

  • Jeong Hee Hong
  • Seonghee Park
  • Nikolay Shcheynikov
  • Shmuel MuallemEmail author
Invited Review

Abstract

A central function of epithelia is the control of the volume and electrolyte composition of bodily fluids through vectorial transport of electrolytes and the obligatory H2O. In exocrine glands, fluid and electrolyte secretion is carried out by both acinar and duct cells, with the portion of fluid secreted by each cell type varying among glands. All acinar cells secrete isotonic, plasma-like fluid, while the duct determines the final electrolyte composition of the fluid by absorbing most of the Cl and secreting HCO3 . The key transporters mediating acinar fluid and electrolyte secretion are the basolateral Na+/K+ /2Cl cotransporter, the luminal Ca2+-activated Cl channel ANO1 and basolateral and luminal Ca2+-activated K+ channels. Ductal fluid and HCO3 secretion are mediated by the basolateral membrane Na+-HCO3 cotransporter NBCe1-B and the luminal membrane Cl/HCO3 exchanger slc26a6 and the Cl channel CFTR. The function of the transporters is regulated by multiple inputs, which in the duct include major regulation by the WNK/SPAK pathway that inhibit secretion and the IRBIT/PP1 pathway that antagonize the effects of the WNK/SPAK pathway to both stimulate and coordinate the secretion. The function of these regulatory pathways in secretory glands acinar cells is yet to be examined. An important concept in biology is synergism among signaling pathways to generate the final physiological response that ensures regulation with high fidelity and guards against cell toxicity. While synergism is observed in all epithelial functions, the molecular mechanism mediating the synergism is not known. Recent work reveals a central role for IRBIT as a third messenger that integrates and synergizes the function of the Ca2+ and cAMP signaling pathways in activation of epithelial fluid and electrolyte secretion. These concepts are discussed in this review using secretion by the pancreatic and salivary gland ducts as model systems.

Keywords

Secretory glands WNK/SPAK pathway IRBIT/PP1 pathway Coordination Synergism 

Notes

Acknowledgments

The work in the authors’ laboratory was funded by Intramural Research Program of the NIH, NIDCR grant DE000735.

References

  1. 1.
    Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I (1998) Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem 273:17689–95PubMedGoogle Scholar
  2. 2.
    Alexander RT, Grinstein S (2006) Na+/H + exchangers and the regulation of volume. Acta Physiol (Oxf) 187:159–67Google Scholar
  3. 3.
    Alper SL (2009) Molecular physiology and genetics of Na + −independent SLC4 anion exchangers. J Exp Biol 212:1672–83PubMedCentralPubMedGoogle Scholar
  4. 4.
    Anderova M, Duchene AD, Barbara JG, Takeda K (1998) Vasoactive intestinal peptide potentiates and directly stimulates catecholamine secretion from rat adrenal chromaffin cells. Brain Res 809:97–106PubMedGoogle Scholar
  5. 5.
    Ando H, Mizutani A, Kiefer H, Tsuzurugi D, Michikawa T, Mikoshiba K (2006) IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell 22:795–806PubMedGoogle Scholar
  6. 6.
    Ando H, Mizutani A, Matsu-ura T, Mikoshiba K (2003) IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem 278:10602–12PubMedGoogle Scholar
  7. 7.
    Arreola J, Melvin JE, Begenisich T (1996) Activation of calcium-dependent chloride channels in rat parotid acinar cells. J Gen Physiol 108:35–47PubMedGoogle Scholar
  8. 8.
    Avella M, Loriol C, Boulukos K, Borgese F, Ehrenfeld J (2011) SLC26A9 stimulates CFTR expression and function in human bronchial cell lines. J Cell Physiol 226:212–23PubMedGoogle Scholar
  9. 9.
    Baker JM, Hudson RP, Kanelis V, Choy WY, Thibodeau PH, Thomas PJ, Forman-Kay JD (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14:738–45PubMedCentralPubMedGoogle Scholar
  10. 10.
    Belden S, Flaherty KT (2012) MEK and RAF inhibitors for BRAF-mutated cancers. Expert Rev Mol Med 14:e17PubMedGoogle Scholar
  11. 11.
    Bertrand CA, Zhang R, Pilewski JM, Frizzell RA (2009) SLC26A9 is a constitutively active, CFTR-regulated anion conductance in human bronchial epithelia. J Gen Physiol 133:421–38PubMedCentralPubMedGoogle Scholar
  12. 12.
    Betzenhauser MJ, Fike JL, Wagner LE 2nd, Yule DI (2009) Protein kinase A increases type-2 inositol 1,4,5-trisphosphate receptor activity by phosphorylation of serine 937. J Biol Chem 284:25116–25PubMedCentralPubMedGoogle Scholar
  13. 13.
    Boron WF, Chen L, Parker MD (2009) Modular structure of sodium-coupled bicarbonate transporters. J Exp Biol 212:1697–706PubMedCentralPubMedGoogle Scholar
  14. 14.
    Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tikhonova IR, Bjornson R, Mane SM, Colussi G, Lebel M, Gordon RD, Semmekrot BA, Poujol A, Valimaki MJ, De Ferrari ME, Sanjad SA, Gutkin M, Karet FE, Tucci JR, Stockigt JR, Keppler-Noreuil KM, Porter CC, Anand SK, Whiteford ML, Davis ID, Dewar SB, Bettinelli A, Fadrowski JJ, Belsha CW, Hunley TE, Nelson RD, Trachtman H, Cole TR, Pinsk M, Bockenhauer D, Shenoy M, Vaidyanathan P, Foreman JW, Rasoulpour M, Thameem F, Al-Shahrouri HZ, Radhakrishnan J, Gharavi AG, Goilav B, Lifton RP (2012) Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482:98–102PubMedCentralPubMedGoogle Scholar
  15. 15.
    Cai H, Cebotaru V, Wang YH, Zhang XM, Cebotaru L, Guggino SE, Guggino WB (2006) WNK4 kinase regulates surface expression of the human sodium chloride cotransporter in mammalian cells. Kidney Int 69:2162–70PubMedGoogle Scholar
  16. 16.
    Catalan MA, Nakamoto T, Gonzalez-Begne M, Camden JM, Wall SM, Clarke LL, Melvin JE (2010) Cftr and ENaC ion channels mediate NaCl absorption in the mouse submandibular gland. J Physiol 588:713–24PubMedCentralPubMedGoogle Scholar
  17. 17.
    Chew CS, Petropoulos AC (1991) Thapsigargin potentiates histamine-stimulated HCl secretion in gastric parietal cells but does not mimic cholinergic responses. Cell Regul 2:27–39PubMedCentralPubMedGoogle Scholar
  18. 18.
    Cho HJ, Joo NS, Wine JJ (2010) Mucus secretion from individual submucosal glands of the ferret trachea. Am J Physiol Lung Cell Mol Physiol 299:L124–36PubMedCentralPubMedGoogle Scholar
  19. 19.
    Choate KA, Kahle KT, Wilson FH, Nelson-Williams C, Lifton RP (2003) WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl-transporting epithelia. Proc Natl Acad Sci U S A 100:663–8PubMedCentralPubMedGoogle Scholar
  20. 20.
    Choi JY, Khansaheb M, Joo NS, Krouse ME, Robbins RC, Weill D, Wine JJ (2009) Substance P stimulates human airway submucosal gland secretion mainly via a CFTR-dependent process. J Clin Invest 119:1189–200PubMedCentralPubMedGoogle Scholar
  21. 21.
    Compton EL, Karinou E, Naismith JH, Gabel F, Javelle A (2011) Low resolution structure of a bacterial SLC26 transporter reveals dimeric stoichiometry and mobile intracellular domains. J Biol Chem 286:27058–67PubMedCentralPubMedGoogle Scholar
  22. 22.
    Compton J, Martinez JR, Martinez AM, Young JA (1981) Fluid and electrolyte secretion from the isolated, perfused submandibular and sublingual glands of the rat. Arch Oral Biol 26:555–61PubMedGoogle Scholar
  23. 23.
    Delpire E (2009) The mammalian family of sterile 20p-like protein kinases. Pflugers Archiv: Eur J Physiol 458:953–67Google Scholar
  24. 24.
    Delpire E, Austin TM (2010) Kinase regulation of Na + −K + −2Cl-cotransport in primary afferent neurons. J Physiol 588:3365–73PubMedCentralPubMedGoogle Scholar
  25. 25.
    Delporte C, Steinfeld S (2006) Distribution and roles of aquaporins in salivary glands. Biochim Biophys Acta 1758:1061–70PubMedGoogle Scholar
  26. 26.
    Devogelaere B, Nadif Kasri N, Derua R, Waelkens E, Callewaert G, Missiaen L, Parys JB, De Smedt H (2006) Binding of IRBIT to the IP3 receptor: determinants and functional effects. Biochem Biophys Res Commun 343:49–56PubMedGoogle Scholar
  27. 27.
    Devogelaere B, Sammels E, De Smedt H (2008) The IRBIT domain adds new functions to the AHCY family. Bioessays 30:642–52PubMedGoogle Scholar
  28. 28.
    Dorwart MR, Shcheynikov N, Wang Y, Stippec S, Muallem S (2007) SLC26A9 is a Cl(−) channel regulated by the WNK kinases. J Physiol 584:333–45PubMedCentralPubMedGoogle Scholar
  29. 29.
    Dorwart MR, Shcheynikov N, Yang D, Muallem S (2008) The solute carrier 26 family of proteins in epithelial ion transport. Physiology (Bethesda) 23:104–14Google Scholar
  30. 30.
    El-Showk S, Ruonala R, Helariutta Y (2013) Crossing paths: cytokinin signalling and crosstalk. Development 140:1373–83PubMedGoogle Scholar
  31. 31.
    Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–22PubMedGoogle Scholar
  32. 32.
    Ferre S, Karcz-Kubicha M, Hope BT, Popoli P, Burgueno J, Gutierrez MA, Casado V, Fuxe K, Goldberg SR, Lluis C, Franco R, Ciruela F (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci U S A 99:11940–5PubMedCentralPubMedGoogle Scholar
  33. 33.
    Gagnon KB, Delpire E (2012) Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 92:1577–617PubMedGoogle Scholar
  34. 34.
    Gardner JD (1979) Regulation of pancreatic exocrine function in vitro: initial steps in the actions of secretagogues. Annu Rev Physiol 41:55–66PubMedGoogle Scholar
  35. 35.
    Garnett JP, Hickman E, Tunkamnerdthai O, Cuthbert AW, Gray MA (2013) Protein phosphatase 1 coordinates CFTR-dependent airway epithelial HCO3-secretion by reciprocal regulation of apical and basolateral membrane Cl(−)-HCO3-exchangers. Br J Pharmacol 168:1946–60PubMedCentralPubMedGoogle Scholar
  36. 36.
    Golbang AP, Cope G, Hamad A, Murthy M, Liu CH, Cuthbert AW, O'Shaughnessy KM (2006) Regulation of the expression of the Na/Cl cotransporter by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved. Am J Physiol Ren Physiol 291:F1369–76Google Scholar
  37. 37.
    Gross E, Hawkins K, Abuladze N, Pushkin A, Cotton CU, Hopfer U, Kurtz I (2001) The stoichiometry of the electrogenic sodium bicarbonate cotransporter NBC1 is cell-type dependent. J Physiol 531:597–603PubMedCentralPubMedGoogle Scholar
  38. 38.
    Gu W, Shi XL, Roeder RG (1997) Synergistic activation of transcription by CBP and p53. Nature 387:819–23PubMedGoogle Scholar
  39. 39.
    Haas M, Forbush B 3rd (2000) The Na-K-Cl cotransporter of secretory epithelia. Annu Rev Physiol 62:515–34PubMedGoogle Scholar
  40. 40.
    Hallworth R, Stark K, Zholudeva L, Currall BB, Nichols MG (2013) The conserved tetrameric subunit stoichiometry of Slc26 proteins. Microsc Microanal : Off J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can 19:799–807Google Scholar
  41. 41.
    Harrison JD (2009) Causes, natural history, and incidence of salivary stones and obstructions. Otolaryngol Clin North Am 42:927–47PubMedGoogle Scholar
  42. 42.
    Hastbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A et al (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78:1073–87PubMedGoogle Scholar
  43. 43.
    He P, Zhang H, Yun CC (2008) IRBIT, inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3, binds Na+/H+ exchanger NHE3 and activates NHE3 activity in response to calcium. J Biol Chem 283:33544–53PubMedCentralPubMedGoogle Scholar
  44. 44.
    Hirono C, Sugita M, Furuya K, Yamagishi S, Shiba Y (1998) Potentiation by isoproterenol on carbachol-induced K+ and Cl- currents and fluid secretion in rat parotid. J Membr Biol 164:197–203PubMedGoogle Scholar
  45. 45.
    Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277PubMedGoogle Scholar
  46. 46.
    Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J (1996) Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14:316–9PubMedGoogle Scholar
  47. 47.
    Homma K, Miller KK, Anderson CT, Sengupta S, Du GG, Aguinaga S, Cheatham M, Dallos P, Zheng J (2010) Interaction between CFTR and prestin (SLC26A5). Biochim Biophys Acta 1798:1029–40PubMedCentralPubMedGoogle Scholar
  48. 48.
    Hong JH, Yang D, Shcheynikov N, Ohana E, Shin DM, Muallem S (2013) Convergence of IRBIT, phosphatidylinositol (4,5) bisphosphate, and WNK/SPAK kinases in regulation of the Na + −HCO3- cotransporters family. Proc Natl Acad Sci U S A 110:4105–10PubMedCentralPubMedGoogle Scholar
  49. 49.
    Hoorn EJ, Ellison DH (2012) WNK kinases and the kidney. Exp Cell Res 318:1020–6PubMedCentralPubMedGoogle Scholar
  50. 50.
    Huang CL, Cha SK, Wang HR, Xie J, Cobb MH (2007) WNKs: protein kinases with a unique kinase domain. Exp Mol Med 39:565–73PubMedGoogle Scholar
  51. 51.
    Ishiguro H, Naruse S, Kitagawa M, Suzuki A, Yamamoto A, Hayakawa T, Case RM, Steward MC (2000) CO2 permeability and bicarbonate transport in microperfused interlobular ducts isolated from guinea-pig pancreas. J Physiol 528(Pt 2):305–15PubMedCentralPubMedGoogle Scholar
  52. 52.
    Ishiguro H, Steward MC, Naruse S, Ko SB, Goto H, Case RM, Kondo T, Yamamoto A (2009) CFTR functions as a bicarbonate channel in pancreatic duct cells. J Gen Physiol 133:315–26PubMedCentralPubMedGoogle Scholar
  53. 53.
    Ishikawa Y, Yuan Z, Inoue N, Skowronski MT, Nakae Y, Shono M, Cho G, Yasui M, Agre P, Nielsen S (2005) Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland. Am J Physiol Cell Physiol 289:C1303–11PubMedGoogle Scholar
  54. 54.
    Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS (2006) Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38:474–8PubMedGoogle Scholar
  55. 55.
    Joo NS, Cho HJ, Khansaheb M, Wine JJ (2010) Hyposecretion of fluid from tracheal submucosal glands of CFTR-deficient pigs. J Clin Invest 120:3161–6PubMedCentralPubMedGoogle Scholar
  56. 56.
    Kahle KT, Gimenez I, Hassan H, Wilson FH, Wong RD, Forbush B, Aronson PS, Lifton RP (2004) WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia. Proc Natl Acad Sci U S A 101:2064–9PubMedCentralPubMedGoogle Scholar
  57. 57.
    Kasai H, Augustine GJ (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348:735–8PubMedGoogle Scholar
  58. 58.
    Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–80PubMedGoogle Scholar
  59. 59.
    Kim KH, Shcheynikov N, Wang Y, Muallem S (2005) SLC26A7 is a Cl- channel regulated by intracellular pH. J Biol Chem 280:6463–70PubMedGoogle Scholar
  60. 60.
    Kiselyov K, Wang X, Shin DM, Zang W, Muallem S (2006) Calcium signaling complexes in microdomains of polarized secretory cells. Cell Calcium 40:451–9PubMedGoogle Scholar
  61. 61.
    Knauf F, Yang CL, Thomson RB, Mentone SA, Giebisch G, Aronson PS (2001) Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc Natl Acad Sci U S A 98:9425–30PubMedCentralPubMedGoogle Scholar
  62. 62.
    Ko SB, Shcheynikov N, Choi JY, Luo X, Ishibashi K, Thomas PJ, Kim JY, Kim KH, Lee MG, Naruse S, Muallem S (2002) A molecular mechanism for aberrant CFTR-dependent HCO(3)(−) transport in cystic fibrosis. EMBO J 21:5662–72PubMedCentralPubMedGoogle Scholar
  63. 63.
    Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, Muallem S (2004) Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol 6:343–50PubMedCentralPubMedGoogle Scholar
  64. 64.
    Kornitzer D, Ciechanover A (2000) Modes of regulation of ubiquitin-mediated protein degradation. J Cell Physiol 182:1–11PubMedGoogle Scholar
  65. 65.
    Kuijpers GA, Van Nooy IG, De Pont JJ, Bonting SL (1984) The mechanism of fluid secretion in the rabbit pancreas studied by means of various inhibitors. Biochim Biophys Acta 778:324–31PubMedGoogle Scholar
  66. 66.
    Kunzelmann K (2001) CFTR: interacting with everything? News Physiol Sci 16:167–70PubMedGoogle Scholar
  67. 67.
    Kunzelmann K, Kongsuphol P, Aldehni F, Tian Y, Ousingsawat J, Warth R, Schreiber R (2009) Bestrophin and TMEM16-Ca(2+) activated Cl(−) channels with different functions. Cell Calcium 46:233–41PubMedGoogle Scholar
  68. 68.
    Lee MG, Muallem S (2008) Physiology of duct cell secretion. In: Beger H, Buchler M, Kozarek R, Lerch M, Neoptolemos J, Warshaw A, Whitcomb D, Shiratori K (eds) Pancreas: an integrated textbook of basic science, medicine, and surgery. Blackwell Publishing, Oxford, pp 78–90Google Scholar
  69. 69.
    Lee MG, Ohana E, Park HW, Yang D, Muallem S (2012) Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 92:39–74PubMedCentralPubMedGoogle Scholar
  70. 70.
    Lee MG, Xu X, Zeng W, Diaz J, Wojcikiewicz RJ, Kuo TH, Wuytack F, Racymaekers L, Muallem S (1997) Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem 272:15765–70PubMedGoogle Scholar
  71. 71.
    Lee RJ, Foskett JK (2010) cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest 120:3137–48PubMedCentralPubMedGoogle Scholar
  72. 72.
    Lee SK, Boron WF, Parker MD (2012) Relief of autoinhibition of the electrogenic Na-HCO(3) [corrected] cotransporter NBCe1-B: role of IRBIT vs. amino-terminal truncation. Am J Physiol Cell Physiol 302:C518–26PubMedCentralPubMedGoogle Scholar
  73. 73.
    Lennartsson J, Ronnstrand L (2012) Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 92:1619–49PubMedGoogle Scholar
  74. 74.
    Linsdell P, Tabcharani JA, Rommens JM, Hou YX, Chang XB, Tsui LC, Riordan JR, Hanrahan JW (1997) Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J Gen Physiol 110:355–64PubMedCentralPubMedGoogle Scholar
  75. 75.
    Lohi H, Kujala M, Kerkela E, Saarialho-Kere U, Kestila M, Kere J (2000) Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics 70:102–12PubMedGoogle Scholar
  76. 76.
    Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, Beaurain G, Bonnefond A, Sand O, Simian C, Vidal-Petiot E, Soukaseum C, Mandet C, Broux F, Chabre O, Delahousse M, Esnault V, Fiquet B, Houillier P, Bagnis CI, Koenig J, Konrad M, Landais P, Mourani C, Niaudet P, Probst V, Thauvin C, Unwin RJ, Soroka SD, Ehret G, Ossowski S, Caulfield M, Bruneval P, Estivill X, Froguel P, Hadchouel J, Schott JJ, Jeunemaitre X (2012) KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44(456–60):S1–3Google Scholar
  77. 77.
    Luo X, Choi JY, Ko SB, Pushkin A, Kurtz I, Ahn W, Lee MG, Muallem S (2001) HCO3- salvage mechanisms in the submandibular gland acinar and duct cells. J Biol Chem 276:9808–16PubMedGoogle Scholar
  78. 78.
    Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1999) Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 274:20071–4PubMedGoogle Scholar
  79. 79.
    Markovich D, Aronson PS (2007) Specificity and regulation of renal sulfate transporters. Annu Rev Physiol 69:361–75PubMedGoogle Scholar
  80. 80.
    McCormick JA, Ellison DH (2011) The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev 91:177–219PubMedCentralPubMedGoogle Scholar
  81. 81.
    Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–69PubMedGoogle Scholar
  82. 82.
    Metz DC, Patto RJ, Mrozinski JE Jr, Jensen RT, Turner RJ, Gardner JD (1992) Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini. J Biol Chem 267:20620–9PubMedGoogle Scholar
  83. 83.
    Min X, Lee BH, Cobb MH, Goldsmith EJ (2004) Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Structure 12:1303–11PubMedGoogle Scholar
  84. 84.
    Morales B, Barrera N, Uribe P, Mora C, Villalon M (2000) Functional cross talk after activation of P2 and P1 receptors in oviductal ciliated cells. Am J Physiol Cell Physiol 279:C658–69PubMedGoogle Scholar
  85. 85.
    Muallem S, Loessberg PA (1990) Intracellular pH-regulatory mechanisms in pancreatic acinar cells. I. Characterization of H+ and HCO3- transporters. J Biol Chem 265:12806–12PubMedGoogle Scholar
  86. 86.
    Nakamoto T, Romanenko VG, Takahashi A, Begenisich T, Melvin JE (2008) Apical maxi-K (KCa1.1) channels mediate K+ secretion by the mouse submandibular exocrine gland. Am J Physiol Cell Physiol 294:C810–9PubMedCentralPubMedGoogle Scholar
  87. 87.
    Nakamoto T, Romanenko VG, Takahashi A, Begenisich T, Melvin JE (2008) Apical maxi-K (KCa1.1) channels mediate K+ secretion by the mouse submandibular exocrine gland. Am J Physiol Cell Physiol 294:C810–9PubMedCentralPubMedGoogle Scholar
  88. 88.
    Nehrke K, Quinn CC, Begenisich T (2003) Molecular identification of Ca2 + −activated K+ channels in parotid acinar cells. Am J Physiol Cell Physiol 284:C535–46PubMedGoogle Scholar
  89. 89.
    Nguyen HV, Stuart-Tilley A, Alper SL, Melvin JE (2004) Cl(−)/HCO(3)(−) exchange is acetazolamide sensitive and activated by a muscarinic receptor-induced [Ca(2+)](i) increase in salivary acinar cells. Am J Physiol Gastrointest Liver Physiol 286:G312–20PubMedGoogle Scholar
  90. 90.
    O'Reilly M, Marshall E, Speirs HJ, Brown RW (2003) WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol: JASN 14:2447–56PubMedGoogle Scholar
  91. 91.
    Ohana E, Shcheynikov N, Moe OW, Muallem S (2013) SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J Am Soc Nephrol 24(10):1617–26Google Scholar
  92. 92.
    Ohana E, Shcheynikov N, Park M, Muallem S (2012) Solute carrier family 26 member a2 (Slc26a2) protein functions as an electroneutral SOFormula/OH-/Cl- exchanger regulated by extracellular Cl. J Biol Chem 287:5122–32PubMedCentralPubMedGoogle Scholar
  93. 93.
    Ohana E, Shcheynikov N, Yang D, So I, Muallem S (2011) Determinants of coupled transport and uncoupled current by the electrogenic SLC26 transporters. J Gen Physiol 137:239–51PubMedCentralPubMedGoogle Scholar
  94. 94.
    Ohana E, Yang D, Shcheynikov N, Muallem S (2009) Diverse transport modes by the solute carrier 26 family of anion transporters. J Physiol 587:2179–85PubMedCentralPubMedGoogle Scholar
  95. 95.
    Ohta A, Schumacher FR, Mehellou Y, Johnson C, Knebel A, Macartney TJ, Wood NT, Alessi DR, Kurz T (2013) The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J 451:111–22PubMedCentralPubMedGoogle Scholar
  96. 96.
    Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH, Lee MG (2010) Dynamic regulation of CFTR bicarbonate permeability by [Cl-]i and its role in pancreatic bicarbonate secretion. Gastroenterology 139:620–31PubMedGoogle Scholar
  97. 97.
    Park M, Ko SB, Choi JY, Muallem G, Thomas PJ, Pushkin A, Lee MS, Kim JY, Lee MG, Muallem S, Kurtz I (2002) The cystic fibrosis transmembrane conductance regulator interacts with and regulates the activity of the HCO3- salvage transporter human Na + −HCO3- cotransport isoform 3. J Biol Chem 277:50503–9PubMedGoogle Scholar
  98. 98.
    Park S, Hong JH, Ohana E, Muallem S (2012) The WNK/SPAK and IRBIT/PP1 pathways in epithelial fluid and electrolyte transport. Physiology 27:291–9PubMedCentralPubMedGoogle Scholar
  99. 99.
    Park S, Shcheynikov N, Hong JH, Zheng C, Suh SH, Kawaai K, Ando H, Mizutani A, Abe T, Kiyonari H, Seki G, Yule D, Mikoshiba K, Muallem S (2013) Irbit mediates synergy between ca(2+) and cAMP signaling pathways during epithelial transport in mice. Gastroenterology 145:232–41PubMedCentralPubMedGoogle Scholar
  100. 100.
    Pasqualetto E, Aiello R, Gesiot L, Bonetto G, Bellanda M, Battistutta R (2010) Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters. J Mol Biol 400:448–62PubMedGoogle Scholar
  101. 101.
    Petersen OH (1986) Calcium-activated potassium channels and fluid secretion by exocrine glands. Am J Physiol 251:G1–13PubMedGoogle Scholar
  102. 102.
    Petersen OH, Philpott HG (1980) Mouse pancreatic acinar cells: the anion selectivity of the acetylcholine-opened chloride pathway. J Physiol 306:481–92PubMedCentralPubMedGoogle Scholar
  103. 103.
    Petersen OH, Ueda N (1977) Secretion of fluid and amylase in the perfused rat pancreas. J Physiol 264:819–35PubMedCentralPubMedGoogle Scholar
  104. 104.
    Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20PubMedGoogle Scholar
  105. 105.
    Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 91:5340–4PubMedCentralPubMedGoogle Scholar
  106. 106.
    Quinton PM (2001) The neglected ion: HCO3 . Nat Med 7:292–3PubMedGoogle Scholar
  107. 107.
    Rahmati N, Kunzelmann K, Xu J, Barone S, Sirianant L, De Zeeuw CI, Soleimani M (2013) Slc26a11 is prominently expressed in the brain and functions as a chloride channel: expression in Purkinje cells and stimulation of V H+-ATPase. Pflugers Arch 465(11):1583–97Google Scholar
  108. 108.
    Raufman JP, Kasbekar DK, Jensen RT, Gardner JD (1983) Potentiation of pepsinogen secretion from dispersed glands from rat stomach. Am J Physiol 245:G525–30PubMedGoogle Scholar
  109. 109.
    Ribeiro MO (2008) Effects of thyroid hormone analogs on lipid metabolism and thermogenesis. Thyroid 18:197–203PubMedGoogle Scholar
  110. 110.
    Richardson C, Alessi DR (2008) The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci 121:3293–304PubMedGoogle Scholar
  111. 111.
    Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–73PubMedGoogle Scholar
  112. 112.
    Rode B, Dirami T, Bakouh N, Rizk-Rabin M, Norez C, Lhuillier P, Lores P, Jollivet M, Melin P, Zvetkova I, Bienvenu T, Becq F, Planelles G, Edelman A, Gacon G, Toure A (2012) The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation. Hum Mol Genet 21:1287–98PubMedGoogle Scholar
  113. 113.
    Romanenko VG, Catalan MA, Brown DA, Putzier I, Hartzell HC, Marmorstein AD, Gonzalez-Begne M, Rock JR, Harfe BD, Melvin JE (2010) Tmem16A encodes the Ca2 + −activated Cl- channel in mouse submandibular salivary gland acinar cells. J Biol Chem 285:12990–3001PubMedCentralPubMedGoogle Scholar
  114. 114.
    Romanenko VG, Nakamoto T, Srivastava A, Begenisich T, Melvin JE (2007) Regulation of membrane potential and fluid secretion by Ca2 + −activated K+ channels in mouse submandibular glands. J Physiol 581:801–17PubMedCentralPubMedGoogle Scholar
  115. 115.
    Romanenko VG, Roser KS, Melvin JE, Begenisich T (2009) The role of cell cholesterol and the cytoskeleton in the interaction between IK1 and maxi-K channels. Am J Physiol Cell Physiol 296:C878–88PubMedCentralPubMedGoogle Scholar
  116. 116.
    Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N et al (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–65PubMedGoogle Scholar
  117. 117.
    Roussa E (2011) Channels and transporters in salivary glands. Cell Tissue Res 343:263–87PubMedGoogle Scholar
  118. 118.
    Rybalchenko V, Santos-Sacchi J (2008) Anion control of voltage sensing by the motor protein prestin in outer hair cells. Biophys J 95:4439–47PubMedCentralPubMedGoogle Scholar
  119. 119.
    San-Cristobal P, Ponce-Coria J, Vazquez N, Bobadilla NA, Gamba G (2008) WNK3 and WNK4 amino-terminal domain defines their effect on the renal Na + −Cl- cotransporter. Am J Physiol Ren Physiol 295:F1199–206Google Scholar
  120. 120.
    Shcheynikov N, Kim KH, Kim KM, Dorwart MR, Ko SB, Goto H, Naruse S, Thomas PJ, Muallem S (2004) Dynamic control of cystic fibrosis transmembrane conductance regulator Cl/HCO3 selectivity by external Cl. J Biol Chem 279:21857–65PubMedGoogle Scholar
  121. 121.
    Shcheynikov N, Ko SB, Zeng W, Choi JY, Dorwart MR, Thomas PJ, Muallem S (2006) Regulatory interaction between CFTR and the SLC26 transporters. Novartis Found Symp 273:177–86; discussion 186–92, 261–4Google Scholar
  122. 122.
    Shcheynikov N, Wang Y, Park M, Ko SB, Dorwart M, Naruse S, Thomas PJ, Muallem S (2006) Coupling modes and stoichiometry of Cl-/HCO3- exchange by slc26a3 and slc26a6. J Gen Physiol 127:511–24PubMedCentralPubMedGoogle Scholar
  123. 123.
    Shcheynikov N, Yang D, Wang Y, Zeng W, Karniski LP, So I, Wall SM, Muallem S (2008) The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3- exchanger: role of Slc26a4 and Slc26a6 in I- and HCO3- secretion and in regulation of CFTR in the parotid duct. J Physiol 586:3813–24PubMedCentralPubMedGoogle Scholar
  124. 124.
    Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP (2013) Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci U S A 110:7838–43PubMedCentralPubMedGoogle Scholar
  125. 125.
    Shirakabe K, Priori G, Yamada H, Ando H, Horita S, Fujita T, Fujimoto I, Mizutani A, Seki G, Mikoshiba K (2006) IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3- cotransporter 1 (pNBC1). Proc Natl Acad Sci U S A 103:9542–7PubMedCentralPubMedGoogle Scholar
  126. 126.
    Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273:19797–801PubMedGoogle Scholar
  127. 127.
    Smith ZD, Caplan MJ, Forbush B 3rd, Jamieson JD (1987) Monoclonal antibody localization of Na+-K+-ATPase in the exocrine pancreas and parotid of the dog. Am J Physiol 253:G99–109PubMedGoogle Scholar
  128. 128.
    Smrcka AV (2013) Molecular targeting of Galpha and Gbetagamma subunits: a potential approach for cancer therapeutics. Trends Pharmacol Sci 34:290–8PubMedCentralPubMedGoogle Scholar
  129. 129.
    Steward MC, Ishiguro H, Case RM (2005) Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol 67:377–409PubMedGoogle Scholar
  130. 130.
    Stewart AK, Yamamoto A, Nakakuki M, Kondo T, Alper SL, Ishiguro H (2009) Functional coupling of apical Cl-/HCO3- exchange with CFTR in stimulated HCO3- secretion by guinea pig interlobular pancreatic duct. Am J Physiol Gastrointest Liver Physiol 296:G1307–17PubMedCentralPubMedGoogle Scholar
  131. 131.
    Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269:847–50PubMedGoogle Scholar
  132. 132.
    Tabcharani JA, Chang XB, Riordan JR, Hanrahan JW (1991) Phosphorylation-regulated Cl channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352:628–31PubMedGoogle Scholar
  133. 133.
    Thorn P, Lawrie AM, Smith PM, Gallacher DV, Petersen OH (1993) Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell 74:661–8PubMedGoogle Scholar
  134. 134.
    Vassart G, Costagliola S (2011) G protein-coupled receptors: mutations and endocrine diseases. Nat Rev Endocrinol 7:362–72PubMedGoogle Scholar
  135. 135.
    Venglovecz V, Hegyi P, Rakonczay Z Jr, Tiszlavicz L, Nardi A, Grunnet M, Gray MA (2011) Pathophysiological relevance of apical large-conductance Ca2+-activated potassium channels in pancreatic duct epithelial cells. Gut 60:361–9PubMedGoogle Scholar
  136. 136.
    Verissimo F, Jordan P (2001) WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene 20:5562–9PubMedGoogle Scholar
  137. 137.
    Vitari AC, Deak M, Morrice NA, Alessi DR (2005) The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391:17–24PubMedCentralPubMedGoogle Scholar
  138. 138.
    Wakabayashi M, Mori T, Isobe K, Sohara E, Susa K, Araki Y, Chiga M, Kikuchi E, Nomura N, Mori Y, Matsuo H, Murata T, Nomura S, Asano T, Kawaguchi H, Nonoyama S, Rai T, Sasaki S, Uchida S (2013) Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep 3:858–68PubMedGoogle Scholar
  139. 139.
    Wang S, Raab RW, Schatz PJ, Guggino WB, Li M (1998) Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR). FEBS Lett 427:103–8PubMedGoogle Scholar
  140. 140.
    Wang Y, Li G, Goode J, Paz JC, Ouyang K, Screaton R, Fischer WH, Chen J, Tabas I, Montminy M (2012) Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485:128–32PubMedCentralPubMedGoogle Scholar
  141. 141.
    Wang Y, Soyombo AA, Shcheynikov N, Zeng W, Dorwart M, Marino CR, Thomas PJ, Muallem S (2006) Slc26a6 regulates CFTR activity in vivo to determine pancreatic duct HCO3- secretion: relevance to cystic fibrosis. EMBO J 25:5049–57PubMedCentralPubMedGoogle Scholar
  142. 142.
    Willoughby D (2012) Organization of cAMP signalling microdomains for optimal regulation by Ca2+ entry. Biochem Soc Trans 40:246–50PubMedGoogle Scholar
  143. 143.
    Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–12PubMedGoogle Scholar
  144. 144.
    Wright AM, Gong X, Verdon B, Linsdell P, Mehta A, Riordan JR, Argent BE, Gray MA (2004) Novel regulation of cystic fibrosis transmembrane conductance regulator (CFTR) channel gating by external chloride. J Biol Chem 279:41658–63PubMedGoogle Scholar
  145. 145.
    Wurzinger B, Mair A, Pfister B, Teige M (2011) Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal Behav 6:8–12PubMedCentralPubMedGoogle Scholar
  146. 146.
    Xie Q, Welch R, Mercado A, Romero MF, Mount DB (2002) Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Am J Physiol Ren Physiol 283:F826–38Google Scholar
  147. 147.
    Yang CL, Angell J, Mitchell R, Ellison DH (2003) WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 111:1039–45PubMedCentralPubMedGoogle Scholar
  148. 148.
    Yang CL, Liu X, Paliege A, Zhu X, Bachmann S, Dawson DC, Ellison DH (2007) WNK1 and WNK4 modulate CFTR activity. Biochem Biophys Res Commun 353:535–40PubMedGoogle Scholar
  149. 149.
    Yang CL, Zhu X, Wang Z, Subramanya AR, Ellison DH (2005) Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport. J Clin Invest 115:1379–87PubMedCentralPubMedGoogle Scholar
  150. 150.
    Yang D, Li Q, So I, Huang CL, Ando H, Mizutani A, Seki G, Mikoshiba K, Thomas PJ, Muallem S (2011) IRBIT governs epithelial secretion in mice by antagonizing the WNK/SPAK kinase pathway. J Clin Invest 121:956–65PubMedCentralPubMedGoogle Scholar
  151. 151.
    Yang D, Shcheynikov N, Muallem S (2011) IRBIT: it is everywhere. Neurochem Res 36:1166–74PubMedCentralPubMedGoogle Scholar
  152. 152.
    Yang D, Shcheynikov N, Zeng W, Ohana E, So I, Ando H, Mizutani A, Mikoshiba K, Muallem S (2009) IRBIT coordinates epithelial fluid and HCO3- secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct. J Clin Invest 119:193–202PubMedCentralPubMedGoogle Scholar
  153. 153.
    Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–5PubMedGoogle Scholar
  154. 154.
    Yue GG, Yip TW, Huang Y, Ko WH (2004) Cellular mechanism for potentiation of Ca2 + −mediated Cl- secretion by the flavonoid baicalein in intestinal epithelia. J Biol Chem 279:39310–6PubMedGoogle Scholar
  155. 155.
    Yule DI, Betzenhauser MJ, Joseph SK (2010) Linking structure to function: recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. Cell Calcium 47:469–79PubMedCentralPubMedGoogle Scholar
  156. 156.
    Zhao H, Muallem S (1995) Agonist-specific regulation of [Na+]i in pancreatic acinar cells. J Gen Physiol 106:1243–63PubMedGoogle Scholar
  157. 157.
    Zhao H, Muallem S (1995) Na+, K+, and Cl transport in resting pancreatic acinar cells. J Gen Physiol 106:1225–42PubMedGoogle Scholar
  158. 158.
    Zhao H, Xu X, Diaz J, Muallem S (1995) Na+, K+, and H+/HCO3- transport in submandibular salivary ducts. Membrane localization of transporters. J Biol Chem 270:19599–605PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • Jeong Hee Hong
    • 1
  • Seonghee Park
    • 2
  • Nikolay Shcheynikov
    • 1
  • Shmuel Muallem
    • 1
    Email author
  1. 1.Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics BranchNational Institute of Dental and Craniofacial Research, National Institute of HealthBethesdaUSA
  2. 2.Department of Physiology, School of MedicineEwha Womans UniversitySeoulRepublic of Korea

Personalised recommendations