5-HT2A receptor-mediated excitation on cerebellar fastigial nucleus neurons and promotion of motor behaviors in rats

Integrative physiology

Abstract

It has long been known that serotonergic afferent inputs are the third largest afferent population in the cerebellum after mossy fibers and climbing fibers. However, the role of serotonergic inputs in cerebellar-mediated motor behaviors is still largely unknown. Here, we show that only 5-HT2A receptors among the 5-HT2 receptor subfamily are expressed and localized in the rat cerebellar fastigial nucleus (FN), one of the ultimate outputs of the spinocerebellum precisely regulating trunk and limb movements. Remarkably, selective activation of 5-HT2A receptors evokes a postsynaptic excitatory effect on FN neurons in a concentration-dependent manner in vitro, which is in accord with the 5-HT-elicited excitation on the same tested neurons. Furthermore, selective 5-HT2A receptor antagonist M100907 concentration-dependently blocks the excitatory effects of 5-HT and TCB-2, a 5-HT2A receptor agonist, on FN neurons. Consequently, microinjection of 5-HT into bilateral FNs significantly promotes rat motor performances on accelerating rota-rod and balance beam and narrows stride width rather than stride length in locomotion gait. All these motor behavioral effects are highly consistent with those of selective activation of 5-HT2A receptors in FNs, and blockage of the component of 5-HT2A receptor-mediated endogenous serotonergic inputs in FNs markedly attenuates these motor performances. All these results demonstrate that postsynaptic 5-HT2A receptors greatly contribute to the 5-HT-mediated excitatory effect on cerebellar FN neurons and promotion of the FN-related motor behaviors, suggesting that serotonergic afferent inputs may actively participate in cerebellar motor control through their direct modulation on the final output of the spinocerebellum.

Keywords

5-HT 5-HT2A receptors Cerebellar fastigial nucleus Motor control 

Supplementary material

424_2013_1378_MOESM1_ESM.pdf (138 kb)
ESM 1(PDF 137 kb)

References

  1. 1.
    Aizenman CD, Huang EJ, Linden DJ (2003) Morphological correlates of intrinsic electrical excitability in neurons of the deep cerebellar nuclei. J Neurophysiol 89(4):1738–1747PubMedCrossRefGoogle Scholar
  2. 2.
    Armstrong DL, Hay M, Terrian DM (1987) Modulation of cerebellar granule cell activity by iontophoretic application of serotonergic agents. Brain Res Bull 19(6):699–704PubMedCrossRefGoogle Scholar
  3. 3.
    Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152PubMedCrossRefGoogle Scholar
  4. 4.
    Bidzinski A, Siemiatkowski M, Czlonkowska A, Tonderska A, Plaznik A (1998) The effect of serotonin depletion on motor activity habituation, and [3H]muscimol binding in the rat hippocampus. Eur J Pharmacol 353(1):5–12PubMedCrossRefGoogle Scholar
  5. 5.
    Bishop GA, Ho RH, King JS (1988) A temporal analysis of the origin and distribution of serotoninergic afferents in the cerebellum of pouch young opossums. Anat Embryol (Berl) 179(1):33–48CrossRefGoogle Scholar
  6. 6.
    Bobker DH (1994) A slow excitatory postsynaptic potential mediated by 5-HT2 receptors in nucleus prepositus hypoglossi. J Neurosci 14(4):2428–2434PubMedGoogle Scholar
  7. 7.
    Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58(1):167–182PubMedCrossRefGoogle Scholar
  8. 8.
    Boyce-Rustay JM, Wiedholz LM, Millstein RA, Carroll J, Murphy DL, Daws LC, Holmes A (2006) Ethanol-related behaviors in serotonin transporter knockout mice. Alcohol Clin Exp Res 30(12):1957–1965PubMedCrossRefGoogle Scholar
  9. 9.
    Bueno-Nava A, Gonzalez-Pina R, Alfaro-Rodriguez A, Nekrassov-Protasova V, Durand-Rivera A, Montes S, Ayala-Guerrero F (2010) Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats. Neurochem Res 35(10):1538–1545PubMedCrossRefGoogle Scholar
  10. 10.
    Carratu MR, Borracci P, Coluccia A, Giustino A, Renna G, Tomasini MC, Raisi E, Antonelli T, Cuomo V, Mazzoni E, Ferraro L (2006) Acute exposure to methylmercury at two developmental windows: focus on neurobehavioral and neurochemical effects in rat offspring. Neuroscience 141(3):1619–1629PubMedCrossRefGoogle Scholar
  11. 11.
    Chattopadhyay A (2007) Serotonin receptors in neurobiology. Frontiers in neuroscience, CRC, Boca RatonCrossRefGoogle Scholar
  12. 12.
    Cumming-Hood PA, Strahlendorf HK, Strahlendorf JC (1993) Effects of serotonin and the 5-HT2/1C receptor agonist DOI on neurons of the cerebellar dentate/interpositus nuclei: possible involvement of a GABAergic interneuron. Eur J Pharmacol 236(3):457–465PubMedCrossRefGoogle Scholar
  13. 13.
    Di Mauro M, Fretto G, Caldera M, Li Volsi G, Licata F, Ciranna L, Santangelo F (2003) Noradrenaline and 5-hydroxytryptamine in cerebellar nuclei of the rat: functional effects on neuronal firing. Neurosci Lett 347(2):101–105PubMedCrossRefGoogle Scholar
  14. 14.
    Dieudonne S, Dumoulin A (2000) Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 20(5):1837–1848PubMedGoogle Scholar
  15. 15.
    Dominguez-Lopez S, Howell R, Gobbi G (2012) Characterization of serotonin neurotransmission in knockout mice: implications for major depression. Rev Neurosci 23(4):429–443PubMedCrossRefGoogle Scholar
  16. 16.
    Dutia MB, Johnston AR, McQueen DS (1992) Tonic activity of rat medial vestibular nucleus neurones in vitro and its inhibition by GABA. Exp Brain Res 88(3):466–472PubMedCrossRefGoogle Scholar
  17. 17.
    Gardette R, Krupa M, Crepel F (1987) Differential effects of serotonin on the spontaneous discharge and on the excitatory amino acid-induced responses of deep cerebellar nuclei neurons in rat cerebellar slices. Neuroscience 23(2):491–500PubMedCrossRefGoogle Scholar
  18. 18.
    Geurts FJ, De Schutter E, Timmermans JP (2002) Localization of 5-HT2A, 5-HT3, 5-HT5A and 5-HT7 receptor-like immunoreactivity in the rat cerebellum. J Chem Neuroanat 24(1):65–74PubMedCrossRefGoogle Scholar
  19. 19.
    Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452PubMedCrossRefGoogle Scholar
  20. 20.
    Halberstadt AL, Powell SB, Geyer MA (2013) Role of the 5-HT receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice. Neuropharmacology 70:218–227PubMedCrossRefGoogle Scholar
  21. 21.
    Halberstadt AL, van der Heijden I, Ruderman MA, Risbrough VB, Gingrich JA, Geyer MA, Powell SB (2009) 5-HT(2A) and 5-HT(2C) receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacology 34(8):1958–1967PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195(1):198–213PubMedCrossRefGoogle Scholar
  23. 23.
    He YC, Wu GY, Li D, Tang B, Li B, Ding Y, Zhu JN, Wang JJ (2012) Histamine promotes rat motor performances by activation of H(2) receptors in the cerebellar fastigial nucleus. Behav Brain Res 228(1):44–52PubMedCrossRefGoogle Scholar
  24. 24.
    Hirono M, Saitow F, Kudo M, Suzuki H, Yanagawa Y, Yamada M, Nagao S, Konishi S, Obata K (2012) Cerebellar globular cells receive monoaminergic excitation and monosynaptic inhibition from Purkinje cells. PLoS One 7(1):e29663PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Holbrook JD, Gill CH, Zebda N, Spencer JP, Leyland R, Rance KH, Trinh H, Balmer G, Kelly FM, Yusaf SP, Courtenay N, Luck J, Rhodes A, Modha S, Moore SE, Sanger GJ, Gunthorpe MJ (2009) Characterisation of 5-HT3C, 5-HT3D and 5-HT3E receptor subunits: evolution, distribution and function. J Neurochem 108(2):384–396PubMedCrossRefGoogle Scholar
  26. 26.
    Ito M (1984) The cerebellum and neural control. Raven, New YorkGoogle Scholar
  27. 27.
    Kalueff AV, Jensen CL, Murphy DL (2007) Locomotory patterns, spatiotemporal organization of exploration and spatial memory in serotonin transporter knockout mice. Brain Res 1169:87–97PubMedCrossRefGoogle Scholar
  28. 28.
    Kerr CW, Bishop GA (1991) Topographical organization in the origin of serotoninergic projections to different regions of the cat cerebellar cortex. J Comp Neurol 304(3):502–515PubMedCrossRefGoogle Scholar
  29. 29.
    Kim JH, Wang JJ, Ebner TJ (1988) Alterations in simple spike activity and locomotor behavior associated with climbing fiber input to Purkinje cells in a decerebrate walking cat. Neuroscience 25(2):475–489PubMedCrossRefGoogle Scholar
  30. 30.
    Kitzman PH, Bishop GA (1997) The physiological effects of serotonin on spontaneous and amino acid-induced activation of cerebellar nuclear cells: an in vivo study in the cat. Prog Brain Res 114:209–223PubMedCrossRefGoogle Scholar
  31. 31.
    Llinás RR, Walton KD (1990) Cerebellum. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 214–245Google Scholar
  32. 32.
    Loubinoux I, Tombari D, Pariente J, Gerdelat-Mas A, Franceries X, Cassol E, Rascol O, Pastor J, Chollet F (2005) Modulation of behavior and cortical motor activity in healthy subjects by a chronic administration of a serotonin enhancer. Neuroimage 27(2):299–313PubMedCrossRefGoogle Scholar
  33. 33.
    Mehta H, Saravanan KS, Mohanakumar KP (2003) Serotonin synthesis inhibition in olivo-cerebellar system attenuates harmaline-induced tremor in Swiss albino mice. Behav Brain Res 145(1–2):31–36PubMedCrossRefGoogle Scholar
  34. 34.
    Mendlin A, Martin FJ, Rueter LE, Jacobs BL (1996) Neuronal release of serotonin in the cerebellum of behaving rats: an in vivo microdialysis study. J Neurochem 67(2):617–622PubMedCrossRefGoogle Scholar
  35. 35.
    Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1999) Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82(1):290–300PubMedGoogle Scholar
  36. 36.
    Munoz A, Carlsson T, Tronci E, Kirik D, Bjorklund A, Carta M (2009) Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat Parkinson model. Exp Neurol 219(1):298–307PubMedCrossRefGoogle Scholar
  37. 37.
    Murano M, Saitow F, Suzuki H (2011) Modulatory effects of serotonin on glutamatergic synaptic transmission and long-term depression in the deep cerebellar nuclei. Neuroscience 172:118–128PubMedCrossRefGoogle Scholar
  38. 38.
    Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 108(5):1614–1641PubMedCrossRefGoogle Scholar
  39. 39.
    Parsey RV, Arango V, Olvet DM, Oquendo MA, Van Heertum RL, John Mann J (2005) Regional heterogeneity of 5-HT1A receptors in human cerebellum as assessed by positron emission tomography. J Cereb Blood Flow Metab 25(7):785–793PubMedCrossRefGoogle Scholar
  40. 40.
    Pasqualetti M, Ori M, Nardi I, Castagna M, Cassano GB, Marazziti D (1998) Distribution of the 5-HT5A serotonin receptor mRNA in the human brain. Brain Res Mol Brain Res 56(1–2):1–8PubMedCrossRefGoogle Scholar
  41. 41.
    Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic/Elsevier, AmsterdamGoogle Scholar
  42. 42.
    Prinz A, Selesnew LM, Liss B, Roeper J, Carlsson T (2013) Increased excitability in serotonin neurons in the dorsal raphe nucleus in the 6-OHDA mouse model of Parkinson's disease. Exp Neurol 248C:236–245CrossRefGoogle Scholar
  43. 43.
    Pytliak M, Vargova V, Mechirova V, Felsoci M (2011) Serotonin receptors—from molecular biology to clinical applications. Physiol Res 60(1):15–25PubMedGoogle Scholar
  44. 44.
    Saitow F, Hirono M, Suzuki H (2012) Serotonin and synaptic transmission in the cerebellum. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F (eds) Handbook of the cerebellum and cerebellar disorders, 1st edn. Springer, New York, pp 915–926Google Scholar
  45. 45.
    Saitow F, Murano M, Suzuki H (2009) Modulatory effects of serotonin on GABAergic synaptic transmission and membrane properties in the deep cerebellar nuclei. J Neurophysiol 101(3):1361–1374PubMedCrossRefGoogle Scholar
  46. 46.
    Sari Y, Miquel MC, Brisorgueil MJ, Ruiz G, Doucet E, Hamon M, Verge D (1999) Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience 88(3):899–915PubMedCrossRefGoogle Scholar
  47. 47.
    Schweighofer N, Doya K, Kuroda S (2004) Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev 44(2–3):103–116PubMedCrossRefGoogle Scholar
  48. 48.
    Song YN, Li HZ, Zhu JN, Guo CL, Wang JJ (2006) Histamine improves rat rota-rod and balance beam performances through H(2) receptors in the cerebellar interpositus nucleus. Neuroscience 140(1):33–43PubMedCrossRefGoogle Scholar
  49. 49.
    Stehle J (1991) Effects of histamine on spontaneous electrical activity of neurons in rat suprachiasmatic nucleus. Neurosci Lett 130(2):217–220PubMedCrossRefGoogle Scholar
  50. 50.
    Strahlendorf JC, Strahlendorf HK, Lee M (1986) Enhancement of cerebellar Purkinje cell complex discharge activity by microiontophoretic serotonin. Exp Brain Res 61(3):614–624PubMedCrossRefGoogle Scholar
  51. 51.
    Thornton EW, Goudie AJ (1978) Evidence for the role of serotonin in the inhibition of specific motor responses. Psychopharmacology (Berl) 60(1):73–79CrossRefGoogle Scholar
  52. 52.
    Trouillas P (1993) The cerebellar serotoninergic system and its possible involvement in cerebellar ataxia. Can J Neurol Sci 20(Suppl 3):S78–82PubMedGoogle Scholar
  53. 53.
    Trouillas P, Brudon F, Adeleine P (1988) Improvement of cerebellar ataxia with levorotatory form of 5-hydroxytryptophan. A double-blind study with quantified data processing. Arch Neurol 45(11):1217–1222PubMedCrossRefGoogle Scholar
  54. 54.
    Trouillas P, Xie J, Adeleine P (1996) Treatment of cerebellar ataxia with buspirone: a double-blind study. Lancet 348(9029):759PubMedCrossRefGoogle Scholar
  55. 55.
    Trouillas P, Xie J, Adeleine P (1997) Buspirone, a serotonergic 5-HT1A agonist, is active in cerebellar ataxia. A new fact in favor of the serotonergic theory of ataxia. Prog Brain Res 114:589–599PubMedCrossRefGoogle Scholar
  56. 56.
    Wang JJ, Kim JH, Ebner TJ (1987) Climbing fiber afferent modulation during a visually guided, multi-joint arm movement in the monkey. Brain Res 410(2):323–329PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang J, Li B, Yu L, He YC, Li HZ, Zhu JN, Wang JJ (2011) A role for orexin in central vestibular motor control. Neuron 69(4):793–804PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang XY, Yu L, Zhuang QX, Zhang J, Zhu JN, Wang JJ (2013) Hypothalamic histaminergic and orexinergic modulation on cerebellar and vestibular motor control. Cerebellum 12(3):294–296PubMedCrossRefGoogle Scholar
  59. 59.
    Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ (2006) The cerebellar–hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic–visceral integration. Brain Res Rev 52(1):93–106PubMedCrossRefGoogle Scholar
  60. 60.
    Zhuang QX, Wu YH, Wu GY, Zhu JN, Wang JJ (2013) Histamine excites rat superior vestibular nuclear neurons via postsynaptic H1 and H2 receptors in vitro. Neurosignals 21(3–4):174–183PubMedCrossRefGoogle Scholar
  61. 61.
    Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R (1999) Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21(2 Suppl):52S–60SPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chang-Zheng Zhang
    • 1
    • 2
  • Qian-Xing Zhuang
    • 1
  • Ye-Cheng He
    • 1
  • Guang-Ying Li
    • 1
  • Jing-Ning Zhu
    • 1
  • Jian-Jun Wang
    • 1
  1. 1.Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical BiotechnologySchool of Life Sciences, Nanjing UniversityNanjingChina
  2. 2.School of Life Sciences, Anqing Normal UniversityAnqingChina

Personalised recommendations