Pflügers Archiv - European Journal of Physiology

, Volume 465, Issue 2, pp 271–281 | Cite as

E2f1-deficient NOD/SCID mice have dry mouth due to a change of acinar/duct structure and the down-regulation of AQP5 in the salivary gland

  • Keitaro Satoh
  • Takanori Narita
  • Miwako Matsuki-Fukushima
  • Ken Okabayashi
  • Tatsuro Ito
  • Hidenobu Senpuku
  • Hiroshi Sugiya
Molecular and Cellular Mechanisms of Disease

Abstract

Non-obese diabetic (NOD) mice have been used as a model for dry mouth. NOD mice lacking the gene encoding E2f1, a transcription factor, develop hyposalivation more rapidly progressively than control NOD mice. However, the model mice are associated with an underlying disease such as diabetes. We have now established E2f1-deficient NOD/severe combined immunodeficiency disease (NOD/SCID.E2f1−/−) mice to avoid the development of diabetes (Matsui-Inohara et al., Exp Biol Med (Maywood) 234(12):1525–1536, 2009). In this study, we investigated the pathophysiological features of dry mouth using NOD/SCID.E2f1−/− mice. In NOD/SCID.E2f1−/− mice, the volume of secreted saliva stimulated with pilocarpine is about one third that of control NOD/SCID mice. In behavioral analysis, NOD/SCID.E2f1−/− mice drank plenty of water when they ate dry food, and the frequency and time of water intake were almost double compared with control NOD/SCID mice. Histological analysis of submandibular glands with hematoxylin–eosin stain revealed that NOD/SCID.E2f1−/− mice have more ducts than NOD/SCID mice. In western blot analysis, the expression of aquaporin 5 (AQP5), a marker of acinar cells, in parotid and in submandibular glands of NOD/SCID.E2f1−/− mice was lower than in NOD/SCID mice. Immunohistochemical analysis of parotid and submandibular acini revealed that the localization of AQP5 in NOD/SCID.E2f1−/− mice differs from that in NOD/SCID mice; AQP5 was leaky and diffusively localized from the apical membrane to the cytosol in NOD/SCID.E2f1−/− mice. The ubiquitination of AQP5 was detected in submandibular glands of NOD/SCID.E2f1−/− mice. These findings suggest that the change of acinar/duct structure and the down-regulation of AQP5 in the salivary gland cause the pathogenesis of hyposalivation in NOD/SCID.E2f1−/− mice.

Keywords

Salivary glands AQP5 protein Down-regulation Dry mouth Ubiquitin Disease model 

Abbreviations

AQP5

Aquaporin 5

NOD

Non-obese diabetic

SCID

Severe combined immunodeficiency disease

SS

Sjögren’s syndrome

BSA

Bovine serum albumin

RT-PCR

Reverse transcription/polymerase chain reaction

GAPDH

Glyceraldehyde-3-phosphate dehydrogenase

B2M

β2 microglobulin

HPRT

Hypoxanthine phosphoribosyl transferase

SDS

Sodium dodecyl sulfate

PAGE

Polyacrylamide gel electrophoresis

IP

Immunoprecipitation

WB

Western blot analysis

Ub-AQP5

Ubiquitinated-AQP5

Supplementary material

424_2012_1183_MOESM1_ESM.pdf (651 kb)
ESM 1(PDF 651 kb)
424_2012_1183_MOESM2_ESM.pdf (325 kb)
ESM 2(PDF 324 kb)
ESM 3

(MPG 7696 kb)

424_2012_1183_MOESM4_ESM.pdf (1.1 mb)
ESM 4(PDF 1119 kb)
424_2012_1183_MOESM5_ESM.pdf (1.1 mb)
ESM 5(PDF 1116 kb)

References

  1. 1.
    Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542(Pt 1):3–16PubMedCrossRefGoogle Scholar
  2. 2.
    Akamatsu T, Azlina A, Purwanti N, Karabasil MR, Hasegawa T, Yao C, Hosoi K (2009) Inhibition and transcriptional silencing of a subtilisin-like proprotein convertase, PACE4/SPC4, reduces the branching morphogenesis of and AQP5expression in rat embryonic submandibular gland. Dev Biol 325(2):434–443PubMedCrossRefGoogle Scholar
  3. 3.
    Annicotte JS, Blanchet E, Chavey C, Iankova I, Costes S, Assou S, Teyssier J, Dalle S, Sardet C, Fajas L (2009) The CDK4–pRB–E2F1 pathway controls insulin secretion. Nat Cell Biol 11(8):1017–1023PubMedCrossRefGoogle Scholar
  4. 4.
    Blazsek J, Varga G (1999) Secretion from minor salivary glands following ablation of the major salivary glands in rats. Arch Oral Biol 44:S45–S48PubMedCrossRefGoogle Scholar
  5. 5.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. 6.
    Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33(3):275–286PubMedCrossRefGoogle Scholar
  7. 7.
    Dibas A, Yang MH, He S, Bobich J, Yorio T (2008) Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Mol Vis 14:1770–1783PubMedGoogle Scholar
  8. 8.
    Entesarian M, Matsson H, Klar J, Bergendal B, Olson L, Arakaki R, Hayashi Y, Ohuchi H, Falahat B, Bolstad AI, Jonsson R, Wahren-Herlenius M, Dahl N (2005) Mutations in the gene encoding fibroblast growth factor 10 are associated with aplasia of lacrimal and salivary glands. Nat Genet 37(2):125–127PubMedCrossRefGoogle Scholar
  9. 9.
    Epstein AN, Spector D, Samman A, Goldblum C (1964) Exaggerated prandial drinking in the rat without salivary glands. Nature 201:1342–1343PubMedCrossRefGoogle Scholar
  10. 10.
    Fox RI, Stern M, Michelson P (2000) Update in Sjögren syndrome. Curr Opin Rheumatol 12(5):391–398PubMedCrossRefGoogle Scholar
  11. 11.
    Gresz V, Kwon TH, Gong H, Agre P, Steward MC, King LS, Nielsen S (2004) Immunolocalization of AQP-5 in rat parotid and submandibular salivary glands after stimulation or inhibition of secretion in vivo. Am J Physiol Gastrointest Liver Physiol 287(1):G151–G161PubMedCrossRefGoogle Scholar
  12. 12.
    Hamada A, Inenaga K, Nakamura S, Terashita M, Yamashita H (2000) Disorder of salivary secretion in inbred polydipsic mouse. Am J Physiol Regul Integr Comp Physiol 278(4):R817–R823PubMedGoogle Scholar
  13. 13.
    Helin K, Lees JA, Vidal M, Dyson N, Harlow E, Fattaey A (1992) A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70(2):337–350PubMedCrossRefGoogle Scholar
  14. 14.
    Henson BS, Inglehart MR, Eisbruch A, Ship JA (2001) Preserved salivary output and xerostomia-related quality of life in head and neck cancer patients receiving parotid-sparing radiotherapy. Oral Oncol 37(1):84–93PubMedCrossRefGoogle Scholar
  15. 15.
    Hu Y, Nakagawa Y, Purushotham KR, Humphreys-Beher MG (1992) Functional changes in salivary glands of autoimmune disease-prone NOD mice. Am J Physiol 263(4 Pt 1):E607–E614PubMedGoogle Scholar
  16. 16.
    Iglesias A, Murge M, Laresgoiti U, Skoudy A, Bernales I, Fullaondo A, Moreno B, Lloreta J, Field SJ, Real FX, Zubiaga AM (2004) Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice. J Clin Invest 113(10):1398–1407PubMedGoogle Scholar
  17. 17.
    Jaskoll T, Abichaker G, Witcher D, Sala FG, Bellusci S, Hajihosseini MK, Melnick M (2005) FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC Dev Biol 5:11. doi:10.1186/1471-213X-5-11 PubMedCrossRefGoogle Scholar
  18. 18.
    Kaelin WG Jr, Krek W, Sellers WR, DeCaprio JA, Ajchenbaum F, Fuchs CS, Chittenden T, Li Y, Farnham PJ, Blanar MA, Livingston DM, Flemington EK (1992) Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70(2):351–364PubMedCrossRefGoogle Scholar
  19. 19.
    Karabasil MR, Hasegawa T, Azlina A, Purwanti N, Yao C, Akamatsu T, Tomioka S, Hosoi K (2011) Effects of naturally occurring G103D point mutation of AQP5 on its water permeability, trafficking and cellular localization in the submandibular gland of rats. Biol Cell 103(2):69–86PubMedCrossRefGoogle Scholar
  20. 20.
    King LS, Agre P (1996) Pathophysiology of the aquaporin water channels. Annu Rev Physiol 58:619–648PubMedCrossRefGoogle Scholar
  21. 21.
    Konttinen YT, Tensing EK, Laine M, Porola P, Törnwall J, Hukkanen M (2005) Abnormal distribution of aquaporin-5 in salivary glands in the NOD mouse model for Sjögren's syndrome. J Rheumatol 32(6):1071–1075PubMedGoogle Scholar
  22. 22.
    La Thangue NB (1994) DRTF1/E2F: an expanding family of heterodimeric transcription factors implicated in cell-cycle control. Trends Biochem Sci 19(3):108–114PubMedCrossRefGoogle Scholar
  23. 23.
    Leitch V, Agre P, King LS (2001) Altered ubiquitination and stability of aquaporin-1 in hypertonic stress. Proc Natl Acad Sci U S A 98(5):2894–2898PubMedCrossRefGoogle Scholar
  24. 24.
    Leiter EH, Prochazka M, Coleman DL (1987) The non-obese diabetic (NOD) mouse. Am J Pathol 128(2):380–383PubMedGoogle Scholar
  25. 25.
    Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1999) Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 274(29):20071–20074PubMedCrossRefGoogle Scholar
  26. 26.
    Matsui-Inohara H, Uematsu H, Narita T, Satoh K, Yonezawa H, Kuroda K, Ito T, Yoneda S, Kawarai T, Sugiya H, Watanabe H, Senpuku H (2009) E2F-1-deficient NOD/SCID mice developed showing decreased saliva production. Exp Biol Med (Maywood) 234(12):1525–1536CrossRefGoogle Scholar
  27. 27.
    Matsuki M, Hashimoto S, Shimono M, Murakami M, Fujita-Yoshigaki J, Furuyama S, Sugiya H (2005) Involvement of aquaporin-5 water channel in osmoregulation in parotid secretory granules. J Membr Biol 203(3):119–126PubMedCrossRefGoogle Scholar
  28. 28.
    Matsumoto N, Salam MA, Watanabe H, Amagasa T, Senpuku H (2004) Role of gene E2f1 in susceptibility to bacterial adherence of oral streptococci to tooth surfaces in mice. Oral Microbiol Immunol 19(4):270–276PubMedCrossRefGoogle Scholar
  29. 29.
    Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Takata K (1999) Aquaporin-5 (AQP5), a water channel protein, in the rat salivary and lacrimal glands: immunolocalization and effect of secretory stimulation. Cell Tissue Res 295(3):513–521PubMedCrossRefGoogle Scholar
  30. 30.
    Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, DeRose M, Simonet WS (1998) Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 12(20):3156–3161PubMedCrossRefGoogle Scholar
  31. 31.
    Murdiastuti K, Purwanti N, Karabasil MR, Li X, Yao C, Akamatsu T, Kanamori N, Hosoi K (2006) A naturally occurring point mutation in the rat aquaporin 5 gene, influencing its protein production by and secretion of water from salivary glands. Am J Physiol Gastrointest Liver Physiol 291(6):G1081–G1088PubMedCrossRefGoogle Scholar
  32. 32.
    Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K (2004) M(3) muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol 558(Pt 2):561–575PubMedCrossRefGoogle Scholar
  33. 33.
    Nandigama R, Bonitz M, Papadakis T, Schwantes U, Bschleipfer T, Kummer W (2010) Muscarinic acetylcholine receptor subtypes expressed by mouse bladder afferent neurons. Neuroscience 168(3):842–850PubMedCrossRefGoogle Scholar
  34. 34.
    Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258(5081):424–429PubMedCrossRefGoogle Scholar
  35. 35.
    Ohashi Y, Ishida R, Kojima T, Goto E, Matsumoto Y, Watanabe K, Ishida N, Nakata K, Takeuchi T, Tsubota K (2003) Abnormal protein profiles in tears with dry eye syndrome. Am J Ophthalmol 136(2):291–299PubMedCrossRefGoogle Scholar
  36. 36.
    Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277(3):643–649PubMedCrossRefGoogle Scholar
  37. 37.
    Quissell DO, Watson E, Dowd FJ (1992) Signal transduction mechanisms involved in salivary gland regulated exocytosis. Crit Rev Oral Biol Med 3(1–2):83–107PubMedGoogle Scholar
  38. 38.
    Robinson CP, Yamamoto H, Peck AB, Humphreys-Beher MG (1996) Genetically programmed development of salivary gland abnormalities in the NOD (nonobese diabetic)-scid mouse in the absence of detectable lymphocytic infiltration: a potential trigger for sialoadenitis of NOD mice. Clin Immunol Immunopathol 79(1):50–59PubMedCrossRefGoogle Scholar
  39. 39.
    Salam MA, Matin K, Matsumoto N, Tsuha Y, Hanada N, Senpuku H (2004) E2f1 mutation induces early onset of diabetes and Sjögren's syndrome in nonobese diabetic mice. J Immunol 173(8):4908–4918PubMedGoogle Scholar
  40. 40.
    Satoh K, Seo Y, Matsuo S, Karabasil MR, Matsuki-Fukushima M, Nakahari T, Hosoi K (2012) Roles of AQP5/AQP5-G103D in carbamylcholine-induced volume decrease and in reduction of the activation energy for water transport by rat parotid acinar cells. Pflügers Arch 464(4):375–389. doi:10.1007/s00424-012-1141-8 PubMedCrossRefGoogle Scholar
  41. 41.
    Schein OD, Hochberg MC, Muñoz B, Tielsch JM, Bandeen-Roche K, Provost T, Anhalt GJ, West S (1999) Dry eye and dry mouth in the elderly: a population-based assessment. Arch Intern Med 159(12):1359–1363PubMedCrossRefGoogle Scholar
  42. 42.
    Senpuku H (2010) Model mouse designed for oral biofilm formation studies. Int J Oral-Med Sci 8(3):125–131CrossRefGoogle Scholar
  43. 43.
    Shan B, Lee WH (1994) Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol 14(12):8166–8173PubMedGoogle Scholar
  44. 44.
    Ship JA, Pillemer SR, Baum BJ (2002) Xerostomia and the geriatric patient. J Am Geriatr Soc 50(3):535–543PubMedCrossRefGoogle Scholar
  45. 45.
    Soyfoo MS, De Vriese C, Debaix H, Martin-Martinez MD, Mathieu C, Devuyst O, Steinfeld SD, Delporte C (2007) Modified aquaporin 5 expression and distribution in submandibular glands from NOD mice displaying autoimmune exocrinopathy. Arthritis Rheum 56(8):2566–2574PubMedCrossRefGoogle Scholar
  46. 46.
    Steinfeld S, Cogan E, King LS, Agre P, Kiss R, Delporte C (2001) Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjögren's syndrome patients. Lab Investig 81(2):143–148PubMedCrossRefGoogle Scholar
  47. 47.
    Tashiro E, Minato Y, Maruki H, Asagiri M, Imoto M (2003) Regulation of FGF receptor-2 expression by transcription factor E2F-1. Oncogene 22(36):5630–5635PubMedCrossRefGoogle Scholar
  48. 48.
    Turner RJ, Sugiya H (2002) Understanding salivary fluid and protein secretion. Oral Dis 8(1):3–11PubMedCrossRefGoogle Scholar
  49. 49.
    Yuasa K, Suzue K, Nagahama M, Matsuda Y, Tsuji A (2007) Transcriptional regulation of subtilisin-like proprotein convertase PACE4 by E2F: possible role of E2F-mediated upregulation of PACE4 in tumor progression. Gene 402(1–2):103–110PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Keitaro Satoh
    • 1
  • Takanori Narita
    • 2
  • Miwako Matsuki-Fukushima
    • 3
  • Ken Okabayashi
    • 2
  • Tatsuro Ito
    • 4
    • 5
  • Hidenobu Senpuku
    • 5
  • Hiroshi Sugiya
    • 2
    • 6
  1. 1.Department of Regulatory PhysiologyDokkyo Medical University School of MedicineShimotsuga-gunJapan
  2. 2.Laboratory of Veterinary Biochemistry, College of Bioresource SciencesNihon UniversityKanagawaJapan
  3. 3.Department of PhysiologyNihon University School of Dentistry at MatsudoChibaJapan
  4. 4.Department of Pediatric DentistryNihon University School of Dentistry at MatsudoChibaJapan
  5. 5.Department of BacteriologyNational Institute of Infectious DiseasesTokyoJapan
  6. 6.Oral Health Science Center Project, hrc8Tokyo Dental CollegeChibaJapan

Personalised recommendations