Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 465, Issue 9, pp 1223–1231 | Cite as

TRPM4 channels in smooth muscle function

  • Scott EarleyEmail author
Invited Review

Abstract

The melastatin (M) transient receptor potential (TRP) channel TRPM4 is selective for monovalent cations and is activated by high levels of intracellular Ca2+. TRPM4 is broadly distributed and may be involved in numerous functions, including electrical conduction in the heart, respiratory rhythm, immune response, and secretion of insulin by pancreatic β-cells. The significance of TRPM4 in smooth muscle cell function is reviewed here. Several studies indicate that TRPM4 channels are critically important for pressure-induced cerebral arterial myocyte depolarization and myogenic vasoconstriction as well as autoregulation of cerebral blood flow. Regulation of TRPM4 activity in arterial smooth muscle cells is complex and involves release of Ca2+ from the sarcoplasmic reticulum through inositol 1,4,5-trisphosphate receptors and translocation of TRPM4 channels to the plasma membrane in response to protein kinase Cδ. TRPM4 is also present in colonic, urinary bladder, aortic, interlobar pulmonary and renal artery, airway, and corpus cavernosum smooth muscle cells, but its significance and regulation in these tissues is less well characterized.

Keywords

TRP Cation channels Melastatin Smooth muscle cells Vasoconstriction Myogenic response 

Notes

Acknowledgments

I thank Michelle N. Sullivan and Dr. Albert L. Gonzales for critical comments on the manuscript. This work was supported by R01HL091905 from NHLBI and a Monfort Excellence Award from the Monfort Family Foundation.

References

  1. 1.
    Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815PubMedCrossRefGoogle Scholar
  2. 2.
    Anfinogenova Y, Brett SE, Walsh MP, Harraz OF, Welsh DG (2011) Do TRPC-like currents and G protein-coupled receptors interact to facilitate myogenic tone development? Am J Physiol Heart Circ Physiol 301:H1378–H1388. doi: 10.1152/ajpheart.00460.2011 PubMedCrossRefGoogle Scholar
  3. 3.
    Chubanov V, Waldegger S, Mederos y Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A 101:2894–2899. doi: 10.1073/pnas.0305252101 PubMedCrossRefGoogle Scholar
  4. 4.
    Clapham DE, Julius D, Montell C, Schultz G (2005) International Union of Pharmacology. XLIX. Nomenclature and structure–function relationships of transient receptor potential channels. Pharmacol Rev 57:427–450. doi: 10.1124/pr.57.4.6 PubMedCrossRefGoogle Scholar
  5. 5.
    Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224:285–287PubMedCrossRefGoogle Scholar
  6. 6.
    Crnich R, Amberg GC, Leo MD, Gonzales AL, Tamkun MM, Jaggar JH, Earley S (2010) Vasoconstriction resulting from dynamic membrane trafficking of TRPM4 in vascular smooth muscle cells. Am J Physiol Cell Physiol 299:C682–C694. doi: 10.1152/ajpcell.00101.2010 PubMedCrossRefGoogle Scholar
  7. 7.
    Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA (2007) Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBotzinger complex. J Physiol 582:1047–1058. doi: 10.1113/jphysiol.2007.134577 PubMedCrossRefGoogle Scholar
  8. 8.
    Demion M, Bois P, Launay P, Guinamard R (2007) TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73:531–538. doi: 10.1016/j.cardiores.2006.11.023 PubMedCrossRefGoogle Scholar
  9. 9.
    Dwyer L, Rhee PL, Lowe V, Zheng H, Peri L, Ro S, Sanders KM, Koh SD (2011) Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 301:G287–G296. doi: 10.1152/ajpgi.00415.2010 PubMedCrossRefGoogle Scholar
  10. 10.
    Earley S (2006) Molecular diversity of receptor operated channels in vascular smooth muscle: a role for heteromultimeric TRP channels? Circ Res 98:1462–1464. doi: 10.1161/01.RES.0000231255.32630.df PubMedCrossRefGoogle Scholar
  11. 11.
    Earley S, Straub SV, Brayden JE (2007) Protein kinase C regulates vascular myogenic tone through activation of TRPM4. Am J Physiol Heart Circ Physiol 292:H2613–H2622. doi: 10.1152/ajpheart.01286.2006 PubMedCrossRefGoogle Scholar
  12. 12.
    Earley S, Waldron BJ, Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95:922–929. doi: 10.1161/01.RES.0000147311.54833.03 PubMedCrossRefGoogle Scholar
  13. 13.
    Garcia ZI, Bruhl A, Gonzales AL, Earley S (2011) Basal protein kinase Cdelta activity is required for membrane localization and activity of TRPM4 channels in cerebral artery smooth muscle cells. Channels (Austin) 5:210–214CrossRefGoogle Scholar
  14. 14.
    Garcia ZI, Earley S (2011) PLCγ1 is required for IP3-mediated activation of TRPM4 and pressure-induced depolarization and vasoconstriction in cerebral arteries. FASEB J 25 (Abstract)Google Scholar
  15. 15.
    Gonzales AL, Amberg GC, Earley S (2010) Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 299:C279–C288. doi: 10.1152/ajpcell.00550.2009 PubMedCrossRefGoogle Scholar
  16. 16.
    Gonzales AL, Earley S (2013) Regulation of cerebral artery smooth muscle membrane potential by Ca(2+)-activated cation channels. Microcirculation. doi: 10.1111/micc.12023
  17. 17.
    Gonzales AL, Earley S (2012) Endogenous cytosolic Ca(2+) buffering is necessary for TRPM4 activity in cerebral artery smooth muscle cells. Cell Calcium 51:82–93. doi: 10.1016/j.ceca.2011.11.004 PubMedCrossRefGoogle Scholar
  18. 18.
    Gonzales AL, Garcia ZI, Amberg GC, Earley S (2010) Pharmacological inhibition of TRPM4 hyperpolarizes vascular smooth muscle. Am J Physiol Cell Physiol 299:C1195–C1202. doi: 10.1152/ajpcell.00269.2010 PubMedCrossRefGoogle Scholar
  19. 19.
    Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, Bois P, Guinamard R (2008) 9-Phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br J Pharmacol 153:1697–1705. doi: 10.1038/bjp.2008.38 PubMedCrossRefGoogle Scholar
  20. 20.
    Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, Bois P (2004) Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol 558:75–83. doi: 10.1113/jphysiol.2004.063974 PubMedCrossRefGoogle Scholar
  21. 21.
    Guinamard R, Chatelier A, Lenfant J, Bois P (2004) Activation of the Ca(2+)-activated nonselective cation channel by diacylglycerol analogues in rat cardiomyocytes. J Cardiovasc Electrophysiol 15:342–348. doi: 10.1046/j.1540-8167.2004.03477.x PubMedCrossRefGoogle Scholar
  22. 22.
    Guinamard R, Demion M, Launay P (2010) Physiological roles of the TRPM4 channel extracted from background currents. Physiology (Bethesda) 25:155–164. doi: 10.1152/physiol.00004.2010 CrossRefGoogle Scholar
  23. 23.
    Guinamard R, Demion M, Magaud C, Potreau D, Bois P (2006) Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 48:587–594. doi: 10.1161/01.HYP.0000237864.65019.a5 PubMedCrossRefGoogle Scholar
  24. 24.
    He LP, Hewavitharana T, Soboloff J, Spassova MA, Gill DL (2005) A functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2. J Biol Chem 280:10997–11006. doi: 10.1074/jbc.M411797200 PubMedCrossRefGoogle Scholar
  25. 25.
    Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJ (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22:776–785. doi: 10.1093/emboj/cdg080 PubMedCrossRefGoogle Scholar
  26. 26.
    Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol 13:1153–1158PubMedCrossRefGoogle Scholar
  27. 27.
    Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99:7461–7466. doi: 10.1073/pnas.102596199 PubMedCrossRefGoogle Scholar
  28. 28.
    Jarajapu YP, Knot HJ (2005) Relative contribution of Rho kinase and protein kinase C to myogenic tone in rat cerebral arteries in hypertension. Am J Physiol Heart Circ Physiol 289:H1917–H1922. doi: 10.1152/ajpheart.01012.2004 PubMedCrossRefGoogle Scholar
  29. 29.
    Kim BJ, Kim SY, Lee S, Jeon JH, Matsui H, Kwon YK, Kim SJ, So I (2012) The role of transient receptor potential channel blockers in human gastric cancer cell viability. Can J Physiol Pharmacol 90:175–186. doi: 10.1139/y11-114 PubMedCrossRefGoogle Scholar
  30. 30.
    Kim BJ, Nam JH, Kim SJ (2011) Effects of transient receptor potential channel blockers on pacemaker activity in interstitial cells of Cajal from mouse small intestine. Mol Cells 32:153–160. doi: 10.1007/s10059-011-1019-1 PubMedCrossRefGoogle Scholar
  31. 31.
    Knot HJ, Nelson MT (1998) Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol 508(Pt 1):199–209PubMedGoogle Scholar
  32. 32.
    Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Brink P, Pongs O (2009) Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 119:2737–2744. doi: 10.1172/JCI38292 PubMedCrossRefGoogle Scholar
  33. 33.
    Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407PubMedCrossRefGoogle Scholar
  34. 34.
    Liu H, El Zein L, Kruse M, Guinamard R, Beckmann A, Bozio A, Kurtbay G, Megarbane A, Ohmert I, Blaysat G, Villain E, Pongs O, Bouvagnet P (2010) Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet 3:374–385. doi: 10.1161/CIRCGENETICS.109.930867 PubMedCrossRefGoogle Scholar
  35. 35.
    Maruyama Y, Nakanishi Y, Walsh EJ, Wilson DP, Welsh DG, Cole WC (2006) Heteromultimeric TRPC6-TRPC7 channels contribute to arginine vasopressin-induced cation current of A7r5 vascular smooth muscle cells. Circ Res 98:1520–1527. doi: 10.1161/01.RES.0000226495.34949.28 PubMedCrossRefGoogle Scholar
  36. 36.
    Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londono JE, Uhl S, Voets T, Hummel B, van den Bergh A, Herijgers P, Nilius B, Flockerzi V, Schweda F, Freichel M (2010) Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J Clin Invest 120:3267–3279. doi: 10.1172/JCI41348 PubMedCrossRefGoogle Scholar
  37. 37.
    Matveev V, Zucker RS, Sherman A (2004) Facilitation through buffer saturation: constraints on endogenous buffering properties. Biophys J 86:2691–2709. doi: 10.1016/S0006-3495(04)74324-6 PubMedCrossRefGoogle Scholar
  38. 38.
    Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103. doi: 10.1038/emboj.2008.233 PubMedCrossRefGoogle Scholar
  39. 39.
    Michel AD, Xing M, Thompson KM, Jones CA, Humphrey PP (2006) Decavanadate, a P2X receptor antagonist, and its use to study ligand interactions with P2X7 receptors. Eur J Pharmacol 534:19–29. doi: 10.1016/j.ejphar.2006.01.009 PubMedCrossRefGoogle Scholar
  40. 40.
    Mironov SL (2013) Calmodulin and CaMKII mediate emergent bursting activity in the brainstem respiratory network (preBotC). J Physiol. doi: 10.1113/jphysiol.2012.237362
  41. 41.
    Moiseenkova-Bell VY, Wensel TG (2009) Hot on the trail of TRP channel structure. J Gen Physiol 133:239–244. doi: 10.1085/jgp.200810123 PubMedCrossRefGoogle Scholar
  42. 42.
    Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323PubMedCrossRefGoogle Scholar
  43. 43.
    Morita H, Honda A, Inoue R, Ito Y, Abe K, Nelson MT, Brayden JE (2007) Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J Pharmacol Sci 103:417–426PubMedCrossRefGoogle Scholar
  44. 44.
    Mrejeru A, Wei A, Ramirez JM (2011) Calcium-activated non-selective cation currents are involved in generation of tonic and bursting activity in dopamine neurons of the substantia nigra pars compacta. J Physiol 589:2497–2514. doi: 10.1113/jphysiol.2011.206631 PubMedCrossRefGoogle Scholar
  45. 45.
    Naraghi M, Neher E (1997) Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J Neurosci 17:6961–6973PubMedGoogle Scholar
  46. 46.
    Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637PubMedCrossRefGoogle Scholar
  47. 47.
    Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478. doi: 10.1038/sj.emboj.7600963 PubMedCrossRefGoogle Scholar
  48. 48.
    Nilius B, Owsianik G (2010) Transient receptor potential channelopathies. Pflugers Arch 460:437–450. doi: 10.1007/s00424-010-0788-2 PubMedCrossRefGoogle Scholar
  49. 49.
    Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem 278:30813–30820. doi: 10.1074/jbc.M305127200 PubMedCrossRefGoogle Scholar
  50. 50.
    Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T (2005) The selectivity filter of the cation channel TRPM4. J Biol Chem 280:22899–22906. doi: 10.1074/jbc.M501686200 PubMedCrossRefGoogle Scholar
  51. 51.
    Nilius B, Prenen J, Janssens A, Voets T, Droogmans G (2004) Decavanadate modulates gating of TRPM4 cation channels. J Physiol 560:753–765. doi: 10.1113/jphysiol.2004.070839 PubMedCrossRefGoogle Scholar
  52. 52.
    Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280:6423–6433. doi: 10.1074/jbc.M411089200 PubMedCrossRefGoogle Scholar
  53. 53.
    Nilius B, Prenen J, Voets T, Droogmans G (2004) Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Pflugers Arch 448:70–75. doi: 10.1007/s00424-003-1221-x PubMedCrossRefGoogle Scholar
  54. 54.
    Reading SA, Brayden JE (2007) Central role of TRPM4 channels in cerebral blood flow regulation. Stroke 38:2322–2328. doi: 10.1161/STROKEAHA.107.483404 PubMedCrossRefGoogle Scholar
  55. 55.
    Robertson BE, Schubert R, Hescheler J, Nelson MT (1993) cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol 265:C299–C303PubMedGoogle Scholar
  56. 56.
    Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Bruck W, Pongs O, Vennekens R, Kneussel M, Freichel M, Merkler D, Friese MA (2012) TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 18:1805–1811. doi: 10.1038/nm.3015 PubMedCrossRefGoogle Scholar
  57. 57.
    Schwarz EC, Wolfs MJ, Tonner S, Wenning AS, Quintana A, Griesemer D, Hoth M (2007) TRP channels in lymphocytes. Handb Exp Pharmacol 179:445–456. doi: 10.1007/978-3-540-34891-7_26 Google Scholar
  58. 58.
    Simard C, Salle L, Rouet R, Guinamard R (2012) Transient receptor potential melastatin 4 inhibitor 9-phenanthrol abolishes arrhythmias induced by hypoxia and re-oxygenation in mouse ventricle. Br J Pharmacol 165:2354–2364. doi: 10.1111/j.1476-5381.2011.01715.x PubMedCrossRefGoogle Scholar
  59. 59.
    Smith AC, Hristov KL, Cheng Q, Xin W, Parajuli SP, Earley S, Malysz J, Petkov GV (2013) Novel role for the transient potential receptor melastatin 4 channel in guinea pig detrusor smooth muscle physiology. Am J Physiol Cell Physiol. doi: 10.1152/ajpcell.00169.2012
  60. 60.
    Smith AC, Hristov KL, Parajuli SP, Cheng Q, Xin W, Malysz J, Petkov GV (2012) Role of TRPM4 channel in urinary bladder function. Fourth International Congress on Cell Membranes and Oxidative Stress: Focus on Calcium Signaling and TRP channels 4, pp 18–19Google Scholar
  61. 61.
    Smith AC, Parajuli SP, Hristov KL, Cheng Q, Soder RP, Afeli SA, Earley S, Xin W, Malysz J, Petkov GV (2013) TRPM4 channel: a new player in urinary bladder smooth muscle function in rats. Am J Physiol Renal Physiol. doi: 10.1152/ajprenal.00417.2012
  62. 62.
    Takezawa R, Cheng H, Beck A, Ishikawa J, Launay P, Kubota H, Kinet JP, Fleig A, Yamada T, Penner R (2006) A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol Pharmacol 69:1413–1420. doi: 10.1124/mol.105.021154 PubMedCrossRefGoogle Scholar
  63. 63.
    Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267–278. doi: 10.1016/j.ceca.2004.11.001 PubMedCrossRefGoogle Scholar
  64. 64.
    Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417. doi: 10.1146/annurev.biochem.75.103004.142819 PubMedCrossRefGoogle Scholar
  65. 65.
    Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92:9652–9656PubMedCrossRefGoogle Scholar
  66. 66.
    Wu LJ, Sweet TB, Clapham DE (2010) International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62:381–404. doi: 10.1124/pr.110.002725 PubMedCrossRefGoogle Scholar
  67. 67.
    Xu XZ, Li HS, Guggino WB, Montell C (1997) Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 89:1155–1164PubMedCrossRefGoogle Scholar
  68. 68.
    Xu XZ, Moebius F, Gill DL, Montell C (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci U S A 98:10692–10697. doi: 10.1073/pnas.191360198 PubMedCrossRefGoogle Scholar
  69. 69.
    Yang Y, Gonzales AL, Sanders L, Earley S (2012) Membrane stretch-induced activation of TRPM4 in cerebral artery smooth muscle cells. FASEB J 26 (Abstract)Google Scholar
  70. 70.
    Yang XR, Lin MJ, McIntosh LS, Sham JS (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L1267–L1276. doi: 10.1152/ajplung.00515.2005 PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280:39185–39192. doi: 10.1074/jbc.M506965200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Vascular Physiology Research Group, Department of Biomedical SciencesColorado State UniversityFort CollinsUSA

Personalised recommendations