Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 464, Issue 5, pp 535–547 | Cite as

On the different roles of AT1 and AT2 receptors in stretch-induced changes of connexin43 expression and localisation

  • Aida SalamehEmail author
  • Daniel Apel
  • Jorge Gonzalez Casanova
  • Sandy von Salisch
  • Friedrich-Wilhelm Mohr
  • Ingo Daehnert
  • Stefan Dhein
Signaling and Cell Physiology

Abstract

Cyclic mechanical stretch (CMS) and angiotensin II (ATII) play an important role in cardiac remodelling. Thus, we aimed to examine how ATII affects CMS-induced changes in localisation and expression of the gap junction protein connexin43 (Cx43). Neonatal rat cardiomyocytes cultured on gelatin-coated Flexcell cell culture plates were kept static or were exposed to CMS (110 % of resting length, 1 Hz) for 24 h with or without additional ATII (0.1 μmol/L). Moreover, inhibitors of ATII receptors (AT-R) were used (for AT1-R: losartan 0.1 μmol/L, for AT2-R: PD123177 0.1 μmol/L). Thereafter, the cardiomyocytes were investigated by immunohistology, PCR and Western blot. After 24 h of CMS, cardiomyocytes were significantly elongated and orientated 75 ± 1.6° nearly perpendicular to the stretch axis. Furthermore, CMS significantly accentuated Cx43 at the cell poles (ratio Cx43 polar/lateral static: 2.32 ± 0.17; CMS: 10.08 ± 3.2). Additional ATII application significantly reduced Cx43 polarisation (ratio Cx43 polar/lateral ATII: 4.61 ± 0.42). The combined administration of ATII and losartan to CMS further reduced Cx43 polarisation to control levels, whilst the AT2-R blocker PD123177 restored polarisation. Moreover, CMS and ATII application resulted in a significant Cx43 protein and Cx43 mRNA up-regulation which could be blocked by losartan but not by PD123177. Thus, CMS results in a self-organisation of the cardiomyocytes leading to elongated cells orientated transversely towards the stretch axis with enhanced Cx43 expression and Cx43 accentuation at the cell poles. ATII enhances total Cx43 mRNA and protein expression probably via AT1-R (=inhibitory effect of losartan) and reduces Cx43 polarisation presumably via AT2-R, since PD123177 (but not losartan) inhibited the negative effects of ATII on polarisation.

Keywords

Stretch Angiotensin II Cx43 Angiotensin receptors 

Abbreviations

ATII

Angiotensin II

AT1-R

Angiotensin receptor type 1

AT2-R

Angiotensin receptor type 2

Cx43

Connexin43

Ct

Threshold cycle

ERK1/2

Extracellular signal-regulated kinase 1/2 (=p42/44)

FAK

Focal adhesion kinase

PCR

Polymerase chain reaction

ZO-1

Zonula occludens protein 1

Notes

Acknowledgments

This study was supported by a grant given by ProCordis (Leipzig, Germany) given to S.D.

Conflict of interest

None.

References

  1. 1.
    Barac DY, Reisner Y, Silberman M, Zeevi-Levin N, Danon A, Salomon O, Shoham M, Shilkrut M, Kostin S, Schaper J, Binah O (2008) Mechanical load induced by glass microspheres releases angiogenic factors from neonatal rat ventricular myocytes cultures and causes arrhythmias. J Cell Mol Med 12:2037–2051PubMedCrossRefGoogle Scholar
  2. 2.
    Beardslee MA, Laing JG, Beyer EC, Saffitz JE (1998) Rapid turnover of connexin 43 in the adult rat heart. Circ Res 83:629–653PubMedCrossRefGoogle Scholar
  3. 3.
    Boldt A, Scholl A, Garbade J, Resetar ME, Mohr FW, Gummert JF, Dhein S (2006) ACE-inhibitor treatment attenuates atrial structural remodeling in patients with lone chronic atrial fibrillation. Basic Res Cardiol 101:261–267PubMedCrossRefGoogle Scholar
  4. 4.
    Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19:6341–6350PubMedCrossRefGoogle Scholar
  5. 5.
    Chiu AT, Herblin WF, McCall DE, Ardecky RJ, Carini DJ, Duncia JV, Pease LJ, Wong PC, Wexler RR, Johnson AL, Pieter BMWM (1989) Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196–203PubMedCrossRefGoogle Scholar
  6. 6.
    Davis LM, Rodefeld ME, Green K, Beyer EC, Saffitz JE (1995) Gap junction protein phenotypes of the human heart and conduction system. J Cardiovasc Electrophysiol 6:813–822PubMedCrossRefGoogle Scholar
  7. 7.
    De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472PubMedGoogle Scholar
  8. 8.
    Dhein S, Rothe S, Busch A, Rojas Gomez DM, Boldt A, Reutemann A, Seidel T, Salameh A, Pfannmüller B, Rastan A, Kostelka M, Mohr FW (2011) Effects of metoprolol therapy on cardiac gap junction remodelling and conduction inhuman chronic atrial fibrillation. Br J Pharmacol 164:607–616PubMedGoogle Scholar
  9. 9.
    Dodge SM, Beardslee MA, Darrow BJ, Green KG, Beyer EC, Saffitz JE (1998) Effects of angiotensin II on expression of the gap junction channel protein connexin43 in neonatal rat ventricular myocytes. J Am Coll Cardiol 32:800–807PubMedCrossRefGoogle Scholar
  10. 10.
    Dostal DE, Rothblum KN, Conrad KM, Cooper GR, Baker KM (1992) Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am J Physiol 263:C851–C863PubMedGoogle Scholar
  11. 11.
    Duarte DR, Minicucci MF, Azevedo PS, Chiuso-Minicucci F, Matsubara BB, Matsubara LS, Campana AO, Paiva SA, Zornoff LA (2010) Influence of lisinopril on cardiac remodeling induced by tobacco smoke exposure. Med Sci Monit 16:BR255–BR259PubMedGoogle Scholar
  12. 12.
    Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Kahn N, Kaprielian R, Yacoub MH, Severs NJ (2001) Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33:359–371PubMedCrossRefGoogle Scholar
  13. 13.
    Inoue N, Ohkusa T, Nao T, Lee JK, Matsumoto T, Hisamatsu Y, Satoh T, Yano M, Yasui K, Kodama I, Matsuzaki M (2004) Rapid electrical stimulation of contraction modulates gap junction protein in neonatal rat cultured cardiomyocytes: involvement of mitogen-activated protein kinases and effects of angiotensin II-receptor antagonist. J Am Coll Cardiol 44:914–922PubMedGoogle Scholar
  14. 14.
    Ishida J, Kai M, Ohkura Y (1986) High-performance liquid chromatography of tyrosine-containing peptides by pre-column derivatization involving formylation followed by fluorescence reaction with 1,2-diamino-4,5-dimethoxybenzene. J Chromatogr 356:171–177PubMedCrossRefGoogle Scholar
  15. 15.
    Jozwiak J, Dhein S (2008) Local effects and mechanisms of antiarrhythmic peptide AAP10 in acute regional myocardial ischemia: electrophysiological and molecular findings. Naunyn Schmiedebergs Arch Pharmacol 378:459–470PubMedCrossRefGoogle Scholar
  16. 16.
    Kijima K, Matsubara H, Murasawa S, Maruyama K, Mori Y, Ohkubo N, Komuro I, Yazaki Y, Iwasaka T, Inada M (1996) Mechanical stretch induces enhanced expression of angiotensin II receptor subtypes in neonatal rat cardiac myocytes. Circ Res 79:887–897PubMedCrossRefGoogle Scholar
  17. 17.
    Kitamura H, Ohnishi Y, Yoshida A, Okajima K, Azumi H, Ishida A, Galeano EJ, Kubo S, Hayashi Y, Itoh H, Yokoyama M (2002) Heterogeneous loss of connexin43 protein in nonischemic dilated cardiomyopathy with ventricular tachycardia. J Cardiovasc Electrophysiol 13:865–870PubMedCrossRefGoogle Scholar
  18. 18.
    Kostin S (2007) Zonula occludens-1 and connexin 43 expression in the failing human heart. J Cell Mol Med 11:892–895PubMedCrossRefGoogle Scholar
  19. 19.
    Kostin S, Dammer S, Hein S, Klovelorn WP, Bauer EP, Schaper J (2004) Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 62:426–436PubMedCrossRefGoogle Scholar
  20. 20.
    Kostin S, Rieger M, Dammer S, Hein S, Richter M, Klövekorn WP, Bauer EP, Schaper J (2003) Gap junction remodeling and altered connexin43 expression in the failing human heart. Mol Cell Biochem 242:135–144PubMedCrossRefGoogle Scholar
  21. 21.
    Lemarié CA, Schiffrin EL (2010) The angiotensin II type 2 receptor in cardiovascular disease. J Renin Angiotensin Aldosterone Syst 11:19–31PubMedCrossRefGoogle Scholar
  22. 22.
    Malhotra R, Sadoshima J, Brosius FC III, Izumo S (1999) Mechanical stretch and angiotensin II differentially upregulate the renin–angiotensin system in cardiac myocytes in vitro. Circ Res 85:137–146PubMedCrossRefGoogle Scholar
  23. 23.
    Peters NS, Severs NJ, Rothery SM, Lincoln C, Yacoub MH, Green CR (1994) Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 90:713–725PubMedCrossRefGoogle Scholar
  24. 24.
    Polontchouk L, Ebelt B, Jackels M, Dhein S (2002) Chronic effects of endothelin 1 and angiotensin II on gap junctions and intercellular communication in cardiac cells. FASEB J 16:87–89PubMedGoogle Scholar
  25. 25.
    Polontchouk L, Haefliger J-A, Ebelt B, Schaefer T, Stuhlmann D, Mehlhorn U, Kuhn-Reignier F, DeVivie ER, Dhein S (2001) Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol 38:883–891PubMedCrossRefGoogle Scholar
  26. 26.
    Reisner Y, Meiry G, Zeevi-Levin N, Barac DY, Reiter I, Abassi Z, Ziv N, Kostin S, Schaper J, Rosen MR, Binah O (2009) Impulse conduction and gap junctional remodelling by endothelin-1 in cultured neonatal rat ventricular myocytes. J Cell Mol Med 13:562–573PubMedCrossRefGoogle Scholar
  27. 27.
    Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984PubMedCrossRefGoogle Scholar
  28. 28.
    Saffitz JE, Schuessler RB, Yamada KA (1999) Mechanisms of remodeling of gap junction distributions and the development of anatomic substrates of arrhythmias. Cardiovasc Res 42:309–317PubMedCrossRefGoogle Scholar
  29. 29.
    Sakabe M, Fujiki A, Nishida K, Sugao M, Nagasawa H, Tsuneda T, Mizumaki K, Inoue H (2004) Enalapril prevents perpetuation of atrial fibrillation by suppressing atrial fibrosis and over-expression of connexin43 in a canine model of atrial pacing-induced left ventricular dysfunction. J Cardiovasc Pharmacol 43:851–859PubMedCrossRefGoogle Scholar
  30. 30.
    Salameh A, Dhein S (2012) Effects of mechanical forces and stretch on intercellular gap junction coupling. Biochim Biophys Acta 2012 Jan 4. [Epub ahead of print]Google Scholar
  31. 31.
    Sameh A, Frenzel C, Boldt A, Rassler B, Glawe I, Schulte J, Mühlberg K, Zimmer HG, Pfeiffer D, Dhein S (2006) Subchronic alpha- and beta-adrenergic regulation of cardiac gap junction protein expression. FASEB J 20:365–367Google Scholar
  32. 32.
    Salameh A, Karl S, Djilali H, Dhein S, Janousek J, Daehnert I (2010) Opposing and synergistic effects of cyclic mechanical stretch and α- or β-adrenergic stimulation on the cardiac gap junction protein Cx43. Pharmacol Res 62:506–513PubMedCrossRefGoogle Scholar
  33. 33.
    Salameh A, Krautblatter K, Baeßler S, Karl S, Rojas Gomez D, Dhein S, Pfeiffer D (2008) Signal transduction and transcriptional control of cardiac connexin43 up-regulation after α1-adrenoceptor stimulation. JPET 326:315–322CrossRefGoogle Scholar
  34. 34.
    Salameh A, Krautblatter S, Karl S, Blanke K, Rojas Gomez D, Dhein S, Pfeiffer D, Janousek J (2009) The signal transduction cascade regulating the expression of the gap junction protein connexin43 by β-adrenoceptors. Brit J Pharmacol 158:198–208CrossRefGoogle Scholar
  35. 35.
    Salameh A, Wustmann A, Karl S, Blanke K, Apel D, Rojas-Gomez D, Franke H, Mohr FW, Janousek J, Dhein S (2010) Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ Res 106:1592–1602PubMedCrossRefGoogle Scholar
  36. 36.
    Sepp R, Severs NJ, Gourdie RG (1996) Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy. Heart 76:412–417PubMedCrossRefGoogle Scholar
  37. 37.
    Shanmugam P, Valente AJ, Prabhu SD, Venkatesan B, Yoshida T, Delafontaine P, Chandrasekar B (2011) Angiotensin-II type 1 receptor and NOX2 mediate TCF/LEF and CREB dependent WISP1 induction and cardiomyocyte hypertrophy. J Mol Cell Cardiol 50:928–938PubMedCrossRefGoogle Scholar
  38. 38.
    Shimoni Y, Emmett T, Schmidt R, Nygren A, Kargacin G (2009) Sex-dependent impairment of cardiac action potential conduction in type 1 diabetic rats. Am J Physiol Heart Circ Physiol 296:H1442–H1450PubMedCrossRefGoogle Scholar
  39. 39.
    Shyu KG, Chen CC, Wang BW, Kuan P (2001) Angiotensin II receptor antagonist blocks the expression of connexin43 induced by cyclical mechanical stretch in cultured neonatal rat cardiac myocytes. J Mol Cell Cardiol 33:691–698PubMedCrossRefGoogle Scholar
  40. 40.
    Yamada K, Green KG, Samarel AM, Saffitz JE (2005) Distinct pathways regulate expression of cardiac electrical and mechanical junction proteins in response to stretch. Circ Res 97:346–353PubMedCrossRefGoogle Scholar
  41. 41.
    Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, Hiroi Y, Ueki K, Tobe K, Kadowaki T, Nagai R, Yazaki Y (1995) Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res 77:258–265PubMedCrossRefGoogle Scholar
  42. 42.
    Yamazaki T, Komuro I, Yazaki Y (1999) Role of the renin–angiotensin system in cardiac hypertrophy. Am J Cardiol 83:53H–57HPubMedCrossRefGoogle Scholar
  43. 43.
    Yamazaki T, Yazaki Y (1999) Role of tissue angiotensin II in myocardial remodelling induced by mechanical stress. J Hum Hypertens 13:S43–S47PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aida Salameh
    • 1
    Email author
  • Daniel Apel
    • 2
  • Jorge Gonzalez Casanova
    • 1
  • Sandy von Salisch
    • 2
  • Friedrich-Wilhelm Mohr
    • 2
  • Ingo Daehnert
    • 1
  • Stefan Dhein
    • 2
  1. 1.Clinic for Paediatric CardiologyUniversity of LeipzigLeipzigGermany
  2. 2.Clinic for Cardiac SurgeryUniversity of LeipzigLeipzigGermany

Personalised recommendations