Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology

Invited Review


Chemically-inducible dimerization (CID) is a powerful tool that has proved useful in solving numerous problems in cell biology and related fields. In this review, we focus on case studies where CID was able to provide insight into otherwise refractory problems. Of particular interest are the cases of lipid second messengers and small GTPases, where the “signaling paradox” (how a small pool of signaling molecules can generate a large range of responses) can be at least partly explained through results gleaned from CID experiments. We also discuss several recent technical advances that provide improved specificity in CID action, novel CID substrates that allow simultaneous orthogonal manipulation of multiple systems in one cell, and several applications that move beyond the traditional CID technique of moving a protein of interest to a specific spatiotemporal location.


Chemically-inducible dimerization Rapamycin Signaling paradox 


  1. 1.
    Abe N, Inoue T, Galvez T, Klein L, Meyer T (2008) Dissecting the role of PtdIns(4,5)P2 in endocytosis and recycling of the transferring receptor. J Cell Sci 121:1488–1494PubMedCrossRefGoogle Scholar
  2. 2.
    Bingol B, Wang CF, Arnott D, Cheng D, Peng J, Sheng M (2010) Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140:567–578PubMedCrossRefGoogle Scholar
  3. 3.
    Castellano F, Montcourrier P, Chavrier P (2000) Membrane recruitment of Rac1 triggers phagocytosis. J Cell Sci 113:2955–2961PubMedGoogle Scholar
  4. 4.
    Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132PubMedCrossRefGoogle Scholar
  5. 5.
    Fegan A, White B, Carlson JCT, Wagner CR (2010) Chemically controlled protein assembly: techniques and applications. Chem Rev 110:3315–3336PubMedCrossRefGoogle Scholar
  6. 6.
    Fili N, Calleja V, Woscholski R, Parker PJ, Larjani B (2006) Compartmental signal modulation: endosomal phosphatidylinositol 3-phosphate controls endosome morphology and selective cargo sorting. Proc Nat Acad Sci USA 103:15473–15478PubMedCrossRefGoogle Scholar
  7. 7.
    Fivaz M, Bandara S, Inoue T, Meyer T (2008) Robust neuronal symmetry breaking by Ras-triggered local positive feedback. Curr Biol 18:44–50PubMedCrossRefGoogle Scholar
  8. 8.
    Graef IA, Holsinger LJ, Diver S, Schreiber SL, Crabtree GR (1997) Proximity and orientation underlie signaling by the non-receptor tyrosine kinase ZAP70. EMBO J 16:5618–5628PubMedCrossRefGoogle Scholar
  9. 9.
    Haruki H, Nishikawa J, Laemmli UK (2008) The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol Cell 31:925–932PubMedCrossRefGoogle Scholar
  10. 10.
    Inoue T, Meyer T (2008) Synthetic activation of endogenous PI3K and Rac identifies an AND-gate switch for cell polarization and migration. PLoS One 3(8):e3068PubMedCrossRefGoogle Scholar
  11. 11.
    Karginov AV, Ding F, Kota P, Dokholyan NV, Hahn KM (2010) Engineered allosteric activation of kinases in living cells. Nat Biotechnol 28:743–747PubMedCrossRefGoogle Scholar
  12. 12.
    Karginov AV, Zou Y, Shirvanyants D, Kota P, Dokholyan NV, Young DD, Hahn KM, Deiters A (2011) Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. J Am Chem Soc 133:420–423PubMedCrossRefGoogle Scholar
  13. 13.
    Komatsu T, Kukelyansky I, McCaffrey JM, Ueno T, Varela LC, Inoue T (2010) Nat Method 7:206–208CrossRefGoogle Scholar
  14. 14.
    Li B, Desai SA, MacCokle-Chosnek RA, Fan L, Spencer DM (2002) A novel conditional Akt “survival switch” reversibly protects cells from apoptosis. Gene Ther 9:233–244PubMedCrossRefGoogle Scholar
  15. 15.
    Liang FS, Ho WQ, Crabtree GR (2011) Engineering the ABA plant stress pathway for regulation of induced proximity. Sci Signal 4(164):rs2PubMedCrossRefGoogle Scholar
  16. 16.
    Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:538–542PubMedCrossRefGoogle Scholar
  17. 17.
    Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185PubMedCrossRefGoogle Scholar
  18. 18.
    Miyamoto T, DeRose R, Suarez A, Ueno T, Chen M, Sun T, Wolfgang MJ, Mukherjee C, Meyers DJ, Inoue T (2012) Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat Chem Biol 8:465–470PubMedCrossRefGoogle Scholar
  19. 19.
    Mor A, Philips MR (2006) Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 24:771–800PubMedCrossRefGoogle Scholar
  20. 20.
    Phua SC, Pohlmeyer C, Inoue T (2012) Rapidly relocating molecules between organelles to manipulate small GTPase activity. ACS Chem Biol. doi:10.1021/cb300280k
  21. 21.
    Putyrski M, Schultz C (2012) Protein translocation as a tool: the current rapamycin story. FEBS Lett. doi:10.1016/j.febslet.2012.04.061
  22. 22.
    Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN (2009) A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc Nat Acad Sci USA 106:480–485PubMedCrossRefGoogle Scholar
  23. 23.
    Robinson MS, Sahlender DA, Foster SD (2010) Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev Cell 18:324–331PubMedCrossRefGoogle Scholar
  24. 24.
    Suh BC, Inoue T, Meyer T, Hille B (2006) Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314:1454–1457PubMedCrossRefGoogle Scholar
  25. 25.
    Terrillon S, Bouvier M (2004) Receptor activity-independent recruitment of βarrestin2 reveals specific signaling modes. EMBO J 23:3950–3961PubMedCrossRefGoogle Scholar
  26. 26.
    Ueno T, Falkenburger BH, Pohlmeyer C, Inoue T (2011) Triggering actin comets versus membrane ruffles: distinctive effects of phosphoinositides on actin reorganization. Sci Signal 4(203):ra87PubMedCrossRefGoogle Scholar
  27. 27.
    Umeda N, Ueno T, Pohlmeyer C, Nagano T, Inoue T (2011) A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity. J Am Chem Soc 133:12–14PubMedCrossRefGoogle Scholar
  28. 28.
    Varnai P, Thyagarajan B, Rohacs T, Balla T (2006) Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J Cell Biol 175:377–382PubMedCrossRefGoogle Scholar
  29. 29.
    Varnai P, Toth B, Toth DJ, Hunyady L, Balla T (2007) Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. J Biol Chem 282:29678–29690PubMedCrossRefGoogle Scholar
  30. 30.
    Zoncu R, Perera RM, Sebastian R, Nakatsu F, Chen H, Balla T, Ayala G, Toomre D, De Camilli PV (2007) Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc Nat Acad Sci USA 104:3793–3798PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert DeRose
    • 1
  • Takafumi Miyamoto
    • 1
  • Takanari Inoue
    • 1
  1. 1.Department of Cell Biology, Center for Cell Dynamics, School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations