Regulation of the mitochondrial proton gradient by cytosolic Ca2+ signals

  • Damon Poburko
  • Nicolas DemaurexEmail author
Invited Review


Mitochondria convert the energy stored in carbohydrate and fat into ATP molecules that power enzymatic reactions within cells, and this process influences cellular calcium signals in several ways. By providing ATP to calcium pumps at the plasma and intracellular membranes, mitochondria power the calcium gradients that drive the release of Ca2+ from stores and the entry of Ca2+ across plasma membrane channels. By taking up and subsequently releasing calcium ions, mitochondria determine the spatiotemporal profile of cellular Ca2+ signals and the activity of Ca2+-regulated proteins, including Ca2+ entry channels that are themselves part of the Ca2+ circuitry. Ca2+ elevations in the mitochondrial matrix, in turn, activate Ca2+-dependent enzymes that boost the respiratory chain, increasing the ability of mitochondria to buffer calcium ions. Mitochondria are able to encode and decode Ca2+ signals because the respiratory chain generates an electrochemical gradient for protons across the inner mitochondrial membrane. This proton motive force (Δp) drives the activity of the ATP synthase and has both an electrical component, the mitochondrial membrane potential (ΔΨ m ), and a chemical component, the mitochondrial proton gradient (ΔpH m ). ΔΨ m contributes about 190 mV to Δp and drives the entry of Ca2+ across a recently identified Ca2+-selective channel known as the mitochondrial Ca2+ uniporter. ΔpH m contributes ~30 mV to Δp and is usually ignored or considered a minor component of mitochondria respiratory state. However, the mitochondrial proton gradient is an essential component of the chemiosmotic theory formulated by Peter Mitchell in 1961 as ΔpH m sustains the entry of substrates and metabolites required for the activity of the respiratory chain and drives the activity of electroneutral ion exchangers that allow mitochondria to maintain their osmolarity and volume. In this review, we summarize the mechanisms that regulate the mitochondrial proton gradient and discuss how thermodynamic concepts derived from measurements in purified mitochondria can be reconciled with our recent findings that mitochondria have high proton permeability in situ and that ΔpH m decreases during mitochondrial Ca2+ elevations.


Bioenergetics Cell biology Mitochondria 


  1. 1.
    Abad MF, Di Benedetto G, Magalhaes PJ, Filippin L, Pozzan T (2004) Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J Biol Chem 279:11521–11529PubMedCrossRefGoogle Scholar
  2. 2.
    Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628PubMedCrossRefGoogle Scholar
  3. 3.
    Akhmedov D, Braun M, Mataki C, Park KS, Pozzan T, Schoonjans K, Rorsman P, Wollheim CB, Wiederkehr A (2010) Mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in INS-1E clonal beta cells. FASEB J 24:4613–4626PubMedCrossRefGoogle Scholar
  4. 4.
    Azarias G, Perreten H, Lengacher S, Poburko D, Demaurex N, Magistretti PJ, Chatton JY (2011) Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J Neurosci 31:3550–3559PubMedCrossRefGoogle Scholar
  5. 5.
    Balut C, vande Ven M, Despa S, Lambrichts I, Ameloot M, Steels P, Smets I (2008) Measurement of cytosolic and mitochondrial pH in living cells during reversible metabolic inhibition. Kidney Int 73:226–32PubMedCrossRefGoogle Scholar
  6. 6.
    Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345Google Scholar
  7. 7.
    Beavis AD, Garlid KD (1990) Evidence for the allosteric regulation of the mitochondrial K+/H+ antiporter by matrix protons. J Biol Chem 265:2538–2545PubMedGoogle Scholar
  8. 8.
    Belgnaoui SM, Paz S, Hiscott J (2011) Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 23:564–572PubMedCrossRefGoogle Scholar
  9. 9.
    Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155PubMedGoogle Scholar
  10. 10.
    Bolshakov AP, Mikhailova MM, Szabadkai G, Pinelis VG, Brustovetsky N, Rizzuto R, Khodorov BI (2008) Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate-induced delayed Ca2+ deregulation. Cell Calcium 43:602–614PubMedCrossRefGoogle Scholar
  11. 11.
    Cadenas S, Echtay KS, Harper JA, Jekabsons MB, Buckingham JA, Grau E, Abuin A, Chapman H, Clapham JC, Brand MD (2002) The basal proton conductance of skeletal muscle mitochondria from transgenic mice overexpressing or lacking uncoupling protein-3. J Biol Chem 277:2773–2778PubMedCrossRefGoogle Scholar
  12. 12.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359PubMedCrossRefGoogle Scholar
  13. 13.
    Ch’en FF, Dilworth E, Swietach P, Goddard RS, Vaughan-Jones RD (2003) Temperature dependence of Na+-H+ exchange, Na+-HCO3—co-transport, intracellular buffering and intracellular pH in guinea-pig ventricular myocytes. J Physiol 552:715–726PubMedCrossRefGoogle Scholar
  14. 14.
    Cortese JD, Voglino AL, Hackenbrock CR (1992) The ionic strength of the intermembrane space of intact mitochondria is not affected by the pH or volume of the intermembrane space. Biochim Biophys Acta 1100:189–197PubMedCrossRefGoogle Scholar
  15. 15.
    Couplan E, del Mar Gonzalez-Barroso M, Alves-Guerra MC, Ricquier D, Goubern M, Bouillaud F (2002) No evidence for a basal, retinoic, or superoxide-induced uncoupling activity of the uncoupling protein 2 present in spleen or lung mitochondria. J Biol Chem 277:26268–26275PubMedCrossRefGoogle Scholar
  16. 16.
    Dash RK, Beard DA (2008) Analysis of cardiac mitochondrial Na+-Ca2+ exchanger kinetics with a biophysical model of mitochondrial Ca2+ handling suggests a 3:1 stoichiometry. J Physiol 586:3267–3285PubMedCrossRefGoogle Scholar
  17. 17.
    del Arco A, Satrustegui J (1998) Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem 273:23327–23334PubMedCrossRefGoogle Scholar
  18. 18.
    Demaurex N, Poburko D, Frieden M (2009) Regulation of plasma membrane calcium fluxes by mitochondria. Biochim Biophys Acta 1787:1383–1394PubMedCrossRefGoogle Scholar
  19. 19.
    De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340PubMedCrossRefGoogle Scholar
  20. 20.
    Durand T, Delmas-Beauvieux MC, Canioni P, Gallis JL (1999) Role of intracellular buffering power on the mitochondria-cytosol pH gradient in the rat liver perfused at 4 degrees C. Cryobiology 38:68–80PubMedCrossRefGoogle Scholar
  21. 21.
    Garlid KD (1980) On the mechanism of regulation of the mitochondrial K+/H+ exchanger. J Biol Chem 255:11273–11279PubMedGoogle Scholar
  22. 22.
    Garlid KD, Paucek P (2003) Mitochondrial potassium transport: the K(+) cycle. Biochim Biophys Acta 1606:23–41PubMedCrossRefGoogle Scholar
  23. 23.
    Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424PubMedCrossRefGoogle Scholar
  24. 24.
    Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137:633–648PubMedCrossRefGoogle Scholar
  25. 25.
    Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71PubMedCrossRefGoogle Scholar
  26. 26.
    Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326:144–147PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson DE, Ai HW, Wong P, Young JD, Campbell RE, Casey JR (2009) Red fluorescent protein pH biosensor to detect concentrative nucleoside transport. J Biol Chem 284:20499–20511PubMedCrossRefGoogle Scholar
  28. 28.
    Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96:13807–13812PubMedCrossRefGoogle Scholar
  29. 29.
    Junge W, Sielaff H, Engelbrecht S (2009) Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase. Nature 459:364–370PubMedCrossRefGoogle Scholar
  30. 30.
    Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163PubMedCrossRefGoogle Scholar
  31. 31.
    Lasorsa FM, Pinton P, Palmieri L, Fiermonte G, Rizzuto R, Palmieri F (2003) Recombinant expression of the Ca(2+)-sensitive aspartate/glutamate carrier increases mitochondrial ATP production in agonist-stimulated Chinese hamster ovary cells. J Biol Chem 278:38686–38692PubMedCrossRefGoogle Scholar
  32. 32.
    Leem CH, Lagadic-Gossmann D, Vaughan-Jones RD (1999) Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte. J Physiol 517(Pt 1):159–180PubMedCrossRefGoogle Scholar
  33. 33.
    Lemasters JJ, Chacon E, Ohata H, Harper IS, Nieminen AL, Tesfai SA, Herman B (1995) Measurement of electrical potential, pH, and free calcium ion concentration in mitochondria of living cells by laser scanning confocal microscopy. Methods Enzymol 260:428–444PubMedCrossRefGoogle Scholar
  34. 34.
    Loew LM, Carrington W, Tuft RA, Fay FS (1994) Physiological cytosolic Ca2+ transients evoke concurrent mitochondrial depolarizations. Proc Natl Acad Sci U S A 91:12579–12583PubMedCrossRefGoogle Scholar
  35. 35.
    McCormack JG, Denton RM (1980) Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat. Biochem J 190:95–105PubMedGoogle Scholar
  36. 36.
    McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425PubMedGoogle Scholar
  37. 37.
    Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148PubMedCrossRefGoogle Scholar
  38. 38.
    Nicholls DG (1974) The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem 50:305–315Google Scholar
  39. 39.
    Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38:311–317PubMedCrossRefGoogle Scholar
  40. 40.
    Nowikovsky K, Froschauer EM, Zsurka G, Samaj J, Reipert S, Kolisek M, Wiesenberger G, Schweyen RJ (2004) The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem 279:30307–30315PubMedCrossRefGoogle Scholar
  41. 41.
    Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447:689–709PubMedCrossRefGoogle Scholar
  42. 42.
    Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2009) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107:436–441PubMedCrossRefGoogle Scholar
  43. 43.
    Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467:291–296PubMedCrossRefGoogle Scholar
  44. 44.
    Poburko D, Santo-Domingo J, Demaurex N (2011) Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem 286:11672–11684PubMedCrossRefGoogle Scholar
  45. 45.
    Porcelli AM, Ghelli A, Zanna C, Pinton P, Rizzuto R, Rugolo M (2005) pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun 326:799–804PubMedCrossRefGoogle Scholar
  46. 46.
    Pralong WF, Spat A, Wollheim CB (1994) Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem 269:27310–27314PubMedGoogle Scholar
  47. 47.
    Robb-Gaspers LD, Burnett P, Rutter GA, Denton RM, Rizzuto R, Thomas AP (1998) Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 17:4987–5000PubMedCrossRefGoogle Scholar
  48. 48.
    Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434PubMedGoogle Scholar
  49. 49.
    Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493PubMedCrossRefGoogle Scholar
  50. 50.
    Satrustegui J, Pardo B, Del Arco A (2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87:29–67PubMedCrossRefGoogle Scholar
  51. 51.
    Schwindling C, Quintana A, Krause E, Hoth M (2010) Mitochondria positioning controls local calcium influx in T cells. J Immunol 184:184–190PubMedCrossRefGoogle Scholar
  52. 52.
    Talbot J, Barrett JN, Barrett EF, David G (2007) Stimulation-induced changes in NADH fluorescence and mitochondrial membrane potential in lizard motor nerve terminals. J Physiol 579:783–798PubMedCrossRefGoogle Scholar
  53. 53.
    Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, Petersen OH (1999) Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca(2+) signals. EMBO J 18:4999–5008PubMedCrossRefGoogle Scholar
  54. 54.
    Wallace DC (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76:781–821PubMedCrossRefGoogle Scholar
  55. 55.
    Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A (2009) Modulation of calcium signalling by mitochondria. Biochim Biophys Acta 1787:1374–1382PubMedCrossRefGoogle Scholar
  56. 56.
    Wiederkehr A, Park KS, Dupont O, Demaurex N, Pozzan T, Cline GW, Wollheim CB (2009) Matrix alkalinization: a novel mitochondrial signal for sustained pancreatic beta-cell activation. EMBO J 28:417–428PubMedCrossRefGoogle Scholar
  57. 57.
    Zotova L, Aleschko M, Sponder G, Baumgartner R, Reipert S, Prinz M, Schweyen RJ, Nowikovsky K (2010) Novel components of an active mitochondrial K(+)/H(+) exchange. J Biol Chem 285:14399–14414PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Biomedical Physiology & KinesiologySimon Fraser UniversityVancouverCanada
  2. 2.Department of Cell Physiology and MetabolismUniversity of GenevaGeneva 4Switzerland

Personalised recommendations