Cholinergic receptors: functional role of nicotinic ACh receptors in brain circuits and disease

Invited Review

Abstract

The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability throughout the nervous system by acting on both the cys-loop ligand-gated nicotinic ACh receptor channels (nAChRs) and the G protein-coupled muscarinic ACh receptors (mAChRs). The hippocampus is an important area in the brain for learning and memory, where both nAChRs and mAChRs are expressed. The primary cholinergic input to the hippocampus arises from the medial septum and diagonal band of Broca, the activation of which can activate both nAChRs and mAChRs in the hippocampus and regulate synaptic communication and induce oscillations that are thought to be important for cognitive function. Dysfunction in the hippocampal cholinergic system has been linked with cognitive deficits and a variety of neurological disorders and diseases, including Alzheimer’s disease and schizophrenia. My lab has focused on the role of the nAChRs in regulating hippocampal function, from understanding the expression and functional properties of the various subtypes of nAChRs, and what role these receptors may be playing in regulating synaptic plasticity. Here, I will briefly review this work, and where we are going in our attempts to further understand the role of these receptors in learning and memory, as well as in disease and neuroprotection.

Notes

Acknowledgments

This work was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences.

References

  1. 1.
    Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265(3):1455–1473PubMedGoogle Scholar
  2. 2.
    Alkondon M, Albuquerque EX (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res 145:109–120. doi: 10.1016/S0079-6123(03)45007-3 PubMedCrossRefGoogle Scholar
  3. 3.
    Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22(7):2443–2450. doi: 20026212 PubMedGoogle Scholar
  4. 4.
    Auerbach A (2010) The gating isomerization of neuromuscular acetylcholine receptors. J Physiol 588(Pt 4):573–586. doi: 10.1113/jphysiol.2009.182774 PubMedCrossRefGoogle Scholar
  5. 5.
    Barry C, Heys JG, Hasselmo ME (2012) Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells. Front Neural Circuits 6:5. doi: 10.3389/fncir.2012.00005 PubMedCrossRefGoogle Scholar
  6. 6.
    Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414PubMedCrossRefGoogle Scholar
  7. 7.
    Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387(6630):278–281. doi: 10.1038/387278a0 PubMedCrossRefGoogle Scholar
  8. 8.
    Berger F, Gage FH, Vijayaraghavan S (1998) Nicotinic receptor-induced apoptotic cell death of hippocampal progenitor cells. J Neurosci 18(17):6871–6881PubMedGoogle Scholar
  9. 9.
    Bertrand D, Galzi JL, Devillers-Thiery A, Bertrand S, Changeux JP (1993) Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. Proc Natl Acad Sci U S A 90(15):6971–6975PubMedCrossRefGoogle Scholar
  10. 10.
    Bertrand D, Gopalakrishnan M (2007) Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol 74(8):1155–1163. doi: 10.1016/j.bcp.2007.07.011 PubMedCrossRefGoogle Scholar
  11. 11.
    Bertrand S, Weiland S, Berkovic SF, Steinlein OK, Bertrand D (1998) Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy. Br J Pharmacol 125(4):751–760. doi: 10.1038/sj.bjp.0702154 PubMedCrossRefGoogle Scholar
  12. 12.
    Billen B, Spurny R, Brams M, van Elk R, Valera-Kummer S, Yakel JL, Voets T, Bertrand D, Smit AB, Ulens C (2012) Molecular actions of smoking cessation drugs at alpha4beta2 nicotinic receptors defined in crystal structures of a homologous binding protein. Proc Natl Acad Sci U S A 109(23):9173–9178. doi: 10.1073/pnas.1116397109 PubMedCrossRefGoogle Scholar
  13. 13.
    Blozovski D (1983) Deficits in passive avoidance learning in young rats following mecamylamine injections in the hippocampo-entorhinal area. Exp Brain Res 50(2–3):442–448PubMedGoogle Scholar
  14. 14.
    Blozovski D (1985) Mediation of passive avoidance learning by nicotinic hippocampo-entorhinal components in young rats. Dev Psychobiol 18(4):355–366. doi: 10.1002/dev.420180408 PubMedCrossRefGoogle Scholar
  15. 15.
    Bouzat C, Gumilar F, Spitzmaul G, Wang HL, Rayes D, Hansen SB, Taylor P, Sine SM (2004) Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 430(7002):896–900. doi: 10.1038/nature02753 PubMedCrossRefGoogle Scholar
  16. 16.
    Brams M, Gay EA, Saez JC, Guskov A, van Elk R, van der Schors RC, Peigneur S, Tytgat J, Strelkov SV, Smit AB, Yakel JL, Ulens C (2011) Crystal structures of a cysteine-modified mutant in loop D of acetylcholine-binding protein. J Biol Chem 286(6):4420–4428. doi: 10.1074/jbc.M110.188730 PubMedCrossRefGoogle Scholar
  17. 17.
    Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411(6835):269–276. doi: 10.1038/35077011 PubMedCrossRefGoogle Scholar
  18. 18.
    Buchanan KA, Petrovic MM, Chamberlain SE, Marrion NV, Mellor JR (2010) Facilitation of long-term potentiation by muscarinic M(1) receptors is mediated by inhibition of SK channels. Neuron 68(5):948–963. doi: 10.1016/j.neuron.2010.11.018 PubMedCrossRefGoogle Scholar
  19. 19.
    Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33(3):325–340PubMedCrossRefGoogle Scholar
  20. 20.
    Campbell NR, Fernandes CC, Halff AW, Berg DK (2010) Endogenous signaling through alpha7-containing nicotinic receptors promotes maturation and integration of adult-born neurons in the hippocampus. J Neurosci 30(26):8734–8744. doi: 10.1523/JNEUROSCI.0931-10.2010 PubMedCrossRefGoogle Scholar
  21. 21.
    Castro NG, Albuquerque EX (1995) Alpha-bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys J 68(2):516–524. doi: 10.1016/S0006-3495(95)80213-4 PubMedCrossRefGoogle Scholar
  22. 22.
    Celie PH, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41(6):907–914PubMedCrossRefGoogle Scholar
  23. 23.
    Chang KT, Berg DK (2001) Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons. Neuron 32(5):855–865PubMedCrossRefGoogle Scholar
  24. 24.
    Cobb SR, Davies CH (2005) Cholinergic modulation of hippocampal cells and circuits. J Physiol 562(Pt 1):81–88. doi: 10.1113/jphysiol.2004.076539 PubMedGoogle Scholar
  25. 25.
    Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J, Sands SB, Davis TI, Lebel LA, Fox CB, Shrikhande A, Heym JH, Schaeffer E, Rollema H, Lu Y, Mansbach RS, Chambers LK, Rovetti CC, Schulz DW, Tingley FD 3rd, O'Neill BT (2005) Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem 48(10):3474–3477. doi: 10.1021/jm050069n PubMedCrossRefGoogle Scholar
  26. 26.
    Dajas-Bailador FA, Lima PA, Wonnacott S (2000) The alpha7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca(2+) dependent mechanism. Neuropharmacology 39(13):2799–2807PubMedCrossRefGoogle Scholar
  27. 27.
    Damaj MI, Glassco W, Dukat M, Martin BR (1999) Pharmacological characterization of nicotine-induced seizures in mice. J Pharmacol Exp Ther 291(3):1284–1291PubMedGoogle Scholar
  28. 28.
    Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44(1):23–30. doi: 10.1016/j.neuron.2004.09.007 PubMedCrossRefGoogle Scholar
  29. 29.
    Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729. doi: 10.1146/annurev.pharmtox.47.120505.105214 PubMedCrossRefGoogle Scholar
  30. 30.
    Davis JA, Kenney JW, Gould TJ (2007) Hippocampal alpha4beta2 nicotinic acetylcholine receptor involvement in the enhancing effect of acute nicotine on contextual fear conditioning. J Neurosci 27(40):10870–10877. doi: 10.1523/JNEUROSCI.3242-07.2007 PubMedCrossRefGoogle Scholar
  31. 31.
    Dineley KT (2007) Beta-amyloid peptide—nicotinic acetylcholine receptor interaction: the two faces of health and disease. Front Biosci 12:5030–5038PubMedCrossRefGoogle Scholar
  32. 32.
    Dougherty JJ, Wu J, Nichols RA (2003) Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. J Neurosci 23(17):6740–6747PubMedGoogle Scholar
  33. 33.
    Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2(12):1098–1105. doi: 10.1038/16026 PubMedCrossRefGoogle Scholar
  34. 34.
    Fayuk D, Yakel JL (2004) Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons. Mol Pharmacol 66(3):658–666. doi: 10.1124/mol.104.000042 PubMedCrossRefGoogle Scholar
  35. 35.
    Fayuk D, Yakel JL (2005) Ca2+ permeability of nicotinic acetylcholine receptors in rat hippocampal CA1 interneurones. J Physiol 566(Pt 3):759–768. doi: 10.1113/jphysiol.2005.089789 PubMedCrossRefGoogle Scholar
  36. 36.
    Fayuk D, Yakel JL (2007) Dendritic Ca2+ signalling due to activation of alpha 7-containing nicotinic acetylcholine receptors in rat hippocampal neurons. J Physiol 582(Pt 2):597–611. doi: 10.1113/jphysiol.2007.135319 PubMedCrossRefGoogle Scholar
  37. 37.
    Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27(1):45–56PubMedCrossRefGoogle Scholar
  38. 38.
    Fischer Y, Gahwiler BH, Thompson SM (1999) Activation of intrinsic hippocampal theta oscillations by acetylcholine in rat septo-hippocampal cocultures. J Physiol 519(Pt 2):405–413PubMedCrossRefGoogle Scholar
  39. 39.
    Fodale V, Quattrone D, Trecroci C, Caminiti V, Santamaria LB (2006) Alzheimer’s disease and anaesthesia: implications for the central cholinergic system. Br J Anaesth 97(4):445–452. doi: 10.1093/bja/ael233 PubMedCrossRefGoogle Scholar
  40. 40.
    Frotscher M, Drakew A, Heimrich B (2000) Role of afferent innervation and neuronal activity in dendritic development and spine maturation of fascia dentata granule cells. Cereb Cortex 10(10):946–951PubMedCrossRefGoogle Scholar
  41. 41.
    Frotscher M, Leranth C (1985) Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J Comp Neurol 239(2):237–246. doi: 10.1002/cne.902390210 PubMedCrossRefGoogle Scholar
  42. 42.
    Fu W, Jhamandas JH (2003) Beta-amyloid peptide activates non-alpha7 nicotinic acetylcholine receptors in rat basal forebrain neurons. J Neurophysiol 90(5):3130–3136. doi: 10.1152/jn.00616.2003 PubMedCrossRefGoogle Scholar
  43. 43.
    Fucile S (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35(1):1–8PubMedCrossRefGoogle Scholar
  44. 44.
    Fucile S, Sucapane A, Grassi F, Eusebi F, Engel AG (2006) The human adult subtype ACh receptor channel has high Ca2+ permeability and predisposes to endplate Ca2+ overloading. J Physiol 573(Pt 1):35–43. doi: 10.1113/jphysiol.2006.108092 PubMedCrossRefGoogle Scholar
  45. 45.
    Fujii S, Ji Z, Morita N, Sumikawa K (1999) Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Res 846(1):137–143PubMedCrossRefGoogle Scholar
  46. 46.
    Fujii S, Sumikawa K (2001) Nicotine accelerates reversal of long-term potentiation and enhances long-term depression in the rat hippocampal CA1 region. Brain Res 894(2):340–346PubMedCrossRefGoogle Scholar
  47. 47.
    Gahwiler BH, Brown DA (1985) Functional innervation of cultured hippocampal neurones by cholinergic afferents from co-cultured septal explants. Nature 313(6003):577–579PubMedCrossRefGoogle Scholar
  48. 48.
    Gahwiler BH, Hefti F (1984) Guidance of acetylcholinesterase-containing fibres by target tissue in co-cultured brain slices. Neuroscience 13(3):681–689PubMedCrossRefGoogle Scholar
  49. 49.
    Gay EA, Bienstock RJ, Lamb PW, Yakel JL (2007) Structural determinates for apolipoprotein E-derived peptide interaction with the alpha7 nicotinic acetylcholine receptor. Mol Pharmacol 72(4):838–849. doi: 10.1124/mol.107.035527 PubMedCrossRefGoogle Scholar
  50. 50.
    Gay EA, Giniatullin R, Skorinkin A, Yakel JL (2008) Aromatic residues at position 55 of rat alpha7 nicotinic acetylcholine receptors are critical for maintaining rapid desensitization. J Physiol 586(4):1105–1115. doi: 10.1113/jphysiol.2007.149492 PubMedCrossRefGoogle Scholar
  51. 51.
    Gay EA, Yakel JL (2007) Gating of nicotinic ACh receptors; new insights into structural transitions triggered by agonist binding that induce channel opening. J Physiol 584(Pt 3):727–733. doi: 10.1113/jphysiol.2007.142554 PubMedCrossRefGoogle Scholar
  52. 52.
    Ge S, Dani JA (2005) Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. J Neurosci 25(26):6084–6091. doi: 10.1523/JNEUROSCI.0542-05.2005 PubMedCrossRefGoogle Scholar
  53. 53.
    Giniatullin R, Nistri A, Yakel JL (2005) Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci 28(7):371–378. doi: 10.1016/j.tins.2005.04.009 PubMedCrossRefGoogle Scholar
  54. 54.
    Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141(1):154–165. doi: 10.1016/j.cell.2010.02.037 PubMedCrossRefGoogle Scholar
  55. 55.
    Grassi F, Palma E, Tonini R, Amici M, Ballivet M, Eusebi F (2003) Amyloid beta(1–42) peptide alters the gating of human and mouse alpha-bungarotoxin-sensitive nicotinic receptors. J Physiol 547(Pt 1):147–157. doi: 10.1113/jphysiol.2002.035436 PubMedCrossRefGoogle Scholar
  56. 56.
    Gu Z, Lamb PW, Yakel JL (2012) Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. J Neurosci 32(36):12337–12348. doi: 10.1523/JNEUROSCI.2129-12.2012 PubMedCrossRefGoogle Scholar
  57. 57.
    Gu Z, Yakel JL (2011) Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 71(1):155–165. doi: 10.1016/j.neuron.2011.04.026 PubMedCrossRefGoogle Scholar
  58. 58.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112. doi: 10.1038/nrm2101 PubMedCrossRefGoogle Scholar
  59. 59.
    Hasselmo ME (1999) Neuromodulation and the hippocampus: memory function and dysfunction in a network simulation. Prog Brain Res 121:3–18PubMedCrossRefGoogle Scholar
  60. 60.
    Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52(5):831–843. doi: 10.1016/j.neuron.2006.10.035 PubMedCrossRefGoogle Scholar
  61. 61.
    Hu M, Liu QS, Chang KT, Berg DK (2002) Nicotinic regulation of CREB activation in hippocampal neurons by glutamatergic and nonglutamatergic pathways. Mol Cell Neurosci 21(4):616–625PubMedCrossRefGoogle Scholar
  62. 62.
    Hurst R, Rollema H, Bertrand D (2012) Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. doi: 10.1016/j.pharmthera.2012.08.012
  63. 63.
    Izquierdo I, Cammarota M, Da Silva WC, Bevilaqua LR, Rossato JI, Bonini JS, Mello P, Benetti F, Costa JC, Medina JH (2008) The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks. An Acad Bras Cienc 80(1):115–127PubMedCrossRefGoogle Scholar
  64. 64.
    Jadey S, Auerbach A (2012) An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors. J Gen Physiol 140(1):17–28. doi: 10.1085/jgp.201210801 PubMedCrossRefGoogle Scholar
  65. 65.
    Ji D, Lape R, Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31(1):131–141PubMedCrossRefGoogle Scholar
  66. 66.
    Johnstone TB, Gu Z, Yoshimura RF, Villegier AS, Hogenkamp DJ, Whittemore ER, Huang JC, Tran MB, Belluzzi JD, Yakel JL, Gee KW (2011) Allosteric modulation of related ligand-gated ion channels synergistically induces long-term potentiation in the hippocampus and enhances cognition. J Pharmacol Exp Ther 336(3):908–915. doi: 10.1124/jpet.110.176255 PubMedCrossRefGoogle Scholar
  67. 67.
    Jones S, Sudweeks S, Yakel JL (1999) Nicotinic receptors in the brain: correlating physiology with function. Trends Neurosci 22(12):555–561PubMedCrossRefGoogle Scholar
  68. 68.
    Jones S, Yakel JL (1997) Functional nicotinic ACh receptors on interneurones in the rat hippocampus. J Physiol 504(Pt 3):603–610PubMedCrossRefGoogle Scholar
  69. 69.
    Jonnala RR, Buccafusco JJ (2001) Relationship between the increased cell surface alpha7 nicotinic receptor expression and neuroprotection induced by several nicotinic receptor agonists. J Neurosci Res 66(4):565–572PubMedCrossRefGoogle Scholar
  70. 70.
    Khiroug L, Giniatullin R, Klein RC, Fayuk D, Yakel JL (2003) Functional mapping and Ca2+ regulation of nicotinic acetylcholine receptor channels in rat hippocampal CA1 neurons. J Neurosci 23(27):9024–9031PubMedGoogle Scholar
  71. 71.
    Khiroug SS, Harkness PC, Lamb PW, Sudweeks SN, Khiroug L, Millar NS, Yakel JL (2002) Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. J Physiol 540(Pt 2):425–434PubMedCrossRefGoogle Scholar
  72. 72.
    Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T, Akaike A (2001) Alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem 276(17):13541–13546. doi: 10.1074/jbc.M008035200 PubMedGoogle Scholar
  73. 73.
    Kihara T, Shimohama S, Sawada H, Kimura J, Kume T, Kochiyama H, Maeda T, Akaike A (1997) Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol 42(2):159–163. doi: 10.1002/ana.410420205 PubMedCrossRefGoogle Scholar
  74. 74.
    Lamb PW, Melton MA, Yakel JL (2005) Inhibition of neuronal nicotinic acetylcholine receptor channels expressed in Xenopus oocytes by beta-amyloid1-42 peptide. J Mol Neurosci 27(1):13–21. doi: 10.1385/JMN:27:1:013 PubMedCrossRefGoogle Scholar
  75. 75.
    Lawrence JJ, Grinspan ZM, Statland JM, McBain CJ (2006) Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability. J Physiol 571(Pt 3):555–562. doi: 10.1113/jphysiol.2005.103218 PubMedCrossRefGoogle Scholar
  76. 76.
    Lawrence JJ, Statland JM, Grinspan ZM, McBain CJ (2006) Cell type-specific dependence of muscarinic signalling in mouse hippocampal stratum oriens interneurones. J Physiol 570(Pt 3):595–610. doi: 10.1113/jphysiol.2005.100875 PubMedGoogle Scholar
  77. 77.
    Leung LS, Shen B, Rajakumar N, Ma J (2003) Cholinergic activity enhances hippocampal long-term potentiation in CA1 during walking in rats. J Neurosci 23(28):9297–9304PubMedGoogle Scholar
  78. 78.
    Levin ED (2002) Nicotinic receptor subtypes and cognitive function. J Neurobiol 53(4):633–640. doi: 10.1002/neu.10151 PubMedCrossRefGoogle Scholar
  79. 79.
    Levin ED, Petro A, Rezvani AH, Pollard N, Christopher NC, Strauss M, Avery J, Nicholson J, Rose JE (2009) Nicotinic alpha7- or beta2-containing receptor knockout: effects on radial-arm maze learning and long-term nicotine consumption in mice. Behav Brain Res 196(2):207–213. doi: 10.1016/j.bbr.2008.08.048 PubMedCrossRefGoogle Scholar
  80. 80.
    Li SX, Huang S, Bren N, Noridomi K, Dellisanti CD, Sine SM, Chen L (2011) Ligand-binding domain of an alpha7-nicotinic receptor chimera and its complex with agonist. Nat Neurosci 14(10):1253–1259. doi: 10.1038/nn.2908 PubMedCrossRefGoogle Scholar
  81. 81.
    Liu Q, Huang Y, Xue F, Simard A, DeChon J, Li G, Zhang J, Lucero L, Wang M, Sierks M, Hu G, Chang Y, Lukas RJ, Wu J (2009) A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. J Neurosci 29(4):918–929PubMedCrossRefGoogle Scholar
  82. 82.
    Liu Z, Neff RA, Berg DK (2006) Sequential interplay of nicotinic and GABAergic signaling guides neuronal development. Science 314(5805):1610–1613. doi: 10.1126/science.1134246 PubMedCrossRefGoogle Scholar
  83. 83.
    Lozada AF, Wang X, Gounko NV, Massey KA, Duan J, Liu Z, Berg DK (2012) Glutamatergic synapse formation is promoted by alpha7-containing nicotinic acetylcholine receptors. J Neurosci 32(22):7651–7661. doi: 10.1523/JNEUROSCI.6246-11.2012 PubMedCrossRefGoogle Scholar
  84. 84.
    Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155(3):853–862PubMedCrossRefGoogle Scholar
  85. 85.
    Lukas RJ, Lucero L, Buisson B, Galzi JL, Puchacz E, Fryer JD, Changeux JP, Bertrand D (2001) Neurotoxicity of channel mutations in heterologously expressed alpha7-nicotinic acetylcholine receptors. Eur J Neurosci 13(10):1849–1860PubMedCrossRefGoogle Scholar
  86. 86.
    Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297):209–213PubMedCrossRefGoogle Scholar
  87. 87.
    Mann EO, Greenfield SA (2003) Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. J Physiol 551(Pt 2):539–550. doi: 10.1113/jphysiol.2003.045492 PubMedCrossRefGoogle Scholar
  88. 88.
    Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215PubMedCrossRefGoogle Scholar
  89. 89.
    Maylie J, Adelman JP (2010) Cholinergic signaling through synaptic SK channels: it’s a protein kinase but which one? Neuron 68(5):809–811. doi: 10.1016/j.neuron.2010.11.037 PubMedCrossRefGoogle Scholar
  90. 90.
    McCormack TJ, Melis C, Colon J, Gay EA, Mike A, Karoly R, Lamb PW, Molteni C, Yakel JL (2010) Rapid desensitization of the rat alpha7 nAChR is facilitated by the presence of a proline residue in the outer beta-sheet. J Physiol 588(Pt 22):4415–4429. doi: 10.1113/jphysiol.2010.195495 PubMedCrossRefGoogle Scholar
  91. 91.
    McCormack T, Petrovich RM, Mercier KA, DeRose EF, Cuneo MJ, Williams J, Johnson KL, Lamb PW, London RE, Yakel JL (2010) Identification and functional characterization of a novel acetylcholine-binding protein from the marine annelid Capitella teleta. Biochemistry 49(10):2279–2287. doi: 10.1021/bi902023y PubMedCrossRefGoogle Scholar
  92. 92.
    McGehee DS (2002) Nicotinic receptors and hippocampal synaptic plasticity … it’s all in the timing. Trends Neurosci 25(4):171–172PubMedCrossRefGoogle Scholar
  93. 93.
    McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46(6):860–866PubMedCrossRefGoogle Scholar
  94. 94.
    McQuiston AR, Madison DV (1999) Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci 19(8):2887–2896PubMedGoogle Scholar
  95. 95.
    Murray TA, Bertrand D, Papke RL, George AA, Pantoja R, Srinivasan R, Liu Q, Wu J, Whiteaker P, Lester HA, Lukas RJ (2012) Alpha7beta2 nicotinic acetylcholine receptors assemble, function, and are activated primarily via their alpha7–alpha7 interfaces. Mol Pharmacol 81(2):175–188. doi: 10.1124/mol.111.074088 PubMedCrossRefGoogle Scholar
  96. 96.
    Ng HJ, Whittemore ER, Tran MB, Hogenkamp DJ, Broide RS, Johnstone TB, Zheng L, Stevens KE, Gee KW (2007) Nootropic alpha7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators. Proc Natl Acad Sci U S A 104(19):8059–8064. doi: 10.1073/pnas.0701321104 PubMedCrossRefGoogle Scholar
  97. 97.
    Ovsepian SV, Anwyl R, Rowan MJ (2004) Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: in vivo study. Eur J Neurosci 20(5):1267–1275. doi: 10.1111/j.1460-9568.2004.03582.x PubMedCrossRefGoogle Scholar
  98. 98.
    Parri HR, Hernandez CM, Dineley KT (2011) Research update: alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol 82(8):931–942. doi: 10.1016/j.bcp.2011.06.039 PubMedCrossRefGoogle Scholar
  99. 99.
    Pettit DL, Shao Z, Yakel JL (2001) Beta-amyloid(1–42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J Neurosci 21(1):RC120PubMedGoogle Scholar
  100. 100.
    Reis HJ, Guatimosim C, Paquet M, Santos M, Ribeiro FM, Kummer A, Schenatto G, Salgado JV, Vieira LB, Teixeira AL, Palotas A (2009) Neuro-transmitters in the central nervous system & their implication in learning and memory processes. Curr Med Chem 16(7):796–840PubMedCrossRefGoogle Scholar
  101. 101.
    Rimvall K, Keller F, Waser PG (1985) Development of cholinergic projections in organotypic cultures of rat septum, hippocampus and cerebellum. Brain Res 351(2):267–278PubMedGoogle Scholar
  102. 102.
    Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsaki G (2012) Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci 15(5):769–775. doi: 10.1038/nn.3077 PubMedCrossRefGoogle Scholar
  103. 103.
    Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443. doi: 10.1146/annurev.ne.16.030193.002155 PubMedCrossRefGoogle Scholar
  104. 104.
    Seeger T, Fedorova I, Zheng F, Miyakawa T, Koustova E, Gomeza J, Basile AS, Alzheimer C, Wess J (2004) M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci 24(45):10117–10127. doi: 10.1523/JNEUROSCI.3581-04.2004 PubMedCrossRefGoogle Scholar
  105. 105.
    Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13(2):596–604PubMedGoogle Scholar
  106. 106.
    Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791. doi: 10.1126/science.1074069 PubMedCrossRefGoogle Scholar
  107. 107.
    Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A 98(7):4148–4153. doi: 10.1073/pnas.071540198 PubMedCrossRefGoogle Scholar
  108. 108.
    Sharma G, Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38(6):929–939PubMedCrossRefGoogle Scholar
  109. 109.
    Shen JX, Yakel JL (2009) Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol Sin 30(6):673–680. doi: 10.1038/aps.2009.64 PubMedCrossRefGoogle Scholar
  110. 110.
    Shen JX, Yakel JL (2012) Functional alpha7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slices. J Mol Neurosci 48(1):14–21. doi: 10.1007/s12031-012-9719-3 PubMedCrossRefGoogle Scholar
  111. 111.
    Shimohama S, Kihara T (2001) Nicotinic receptor-mediated protection against beta-amyloid neurotoxicity. Biol Psychiatry 49(3):233–239PubMedCrossRefGoogle Scholar
  112. 112.
    Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89(2):337–343. doi: 10.1046/j.1471-4159.2004.02347.x PubMedCrossRefGoogle Scholar
  113. 113.
    Silberberg G, Wu C, Markram H (2004) Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit. J Physiol 556(Pt 1):19–27. doi: 10.1113/jphysiol.2004.060962 PubMedGoogle Scholar
  114. 114.
    Stevens TR, Krueger SR, Fitzsimonds RM, Picciotto MR (2003) Neuroprotection by nicotine in mouse primary cortical cultures involves activation of calcineurin and L-type calcium channel inactivation. J Neurosci 23(31):10093–10099PubMedGoogle Scholar
  115. 115.
    Stokes C, Papke JK, Horenstein NA, Kem WR, McCormack TJ, Papke RL (2004) The structural basis for GTS-21 selectivity between human and rat nicotinic alpha7 receptors. Mol Pharmacol 66(1):14–24. doi: 10.1124/mol.66.1.14 PubMedCrossRefGoogle Scholar
  116. 116.
    Sudweeks SN, Yakel JL (2000) Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. J Physiol 527(Pt 3):515–528PubMedCrossRefGoogle Scholar
  117. 117.
    Svensson AL, Nordberg A (1999) Beta-estradiol attenuate amyloid beta-peptide toxicity via nicotinic receptors. Neuroreport 10(17):3485–3489PubMedCrossRefGoogle Scholar
  118. 118.
    Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306(3):821–827. doi: 10.1124/jpet.102.041616 PubMedCrossRefGoogle Scholar
  119. 119.
    Thomsen MS, Mikkelsen JD (2012) Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of alpha7 nicotinic acetylcholine receptors. J Neurochem 123(1):73–83. doi: 10.1111/j.1471-4159.2012.07876.x PubMedCrossRefGoogle Scholar
  120. 120.
    Tian L, Akerboom J, Schreiter ER, Looger LL (2012) Neural activity imaging with genetically encoded calcium indicators. Prog Brain Res 196:79–94. doi: 10.1016/B978-0-444-59426-6.00005-7 PubMedCrossRefGoogle Scholar
  121. 121.
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881. doi: 10.1038/nmeth.1398 PubMedCrossRefGoogle Scholar
  122. 122.
    Tu B, Gu Z, Shen JX, Lamb PW, Yakel JL (2009) Characterization of a nicotine-sensitive neuronal population in rat entorhinal cortex. J Neurosci 29(33):10436–10448. doi: 10.1523/JNEUROSCI.2580-09.2009 PubMedCrossRefGoogle Scholar
  123. 123.
    Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA (1989) Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3(2):154–171. doi: 10.1002/syn.890030207 PubMedCrossRefGoogle Scholar
  124. 124.
    Tyagi E, Agrawal R, Nath C, Shukla R (2010) Inhibitory role of cholinergic system mediated via alpha7 nicotinic acetylcholine receptor in LPS-induced neuro-inflammation. Innate Immun 16(1):3–13. doi: 10.1177/1753425909104680 PubMedCrossRefGoogle Scholar
  125. 125.
    Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J Mol Biol 346(4):967–989. doi: 10.1016/j.jmb.2004.12.031 PubMedCrossRefGoogle Scholar
  126. 126.
    Velez-Fort M, Audinat E, Angulo MC (2009) Functional alpha 7-containing nicotinic receptors of NG2-expressing cells in the hippocampus. Glia 57(10):1104–1114. doi: 10.1002/glia.20834 PubMedCrossRefGoogle Scholar
  127. 127.
    Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284(2):314–335. doi: 10.1002/cne.902840212 PubMedCrossRefGoogle Scholar
  128. 128.
    Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388. doi: 10.1038/nature01339 PubMedCrossRefGoogle Scholar
  129. 129.
    Welsby P, Rowan M, Anwyl R (2006) Nicotinic receptor-mediated enhancement of long-term potentiation involves activation of metabotropic glutamate receptors and ryanodine-sensitive calcium stores in the dentate gyrus. Eur J Neurosci 24(11):3109–3118. doi: 10.1111/j.1460-9568.2006.05187.x PubMedCrossRefGoogle Scholar
  130. 130.
    Welsby PJ, Rowan MJ, Anwyl R (2007) Beta-amyloid blocks high frequency stimulation induced LTP but not nicotine enhanced LTP. Neuropharmacology 53(1):188–195. doi: 10.1016/j.neuropharm.2007.05.013 PubMedCrossRefGoogle Scholar
  131. 131.
    Widmer H, Ferrigan L, Davies CH, Cobb SR (2006) Evoked slow muscarinic acetylcholinergic synaptic potentials in rat hippocampal interneurons. Hippocampus 16(7):617–628. doi: 10.1002/hipo.20191 PubMedCrossRefGoogle Scholar
  132. 132.
    Wu J, Kuo YP, George AA, Xu L, Hu J, Lukas RJ (2004) beta-Amyloid directly inhibits human alpha4beta2-nicotinic acetylcholine receptors heterologously expressed in human SH-EP1 cells. J Biol Chem 279(36):37842–37851. doi: 10.1074/jbc.M400335200 PubMedCrossRefGoogle Scholar
  133. 133.
    Young GT, Zwart R, Walker AS, Sher E, Millar NS (2008) Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci U S A 105(38):14686–14691. doi: 10.1073/pnas.0804372105 PubMedCrossRefGoogle Scholar
  134. 134.
    Zhang X, Liu C, Miao H, Gong ZH, Nordberg A (1998) Postnatal changes of nicotinic acetylcholine receptor alpha 2, alpha 3, alpha 4, alpha 7 and beta 2 subunits genes expression in rat brain. Int J Dev Neurosci 16(6):507–518PubMedCrossRefGoogle Scholar
  135. 135.
    Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395(6697):37–44. doi: 10.1038/25665 PubMedCrossRefGoogle Scholar
  136. 136.
    Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333(6051):1888–1891. doi: 10.1126/science.1208592 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  1. 1.Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of HealthDepartment of Health and Human ServicesResearch Triangle ParkUSA

Personalised recommendations