Pflügers Archiv - European Journal of Physiology

, Volume 466, Issue 2, pp 173–182 | Cite as

A network perspective on unraveling the role of TRP channels in biology and disease

  • Jung Nyeo Chun
  • Jin Muk Lim
  • Young Kang
  • Eung Hee Kim
  • Young-Cheul Shin
  • Hong-Gee Kim
  • Dayk Jang
  • Dongseop Kwon
  • Soo-Yong Shin
  • Insuk So
  • Ju-Hong JeonEmail author
Invited Review


Transient receptor potential (TRP) channels are a large family of non-selective cation channels that mediate numerous physiological and pathophysiological processes; however, still largely unknown are the underlying molecular mechanisms. With data generated on an unprecedented scale, network-based approaches have been revolutionizing the way in which we understand biology and disease, discover disease genes, and develop therapeutic strategies. These circumstances have created opportunities to encounter TRP channel research to data-intensive science. In this review, we provide an introduction of network-based approaches in biomedical science, describe the current state of TRP channel network biology, and discuss the future direction of TRP channel research. Network perspective will facilitate the discovery of latent roles and underlying mechanisms of TRP channels in biology and disease.


TRP channel Network Protein-protein interaction Data-driven science 



This research was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MEST; 2010-0019472, 2010-0021234, 2012R1A1A3007388) and by the National IT Industry Promotion Agency (NIPA) funded by the Korea government (MKE; NIPA-2013-H0401-13-1001). We are very grateful to Sung-In Lee and Sung-Yup Cho (Seoul National University) and Sanghoon Lee (Utah University) for helpful discussions.

Supplementary material

424_2013_1292_Fig7_ESM.jpg (72 kb)
Fig. S1

(JPEG 72 kb)

424_2013_1292_Fig8_ESM.jpg (170 kb)
Fig. S2

(JPEG 170 kb)

424_2013_1292_MOESM1_ESM.pdf (4.7 mb)
ESM Tutorial (PDF 4785 kb)


  1. 1.
    1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073PubMedGoogle Scholar
  2. 2.
    Bai CX, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P (2008) Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9:472–479PubMedCentralPubMedGoogle Scholar
  3. 3.
    Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5:101–113PubMedGoogle Scholar
  4. 4.
    Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68PubMedCentralPubMedGoogle Scholar
  5. 5.
    Barga R, Howe B, Beck D, Bowers S, Dobyns W, Haynes W, Higdon R, Howard C, Roth C, Stewart E, Welch D, Kolker E (2011) Bioinformatics and data-intensive scientific discovery in the beginning of the 21st century. OMICS 15:199–201PubMedGoogle Scholar
  6. 6.
    Barrett IP (2010) Cancer genome analysis informatics. Methods Mol Biol 628:75–102PubMedGoogle Scholar
  7. 7.
    Bebek G, Koyuturk M, Price ND, Chance MR (2012) Network biology methods integrating biological data for translational science. Brief Bioinform 13:446–459PubMedGoogle Scholar
  8. 8.
    Bensimon A, Heck AJ, Aebersold R (2012) Mass spectrometry-based proteomics and network biology. Annu Rev Biochem 81:379–405PubMedGoogle Scholar
  9. 9.
    Beyer A, Bandyopadhyay S, Ideker T (2007) Integrating physical and genetic maps: from genomes to interaction networks. Nat Rev Genet 8:699–710PubMedCentralPubMedGoogle Scholar
  10. 10.
    Birney E (2012) The making of ENCODE: lessons for big-data projects. Nature 489:49–51PubMedGoogle Scholar
  11. 11.
    Bonetta L (2010) Protein–protein interactions: Interactome under construction. Nature 468:851–854PubMedGoogle Scholar
  12. 12.
    Boran AD, Iyengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 13:297–309PubMedCentralPubMedGoogle Scholar
  13. 13.
    Butte AJ, Kohane IS (2006) Creation and implications of a phenome–genome network. Nat Biotechnol 24:55–62PubMedCentralPubMedGoogle Scholar
  14. 14.
    Causier B (2004) Studying the interactome with the yeast two-hybrid system and mass spectrometry. Mass Spectrom Rev 23:350–367PubMedGoogle Scholar
  15. 15.
    Christakis NA, Fowler JH (2007) The spread of obesity in a large social network over 32 years. N Eng J Med 357:370–379Google Scholar
  16. 16.
    Collins FS, Green ED, Guttmacher AE, Guyer MS (2003) A vision for the future of genomics research. Nature 422:835–847PubMedGoogle Scholar
  17. 17.
    Collins FS, Morgan M, Patrinos A (2003) The Human Genome Project: lessons from large-scale biology. Science 300:286–290PubMedGoogle Scholar
  18. 18.
    Curcio-Morelli C, Zhang P, Venugopal B, Charles FA, Browning MF, Cantiello HF, Slaugenhaupt SA (2010) Functional multimerization of mucolipin channel proteins. J Cell Physiol 222:328–335PubMedGoogle Scholar
  19. 19.
    da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57Google Scholar
  20. 20.
    Dadon D, Minke B (2010) Cellular functions of transient receptor potential channels. Int J Biochem Cell Biol 42:1430–1445PubMedCentralPubMedGoogle Scholar
  21. 21.
    Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D'Eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur O, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Ruebenacker O, Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, Cheung KH, Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig M, Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D, Petri V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R, Letovksy S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Novere N, Maltsev N, Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD (2010) The BioPAX community standard for pathway data sharing. Nature Biotechnol 28:935–942Google Scholar
  22. 22.
    Doyle JC, Alderson DL, Li L, Low S, Roughan M, Shalunov S, Tanaka R, Willinger W (2005) The “robust yet fragile” nature of the Internet. Proc Natl Acad Sci U S A 102:14497–14502PubMedCentralPubMedGoogle Scholar
  23. 23.
    Du J, Wong WY, Sun L, Huang Y, Yao X (2012) Protein kinase G inhibits flow-induced Ca2+ entry into collecting duct cells. J Am Soc Neph 23:1172–1180Google Scholar
  24. 24.
    Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, Morgan AA, Sarwal MM, Pasricha PJ, Butte AJ (2011) Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 3:96ra76PubMedCentralPubMedGoogle Scholar
  25. 25.
    Edwards AM, Isserlin R, Bader GD, Frye SV, Willson TM, Yu FH (2011) Too many roads not taken. Nature 470:163–165PubMedGoogle Scholar
  26. 26.
    Fliri AF, Loging WT, Volkmann RA (2010) Cause–effect relationships in medicine: a protein network perspective. Trends Pharmacol Sci 31:547–555PubMedGoogle Scholar
  27. 27.
    Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303:799–805PubMedGoogle Scholar
  28. 28.
    Fuentes G, Oyarzabal J, Rojas AM (2009) Databases of protein–protein interactions and their use in drug discovery. Curr Opin Drug Discov Devel 12:358–366PubMedGoogle Scholar
  29. 29.
    Gat-Viks I, Tanay A, Shamir R (2004) Modeling and analysis of heterogeneous regulation in biological networks. J Comput Biol 11:1034–1049PubMedGoogle Scholar
  30. 30.
    Goel M, Sinkins W, Keightley A, Kinter M, Schilling WP (2005) Proteomic analysis of TRPC5- and TRPC6-binding partners reveals interaction with the plasmalemmal Na(+)/K(+)-ATPase. Pflugers Arch 451:87–98PubMedGoogle Scholar
  31. 31.
    Guan H, Kiss-Toth E (2008) Advanced technologies for studies on protein interactomes. Adv Biochem Eng Biotechnol 110:1–24PubMedGoogle Scholar
  32. 32.
    Haider S, Ballester B, Smedley D, Zhang J, Rice P, Kasprzyk A (2009) BioMart Central Portal—unified access to biological data. Nucleic Acids Res 37:W23–W27PubMedCentralPubMedGoogle Scholar
  33. 33.
    Hamid JS, Hu P, Roslin NM, Ling V, Greenwood CM, Beyene J (2009) Data integration in genetics and genomics: methods and challenges. Hum Genomics Proteomics 2009:869093PubMedCentralPubMedGoogle Scholar
  34. 34.
    Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430:88–93PubMedGoogle Scholar
  35. 35.
    Hasan S, Bonde BK, Buchan NS, Hall MD (2012) Network analysis has diverse roles in drug discovery. Drug Discov Today 17:869–874PubMedGoogle Scholar
  36. 36.
    Hede K (2008) Superhighway or blind alley? The cancer genome atlas releases first results. J Natl Cancer Inst 100:1566–1569PubMedGoogle Scholar
  37. 37.
    Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJ (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22:776–785PubMedGoogle Scholar
  38. 38.
    Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690PubMedGoogle Scholar
  39. 39.
    Hwang D, Smith JJ, Leslie DM, Weston AD, Rust AG, Ramsey S, de Atauri P, Siegel AF, Bolouri H, Aitchison JD, Hood L (2005) A data integration methodology for systems biology: experimental verification. Proc Natl Acad Sci U S A 102:17302–17307PubMedCentralPubMedGoogle Scholar
  40. 40.
    Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78PubMedGoogle Scholar
  41. 41.
    Kim LC, Song L, Haura EB (2009) Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6:587–595PubMedGoogle Scholar
  42. 42.
    Kiran M, Coakley S, Walkinshaw N, McMinn P, Holcombe M (2008) Validation and discovery from computational biology models. Bio Systems 93:141–150PubMedGoogle Scholar
  43. 43.
    Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837PubMedGoogle Scholar
  44. 44.
    Klingstrom T, Plewczynski D (2011) Protein–protein interaction and pathway databases, a graphical review. Brief Bioinform 12:702–713PubMedGoogle Scholar
  45. 45.
    Kolker E, Stewart E, Ozdemir V (2012) Opportunities and challenges for the life sciences community. OMICS 16:138–147PubMedGoogle Scholar
  46. 46.
    Krohs U (2012) Convenience experimentation. Stud Hist Philos Biol Biomed Sci 43:52–57PubMedGoogle Scholar
  47. 47.
    Laland KN, Sterelny K, Odling-Smee J, Hoppitt W, Uller T (2011) Cause and effect in biology revisited: is Mayr’s proximate–ultimate dichotomy still useful? Science 334:1512–1516PubMedGoogle Scholar
  48. 48.
    Larranaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano JA, Armananzas R, Santafe G, Perez A, Robles V (2006) Machine learning in bioinformatics. Brief Bioinform 7:86–112PubMedGoogle Scholar
  49. 49.
    Lehen'kyi V, Prevarskaya N (2011) Oncogenic TRP channels. Adv Exp Med Biol 704:929–945PubMedGoogle Scholar
  50. 50.
    Leonelli S (2012) Introduction: making sense of data-driven research in the biological and biomedical sciences. Stud Hist Philos Biol Biomed Sci 43:1–3PubMedGoogle Scholar
  51. 51.
    Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J Biol Chem 275:27799–27805PubMedGoogle Scholar
  52. 52.
    Lockwich T, Pant J, Makusky A, Jankowska-Stephens E, Kowalak JA, Markey SP, Ambudkar IS (2008) Analysis of TRPC3-interacting proteins by tandem mass spectrometry. J Proteome Res 7:979–989PubMedGoogle Scholar
  53. 53.
    Lowe JA, Jones P, Wilson DM (2010) Network biology as a new approach to drug discovery. Curr Opin Drug Discov Devel 13:524–526PubMedGoogle Scholar
  54. 54.
    Lussier YA, Chen JL (2011) The emergence of genome-based drug repositioning. Sci Transl Med 3:96ps35PubMedGoogle Scholar
  55. 55.
    Mardis ER (2010) The $1,000 genome, the $100,000 analysis? Genome Med 2:84PubMedCentralPubMedGoogle Scholar
  56. 56.
    Mayr E (1961) Cause and effect in biology. Science 134:1501–1506PubMedGoogle Scholar
  57. 57.
    Meireles LM, Domling AS, Camacho CJ (2010) ANCHOR: a web server and database for analysis of protein–protein interaction binding pockets for drug discovery. Nucleic Acids Res 38:W407–W411PubMedCentralPubMedGoogle Scholar
  58. 58.
    Millay DP, Goonasekera SA, Sargent MA, Maillet M, Aronow BJ, Molkentin JD (2009) Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proc Natl Acad Sci U S A 106:19023–19028PubMedCentralPubMedGoogle Scholar
  59. 59.
    Moran MM, McAlexander MA, Biro T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620PubMedGoogle Scholar
  60. 60.
    Myers CL, Robson D, Wible A, Hibbs MA, Chiriac C, Theesfeld CL, Dolinski K, Troyanskaya OG (2005) Discovery of biological networks from diverse functional genomic data. Genome Biol 6:R114PubMedCentralPubMedGoogle Scholar
  61. 61.
    Myers CL, Chiriac C, Troyanskaya OG (2009) Discovering biological networks from diverse functional genomic data. Methods Mol Biol 563:157–175PubMedGoogle Scholar
  62. 62.
    Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR (2006) Inference in Bayesian networks. Nat Biotechnol 24:51–53PubMedGoogle Scholar
  63. 63.
    Nilius B, Owsianik G (2010a) Channelopathies converge on TRPV4. Nat Genet 42:98–100Google Scholar
  64. 64.
    Nilius B, Owsianik G (2010b) Transient receptor potential channelopathies. Pflugers Archiv 460:437–450Google Scholar
  65. 65.
    Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218PubMedCentralPubMedGoogle Scholar
  66. 66.
    Nilius B, Owsianik G, Voets T (2008) Transient receptor potential channels meet phosphoinositides. EMBO J 27:2809–2816PubMedGoogle Scholar
  67. 67.
    Oliver S (2000) Guilt-by-association goes global. Nature 403:601–603PubMedGoogle Scholar
  68. 68.
    O'Malley MA, Soyer OS (2012) The roles of integration in molecular systems biology. Stud Hist Philos Biol Biomed Sci 43:58–68PubMedGoogle Scholar
  69. 69.
    Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717PubMedGoogle Scholar
  70. 70.
    Pe'er D, Hacohen N (2011) Principles and strategies for developing network models in cancer. Cell 144:864–873PubMedCentralPubMedGoogle Scholar
  71. 71.
    Phelan KD, Mock MM, Kretz O, Shwe UT, Kozhemyakin M, Greenfield LJ, Dietrich A, Birnbaumer L, Freichel M, Flockerzi V, Zheng F (2012) Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration. Mol Pharmacol 81:384–392PubMedGoogle Scholar
  72. 72.
    Piro RM (2012) Network medicine: linking disorders. Hum Genet 131:1811–1820PubMedGoogle Scholar
  73. 73.
    Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G, Moreno V, Kirchhoff T, Gold B, Assmann V, Elshamy WM, Rual JF, Levine D, Rozek LS, Gelman RS, Gunsalus KC, Greenberg RA, Sobhian B, Bertin N, Venkatesan K, Ayivi-Guedehoussou N, Sole X, Hernandez P, Lazaro C, Nathanson KL, Weber BL, Cusick ME, Hill DE, Offit K, Livingston DM, Gruber SB, Parvin JD, Vidal M (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39:1338–1349PubMedGoogle Scholar
  74. 74.
    Quigley DA, To MD, Kim IJ, Lin KK, Albertson DG, Sjolund J, Perez-Losada J, Balmain A (2011) Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility. Genome Biol 12:R5PubMedCentralPubMedGoogle Scholar
  75. 75.
    Ruffner H, Bauer A, Bouwmeester T (2007) Human protein–protein interaction networks and the value for drug discovery. Drug Discov Today 12:709–716PubMedGoogle Scholar
  76. 76.
    Sanseau P, Agarwal P, Barnes MR, Pastinen T, Richards JB, Cardon LR, Mooser V (2012) Use of genome-wide association studies for drug repositioning. Nat Biotechnol 30:317–320PubMedGoogle Scholar
  77. 77.
    Schadt EE, Bjorkegren JL (2012) NEW: network-enabled wisdom in biology, medicine, and health care. Sci Transl Med 4:115rv1PubMedGoogle Scholar
  78. 78.
    Searls DB (2005) Data integration: challenges for drug discovery. Nat Rev Drug Discov 4:45–58PubMedGoogle Scholar
  79. 79.
    Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honore E (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139:587–596PubMedGoogle Scholar
  80. 80.
    Shin YC, Shin SY, So I, Kwon D, Jeon JH (2011) TRIP database: a manually curated database of protein–protein interactions for mammalian TRP channels. Nucleic Acids Res 39:D356–D361PubMedCentralPubMedGoogle Scholar
  81. 81.
    Shin YC, Shin SY, Chun JN, Cho HS, Lim JM, Kim HG, So I, Kwon D, Jeon JH (2012) TRIP database 2.0: a manually curated information hub for accessing TRP channel interaction network. PloS One 7:e47165PubMedCentralPubMedGoogle Scholar
  82. 82.
    Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, Sage J, Butte AJ (2011) Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med 3:96ra77PubMedCentralPubMedGoogle Scholar
  83. 83.
    Slater T, Bouton C, Huang ES (2008) Beyond data integration. Drug Discov Today 13:584–589PubMedGoogle Scholar
  84. 84.
    Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432PubMedGoogle Scholar
  85. 85.
    Stein LD (2003) Integrating biological databases. Nat Rev Genet 4:337–345PubMedGoogle Scholar
  86. 86.
    Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522PubMedCentralPubMedGoogle Scholar
  87. 87.
    Stelling J, Sauer U, Szallasi Z, Doyle FJ 3rd, Doyle J (2004) Robustness of cellular functions. Cell 118:675–685PubMedGoogle Scholar
  88. 88.
    Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655PubMedGoogle Scholar
  89. 89.
    Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019PubMedGoogle Scholar
  90. 90.
    Tanaka G, Morino K, Aihara K (2012) Dynamical robustness in complex networks: the crucial role of low-degree nodes. Sci Rep 2:232PubMedCentralPubMedGoogle Scholar
  91. 91.
    Tang J, Tan CY, Oresic M, Vidal-Puig A (2009) Integrating post-genomic approaches as a strategy to advance our understanding of health and disease. Genome Med 1:35PubMedCentralPubMedGoogle Scholar
  92. 92.
    Tang H, Zhong F, Xie H (2012) A quick guide to biomolecular network studies: construction, analysis, applications, and resources. Biochem Biophys Res Commun 424:7–11PubMedGoogle Scholar
  93. 93.
    Taylor IW, Wrana JL (2012) Protein interaction networks in medicine and disease. Proteomics 12:1706–1716PubMedGoogle Scholar
  94. 94.
    Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204PubMedGoogle Scholar
  95. 95.
    Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144:986–998PubMedCentralPubMedGoogle Scholar
  96. 96.
    Wang X, Wei X, Thijssen B, Das J, Lipkin SM, Yu H (2012) Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat Biotechnol 30:159–164PubMedCentralPubMedGoogle Scholar
  97. 97.
    Wu LJ, Sweet TB, Clapham DE (2010) International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62:381–404PubMedGoogle Scholar
  98. 98.
    Xenarios I, Eisenberg D (2001) Protein interaction databases. Curr Opin Biotechnol 12:334–339PubMedGoogle Scholar
  99. 99.
    Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, Cohen P, Khandekar MJ, Bostrom P, Mepani RJ, Laznik D, Kamenecka TM, Song X, Liedtke W, Mootha VK, Puigserver P, Griffin PR, Clapham DE, Spiegelman BM (2012) TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151:96–110PubMedCentralPubMedGoogle Scholar
  100. 100.
    Zanzoni A, Soler-Lopez M, Aloy P (2009) A network medicine approach to human disease. FEBS Lett 583:1759–1765PubMedGoogle Scholar
  101. 101.
    Zhang S, Liu CC, Li W, Shen H, Laird PW, Zhou XJ (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 40:9379–9391PubMedCentralPubMedGoogle Scholar
  102. 102.
    Zhong Q, Simonis N, Li QR, Charloteaux B, Heuze F, Klitgord N, Tam S, Yu H, Venkatesan K, Mou D, Swearingen V, Yildirim MA, Yan H, Dricot A, Szeto D, Lin C, Hao T, Fan C, Milstein S, Dupuy D, Brasseur R, Hill DE, Cusick ME, Vidal M (2009) Edgetic perturbation models of human inherited disorders. Mol Syst Biol 5:321PubMedCentralPubMedGoogle Scholar
  103. 103.
    Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, Bumgarner RE, Schadt EE (2008) Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 40:854–861PubMedCentralPubMedGoogle Scholar
  104. 104.
    Zhu J, Sova P, Xu Q, Dombek KM, Xu EY, Vu H, Tu Z, Brem RB, Bumgarner RE, Schadt EE (2012) Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol 10:e1001301PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jung Nyeo Chun
    • 1
    • 2
  • Jin Muk Lim
    • 3
  • Young Kang
    • 4
  • Eung Hee Kim
    • 3
  • Young-Cheul Shin
    • 1
  • Hong-Gee Kim
    • 2
    • 3
    • 5
  • Dayk Jang
    • 6
  • Dongseop Kwon
    • 7
  • Soo-Yong Shin
    • 8
  • Insuk So
    • 1
    • 2
  • Ju-Hong Jeon
    • 1
    • 2
    Email author
  1. 1.Department of Physiology and Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
  2. 2.Institute of Human-Environment Interface BiologySeoul National UniversitySeoulSouth Korea
  3. 3.Biomedical Knowledge Engineering LabSeoul National UniversitySeoulSouth Korea
  4. 4.Undergraduate Research ProgramSeoul National University College of MedicineSeoulSouth Korea
  5. 5.Dental Research InstituteSeoul National UniversitySeoulSouth Korea
  6. 6.College of Liberal StudiesSeoul National UniversitySeoulSouth Korea
  7. 7.Department of Computer EngineeringMyongji UniversityGyeonggi-doSouth Korea
  8. 8.Department of Biomedical InformaticsAsan Medical CenterSeoulSouth Korea

Personalised recommendations