Advertisement

The many faces of T-type calcium channels

  • Régis C. LambertEmail author
  • Thomas Bessaïh
  • Vincenzo Crunelli
  • Nathalie Leresche
Invited Review

Abstract

Since the discovery of low-voltage-activated T-type calcium channels in sensory neurons and the initial characterization of their physiological function mainly in inferior olive and thalamic neurons, studies on neuronal T-type currents have predominantly focused on the generation of low-threshold spike (and associated action potential burst firing) which is strictly conditioned by a preceding hyperpolarization. This T-type current mediated activity has become an archetype of the function of these channels, constraining our view of the potential physiological and pathological roles that they may play in controlling the excitability of single cells and neural networks. However, greatly helped by the recent availability of the first potent and selective antagonists for this class of calcium channels, novel T-type current functions are rapidly being uncovered, including their surprising involvement in neuronal excitability at depolarized membrane potentials and their complex control of dendritic integration and neurotransmitter release. These and other data summarized in this short review clearly indicate a much wider physiological involvement of T-type channels in neuronal activity than previously expected.

Keywords

T-type channels Cav3.1 Cav3.2 Cav3.3 Burst firing Tonic firing Neuronal excitability Synaptic transmission Dendritic integration 

Notes

Acknowledgments

Our work in this field was supported by CNRS LEA528, Agence Nationale de la Recherche 06-Neuro, Agence Nationale de la Recherche MNMP 2009, the Wellcome Trust (grants 71436, 78403, 91882).

References

  1. 1.
    Anderson D, Engbers JD, Heath NC, Bartoletti TM, Mehaffey WH, Zamponi GW, Turner RW (2013) The Cav3-Kv4 complex acts as a calcium sensor to maintain inhibitory charge transfer during extracellular calcium fluctuations. J Neurosci: Off J Soc Neurosci 33:7811–7824CrossRefGoogle Scholar
  2. 2.
    Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JD, Hameed S, Zamponi GW, Turner RW (2010) Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosc 13:333–337CrossRefGoogle Scholar
  3. 3.
    Bao J, Li JJ, Perl ER (1998) Differences in Ca2+ channels governing generation of miniature and evoked excitatory synaptic currents in spinal laminae I and II. J Neurosci: Off J Soc Neurosci 18:8740–8750Google Scholar
  4. 4.
    Bender KJ, Ford CP, Trussell LO (2010) Dopaminergic modulation of axon initial segment calcium channels regulates action potential initiation. Neuron 68:500–11PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bender KJ, Trussell LO (2009) Axon initial segment Ca2+ channels influence action potential generation and timing. Neuron 61:259–271PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Bender KJ, Uebele VN, Renger JJ, Trussell LO (2012) Control of firing patterns through modulation of axon initial segment T-type calcium channels. J Physiol 590:109–118PubMedGoogle Scholar
  7. 7.
    Bessaih T, Leresche N, Lambert RC (2008) T current potentiation increases the occurrence and temporal fidelity of synaptically evoked burst firing in sensory thalamic neurons. Proc Natl Acad Sci U S A 105:11376–11381PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bezprozvanny I, Tsien RW (1995) Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40–5967). Mol Pharmacol 48:540–549PubMedGoogle Scholar
  9. 9.
    Blethyn KL, Hughes SW, Tóth TI, Cope DW, Crunelli V (2006) Neuronal basis of the slow (<1Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. J Neurosci 26:2474–2486PubMedCrossRefGoogle Scholar
  10. 10.
    Bossu JL, Feltz A (1986) Inactivation of the low-threshold transient calcium current in rat sensory neurones: evidence for a dual process. J Physiol 376:341–357PubMedGoogle Scholar
  11. 11.
    Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310:501–502PubMedCrossRefGoogle Scholar
  12. 12.
    Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44:483–493PubMedCrossRefGoogle Scholar
  13. 13.
    Chausson P, Leresche N, Lambert RC (2013) Dynamics of intrinsic dendritic calcium signaling during tonic firing of thalamic reticular neurons. PloS One 8:e72275PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Chemin J, Monteil A, Bourinet E, Nargeot J, Lory P (2001) Alternatively spliced alpha(1G) (Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys J 80:1238–1250PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Chemin J, Monteil A, Perez-Reyes E, Bourinet E, Nargeot J, Lory P (2002) Specific contribution of human T-type calcium channel isotypes (alpha(1G), alpha(1H) and alpha(1I)) to neuronal excitability. J Physiol 540:3–14PubMedCrossRefGoogle Scholar
  16. 16.
    Craig PJ, Beattie RE, Folly EA, Banerjee MD, Reeves MB, Priestley JV, Carney SL, Sher E, Perez-Reyes E, Volsen SG (1999) Distribution of the voltage-dependent calcium channel alpha1G subunit mRNA and protein throughout the mature rat brain. Eur J Neurosci 11:2949–2964PubMedCrossRefGoogle Scholar
  17. 17.
    Crandall SR, Govindaiah G, Cox CL (2010) Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. J Neurosci: Off J Soc Neurosci 30:15419–15429CrossRefGoogle Scholar
  18. 18.
    Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW (2005) The 'window' T-type calcium current in brain dynamics of different behavioural states. J Physiol 562:121–129PubMedCrossRefGoogle Scholar
  19. 19.
    Cueni L, Canepari M, Lujan R, Emmenegger Y, Watanabe M, Bond CT, Franken P, Adelman JP, Luthi A (2008) T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 11:683–692PubMedCrossRefGoogle Scholar
  20. 20.
    Deleuze C, David F, Behuret S, Sadoc G, Shin HS, Uebele VN, Renger JJ, Lambert RC, Leresche N, Bal T (2012) T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex. J Neurosci: Off J Soc Neurosci 32:12228–12236CrossRefGoogle Scholar
  21. 21.
    Deschenes M, Paradis M, Roy JP, Steriade M (1984) Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol 51:1196–1219PubMedGoogle Scholar
  22. 22.
    Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR (1996) In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16:169–185PubMedGoogle Scholar
  23. 23.
    Destexhe A, Neubig M, Ulrich D, Huguenard J (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574–3588PubMedGoogle Scholar
  24. 24.
    Diana MA, Otsu Y, Maton G, Collin T, Chat M, Dieudonne S (2007) T-type and L-type Ca2+ conductances define and encode the bimodal firing pattern of vestibulocerebellar unipolar brush cells. J Neurosci: Off J Soc Neurosci 27:3823–3838CrossRefGoogle Scholar
  25. 25.
    Domich L, Oakson G, Steriade M (1986) Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurones. J Physiol Lond 379:429–449PubMedGoogle Scholar
  26. 26.
    Dreyfus FM, Tscherter A, Errington AC, Renger JJ, Shin HS, Uebele VN, Crunelli V, Lambert RC, Leresche N (2010) Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window. J Neurosci: Off J Soc Neurosci 30:99–109CrossRefGoogle Scholar
  27. 27.
    Egger V, Svoboda K, Mainen ZF (2003) Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J Neurosci: Off J Soc Neurosci 23:7551–7558Google Scholar
  28. 28.
    Egger V, Svoboda K, Mainen ZF (2005) Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike. J Neurosci: Off J Soc Neurosci 25:3521–3530CrossRefGoogle Scholar
  29. 29.
    Engbers JD, Anderson D, Asmara H, Rehak R, Mehaffey WH, Hameed S, McKay BE, Kruskic M, Zamponi GW, Turner RW (2012) Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 109:2601–2606PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Errington AC, Renger JJ, Uebele VN, Crunelli V (2010) State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons. J Neurosci 30:14843–14853PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Fedulova SA, Kostyuk PG, Veselovsky NS (1985) Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol 359:431–446PubMedGoogle Scholar
  32. 32.
    Gomora JC, Enyeart JA, Enyeart JJ (1999) Mibefradil potently blocks ATP-activated K(+) channels in adrenal cells. Mol Pharmacol 56:1192–1197PubMedGoogle Scholar
  33. 33.
    Hering J, Feltz A, Lambert RC (2004) Slow inactivation of the Ca(V)3.1 isotype of T-type calcium channels. J Physiol 555:331–344PubMedCrossRefGoogle Scholar
  34. 34.
    Hildebrand ME, Isope P, Miyazaki T, Nakaya T, Garcia E, Feltz A, Schneider T, Hescheler J, Kano M, Sakimura K, Watanabe M, Dieudonne S, Snutch TP (2009) Functional coupling between mGluR1 and Cav3.1 T-type calcium channels contributes to parallel fiber-induced fast calcium signaling within Purkinje cell dendritic spines. J Neurosci: Off J Soc Neurosci 29:9668–9682CrossRefGoogle Scholar
  35. 35.
    Huang Z, Lujan R, Kadurin I, Uebele VN, Renger JJ, Dolphin AC, Shah MM (2011) Presynaptic HCN1 channels regulate Cav3.2 activity and neurotransmission at select cortical synapses. Nat Neurosci 14:478–486PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Huc S, Monteil A, Bidaud I, Barbara G, Chemin J, Lory P (2009) Regulation of T-type calcium channels: signalling pathways and functional implications. Biochimica et Biophys Acta 1793:947–952CrossRefGoogle Scholar
  37. 37.
    Hughes SW, Cope DW, Blethyn KL, Crunelli V (2002) Cellular mechanisms of the slow (1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 33:947–958PubMedCrossRefGoogle Scholar
  38. 38.
    Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12:3804–3817PubMedGoogle Scholar
  39. 39.
    Jahnsen H, Llinas R (1984) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–226PubMedGoogle Scholar
  40. 40.
    Jahnsen H, Llinas R (1984) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227–247PubMedGoogle Scholar
  41. 41.
    Joksovic PM, Bayliss DA, Todorovic SM (2005) Different kinetic properties of two T-type Ca2+ currents of rat reticular thalamic neurones and their modulation by enflurane. J Physiol 566:125–142PubMedCrossRefGoogle Scholar
  42. 42.
    Klockner U, Lee JH, Cribbs LL, Daud A, Hescheler J, Pereverzev A, Perez-Reyes E, Schneider T (1999) Comparison of the Ca2+ currents induced by expression of three cloned alpha1 subunits, alpha1G, alpha1H and alpha1I, of low-voltage-activated T-type Ca2+ channels. Eur J Neurosci 11:4171–4178PubMedCrossRefGoogle Scholar
  43. 43.
    Kovacs K, Sik A, Ricketts C, Timofeev I (2010) Subcellular distribution of low-voltage activated T-type Ca2+ channel subunits (Ca(v)3.1 and Ca(v)3.3) in reticular thalamic neurons of the cat. J Neurosci Res 88:448–460PubMedCrossRefGoogle Scholar
  44. 44.
    Kozlov AS, McKenna F, Lee JH, Cribbs LL, Perez-Reyes E, Feltz A, Lambert RC (1999) Distinct kinetics of cloned T-type Ca2+ channels lead to differential Ca2+ entry and frequency-dependence during mock action potentials. Eur J Neurosci 11:4149–4158PubMedCrossRefGoogle Scholar
  45. 45.
    Lambert RC, Bessaih T, Leresche N (2006) Modulation of neuronal T-type calcium channels. CNS Neurol Disord Drug Targets 5:611–627PubMedCrossRefGoogle Scholar
  46. 46.
    Leresche N, Hering J, Lambert RC (2004) Paradoxical potentiation of neuronal T-type Ca2+ current by ATP at resting membrane potential. J Neurosci 24:5592–5602PubMedCrossRefGoogle Scholar
  47. 47.
    Leresche N, Lightowler S, Soltesz I, Jassik-Gerschenfeld D, Crunelli V (1991) Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol Lond 441:155–174PubMedGoogle Scholar
  48. 48.
    Liu JH, Bijlenga P, Occhiodoro T, Fischer-Lougheed J, Bader CR, Bernheim L (1999) Mibefradil (Ro 40–5967) inhibits several Ca2+ and K+ currents in human fusion-competent myoblasts. Br J Pharmacol 126:245–250PubMedCrossRefGoogle Scholar
  49. 49.
    Liu XB, Murray KD, Jones EG (2011) Low-threshold calcium channel subunit Ca(v) 3.3 is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex. J Comp Neurol 519:1181–1195PubMedCrossRefGoogle Scholar
  50. 50.
    Llinas R, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature 297:406–408PubMedCrossRefGoogle Scholar
  51. 51.
    Llinas R, Yarom Y (1981) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 315:549–567PubMedGoogle Scholar
  52. 52.
    Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304PubMedCrossRefGoogle Scholar
  53. 53.
    Markram H, Sakmann B (1994) Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. Proc Natl Acad Sci U S A 91:5207–5211PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW (2006) Ca(V)3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci 24:2581–2594PubMedCrossRefGoogle Scholar
  55. 55.
    Mishra SK, Hermsmeyer K (1994) Selective inhibition of T-type Ca2+ channels by Ro 40–5967. Circ Res 75:144–148PubMedCrossRefGoogle Scholar
  56. 56.
    Nilius B, Prenen J, Kamouchi M, Viana F, Voets T, Droogmans G (1997) Inhibition by mibefradil, a novel calcium channel antagonist, of Ca(2+)- and volume-activated Cl- channels in macrovascular endothelial cells. Br J Pharmacol 121:547–555PubMedCrossRefGoogle Scholar
  57. 57.
    Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443PubMedCrossRefGoogle Scholar
  58. 58.
    Pan ZH, Hu HJ, Perring P, Andrade R (2001) T-type Ca(2+) channels mediate neurotransmitter release in retinal bipolar cells. Neuron 32:89–98PubMedCrossRefGoogle Scholar
  59. 59.
    Parajuli LK, Fukazawa Y, Watanabe M, Shigemoto R (2010) Subcellular distribution of alpha1G subunit of T-type calcium channel in the mouse dorsal lateral geniculate nucleus. J Comp Neurol 518:4362–4374PubMedCrossRefGoogle Scholar
  60. 60.
    Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161PubMedGoogle Scholar
  61. 61.
    Perez-Reyes E (2010) G protein-mediated inhibition of Cav3.2 T-type channels revisited. Mol Pharmacol 77:136–138PubMedCrossRefGoogle Scholar
  62. 62.
    Roy JP, Clercq M, Steriade M, Deschenes M (1984) Electrophysiology of neurons of lateral thalamic nuclei in cat: mechanisms of long-lasting hyperpolarizations. J Neurophysiol 51:1220–1235PubMedGoogle Scholar
  63. 63.
    Shipe WD, Barrow JC, Yang ZQ, Lindsley CW, Yang FV, Schlegel KA, Shu Y, Rittle KE, Bock MG, Hartman GD, Tang C, Ballard JE, Kuo Y, Adarayan ED, Prueksaritanont T, Zrada MM, Uebele VN, Nuss CE, Connolly TM, Doran SM, Fox SV, Kraus RL, Marino MJ, Graufelds VK, Vargas HM, Bunting PB, Hasbun-Manning M, Evans RM, Koblan KS, Renger JJ (2008) Design, synthesis, and evaluation of a novel 4-aminomethyl-4-fluoropiperidine as a T-type Ca2+ channel antagonist. J Med Chem 51:3692–3695PubMedCrossRefGoogle Scholar
  64. 64.
    Talavera K, Nilius B (2006) Biophysics and structure-function relationship of T-type Ca2+ channels. Cell Calcium 40:97–114PubMedCrossRefGoogle Scholar
  65. 65.
    Tang AH, Karson MA, Nagode DA, McIntosh JM, Uebele VN, Renger JJ, Klugmann M, Milner TA, Alger BE (2011) Nerve terminal nicotinic acetylcholine receptors initiate quantal GABA release from perisomatic interneurons by activating axonal T-type (Cav3) Ca(2)(+) channels and Ca(2)(+) release from stores. J Neurosci: Off J Soc Neurosci 31:13546–13561CrossRefGoogle Scholar
  66. 66.
    Tscherter A, David F, Ivanova T, Deleuze C, Renger JJ, Uebele VN, Shin HS, Bal T, Leresche N, Lambert RC (2011) Minimal alterations in T-type calcium channel gating markedly modify physiological firing dynamics. J Physiol 589:1707–1724PubMedCrossRefGoogle Scholar
  67. 67.
    Viana F, Van den Bosch L, Missiaen L, Vandenberghe W, Droogmans G, Nilius B, Robberecht W (1997) Mibefradil (Ro 40–5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium 22:299–311PubMedCrossRefGoogle Scholar
  68. 68.
    Williams SR, Stuart GJ (2000) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20:1307–1317PubMedGoogle Scholar
  69. 69.
    Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci: Off J Soc Neurosci 21:3443–3456Google Scholar
  70. 70.
    Wolfart J, Roeper J (2002) Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci: Off J Soc Neurosci 22:3404–3413Google Scholar
  71. 71.
    Zamponi GW (2001) Determinants of G protein inhibition of presynaptic calcium channels. Cell Biochem Biophys 34:79–94PubMedCrossRefGoogle Scholar
  72. 72.
    Zamponi GW, Bourinet E, Snutch TP (1996) Nickel block of a family of neuronal calcium channels: subtype- and subunit-dependent action at multiple sites. J Membr Biol 151:77–90PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Régis C. Lambert
    • 1
    • 2
    Email author
  • Thomas Bessaïh
    • 1
    • 2
  • Vincenzo Crunelli
    • 3
  • Nathalie Leresche
    • 1
    • 2
  1. 1.UMR 7102 CNRSParisFrance
  2. 2.UPMC, Université Paris 6ParisFrance
  3. 3.Neuroscience Division, School of Biosciences, Cardiff UniversityCardiffUK

Personalised recommendations