Advertisement

Importance of transient receptor potential vanilloid 4 (TRPV4) in epidermal barrier function in human skin keratinocytes

  • Naoko Kida
  • Takaaki Sokabe
  • Makiko Kashio
  • Kunitaka Haruna
  • Yuki Mizuno
  • Yasushi Suga
  • Kazuko Nishikawa
  • Akiko Kanamaru
  • Maya Hongo
  • Ai Oba
  • Makoto Tominaga
Ion Channels, Receptors and Transporters

Abstract

The state of the skin changes drastically depending on the ambient temperature. Skin epidermal keratinocytes express thermosensitive transient receptor potential vanilloid (TRPV) cation channels, TRPV3 and TRPV4. These multimodal receptors are activated by various kinds of chemical and physical stimuli, including warm temperatures (>30°C). It has been suggested that TRPV4 is involved in cell–cell junction maturation; however, the effect of temperature fluctuations on TRPV4-dependent barrier homeostasis is unclear. In the present study, we demonstrated that activation of TRPV4 was crucial for barrier formation and recovery, both of which were critical for the prevention of excess dehydration of human skin keratinocytes. TRPV4 activation by physiological skin temperature (33°C), GSK1016790A or 4α-PDD allowed influx of Ca2+ from extracellular spaces which promoted cell–cell junction development. These changes resulted in augmentation of intercellular barrier integrity in vitro and ex vivo. TRPV4 disruption reduced the increase in trans-epidermal resistance and increased intercellular permeation after a Ca2+ switch. Furthermore, barrier recovery after the disruption of the stratum corneum was accelerated by the activation of TRPV4 either by warm temperature or a chemical activator. Our results suggest that physiological skin temperatures play important roles in cell–cell junction and skin barrier homeostasis through TRPV4 activation.

Keywords

Transient receptor potential vanilloid 4 Epidermal barrier Temperature Tight junction 

Abbreviations

4α-PDD

4α-Phorbol 12,13-didecanoate

TRPV4

Transient receptor potential vanilloid 4

TJ

Tight junction

AJ

Adherens junction

TEWL

Trans-epidermal water loss

TBP

TATA box binding protein

HEK

Human epidermal keratinocyte

TER

Trans-epithelial electrical resistance

SC

Stratum corneum

IP

Immunoprecipitation

Notes

Acknowledgements

This work was supported by grants to M.T. from the Ministry of Education, Culture, Sports, Science and Technology in Japan. We thank B. Nilius (Katholieke Universiteit, Belgium) for his generous gift of the anti-TRPV4 antibody.

Conflicts of interest

None

Supplementary material

424_2012_1081_Fig8_ESM.jpg (698 kb)
Fig. S1

Functional expression of TRPV4 in Ca2+-imaging experiments with HEKs. Traces for changes in cytosolic Ca2+ concentrations (340/380 nm ratio) in response to 100 nM GSK1016790A. Bars indicate the duration of stimulation. To confirm the cell viability, ionomycin was applied (JPEG 697 kb)

References

  1. 1.
    Asakawa M, Yoshioka T, Matsutani T, Hikita I, Suzuki M, Oshima I, Tsukahara K, Arimura A, Horikawa T, Hirasawa T, Sakata T (2006) Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol 126:2664–2672PubMedCrossRefGoogle Scholar
  2. 2.
    Auer-Grumbach M, Olschewski A, Papic L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Frohlich E, Balint Z, Tang B, Strohmaier H, Lochmuller H, Schlotter-Weigel B, Senderek J, Krebs A, Dick KJ, Petty R, Longman C, Anderson NE, Padberg GW, Schelhaas HJ, van Ravenswaaij-Arts CM, Pieber TR, Crosby AH, Guelly C (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42:160–164PubMedCrossRefGoogle Scholar
  3. 3.
    Bikle DD, Oda Y, Xie Z (2004) Calcium and 1,25(OH)2D: interacting drivers of epidermal differentiation. J Steroid Biochem Mol Biol 89–90:355–360PubMedCrossRefGoogle Scholar
  4. 4.
    Chen YH, Lu Q, Goodenough DA, Jeansonne B (2002) Nonreceptor tyrosine kinase c-Yes interacts with occludin during tight junction formation in canine kidney epithelial cells. Mol Biol Cell 13:1227–1237PubMedCrossRefGoogle Scholar
  5. 5.
    Cheng X, Jin J, Hu L, Shen D, Dong XP, Samie MA, Knoff J, Eisinger B, Liu ML, Huang SM, Caterina MJ, Dempsey P, Michael LE, Dlugosz AA, Andrews NC, Clapham DE, Xu H (2010) TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141:331–343PubMedCrossRefGoogle Scholar
  6. 6.
    Chung MK, Lee H, Caterina MJ (2003) Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 278:32037–32046PubMedCrossRefGoogle Scholar
  7. 7.
    Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279:21569–21575PubMedCrossRefGoogle Scholar
  8. 8.
    Conti A, Rogers J, Verdejo P, Harding CR, Rawlings AV (1996) Seasonal influences on stratum corneum ceramide 1 fatty acids and the influence of topical essential fatty acids. Int J Cosmet Sci 18:1–12PubMedCrossRefGoogle Scholar
  9. 9.
    Denda M, Sokabe T, Fukumi-Tominaga T, Tominaga M (2007) Effects of skin surface temperature on epidermal permeability barrier homeostasis. J Invest Dermatol 127:654–659PubMedCrossRefGoogle Scholar
  10. 10.
    Denda M, Tsutsumi M, Denda S (2010) Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of cold-sensitive TRP receptors in epidermal permeability barrier homoeostasis. Exp Dermatol 19:791–795PubMedCrossRefGoogle Scholar
  11. 11.
    Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N, Hedley-Whyte ET, Delong R, Martina M, Dyck PJ, Siddique T (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42:165–169PubMedCrossRefGoogle Scholar
  12. 12.
    Duverger O, Morange M (2005) Heat shock protein 25 plays multiple roles during mouse skin development. Cell Stress Chap 10:268–277CrossRefGoogle Scholar
  13. 13.
    Elias P, Ahn S, Brown B, Crumrine D, Feingold KR (2002) Origin of the epidermal calcium gradient: regulation by barrier status and role of active vs passive mechanisms. J Invest Dermatol 119:1269–1274PubMedCrossRefGoogle Scholar
  14. 14.
    Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111PubMedCrossRefGoogle Scholar
  15. 15.
    Gibbs S, Boelsma E, Kempenaar J, Ponec M (1998) Temperature-sensitive regulation of epidermal morphogenesis and the expression of cornified envelope precursors by EGF and TGF alpha. Cell Tissue Res 292:107–114PubMedCrossRefGoogle Scholar
  16. 16.
    Güler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414PubMedGoogle Scholar
  17. 17.
    Halkier-Sorensen L, Menon GK, Elias PM, Thestrup-Pedersen K, Feingold KR (1995) Cutaneous barrier function after cold exposure in hairless mice: a model to demonstrate how cold interferes with barrier homeostasis among workers in the fish-processing industry. Br J Dermatol 132:391–401PubMedCrossRefGoogle Scholar
  18. 18.
    Igawa S, Kishibe M, Murakami M, Honma M, Takahashi H, Iizuka H, Ishida-Yamamoto A (2011) Tight junctions in the stratum corneum explain spatial differences in corneodesmosome degradation. Exp Dermatol 20:53–57PubMedCrossRefGoogle Scholar
  19. 19.
    Krakow D, Vriens J, Camacho N, Luong P, Deixler H, Funari TL, Bacino CA, Irons MB, Holm IA, Sadler L, Okenfuss EB, Janssens A, Voets T, Rimoin DL, Lachman RS, Nilius B, Cohn DH (2009) Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet 84:307–315PubMedCrossRefGoogle Scholar
  20. 20.
    Kuroda S, Kurasawa M, Mizukoshi K, Maeda T, Yamamoto T, Oba A, Kishibe M, Ishida-Yamamoto A (2010) Perturbation of lamellar granule secretion by sodium caprate implicates epidermal tight junctions in lamellar granule function. J Dermatol Sci 59:107–114PubMedCrossRefGoogle Scholar
  21. 21.
    Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174PubMedCrossRefGoogle Scholar
  22. 22.
    Liedtke WB (2007) TRPV channels’ function in osmo- and mechanotransduction. In: Liedtke WB, Heller S (eds) SourceTRP ion channel function in sensory transduction and cellular signaling cascades, Chap 22: Frontiers in Neuroscience. CRC Press, Boca RatonGoogle Scholar
  23. 23.
    Mandadi S, Sokabe T, Shibasaki K, Katanosaka K, Mizuno A, Moqrich A, Patapoutian A, Fukumi-Tominaga T, Mizumura K, Tominaga M (2009) TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch 458:1093–1102PubMedCrossRefGoogle Scholar
  24. 24.
    Marrakchi S, Maibach HI (2007) Biophysical parameters of skin: map of human face, regional, and age-related differences. Contact Dermatitis 57:28–34PubMedCrossRefGoogle Scholar
  25. 25.
    McCusker MM, Grant-Kels JM (2010) Healing fats of the skin: the structural and immunologic roles of the omega-6 and omega-3 fatty acids. Clin Dermatol 28:440–451PubMedCrossRefGoogle Scholar
  26. 26.
    Meng W, Numazaki M, Takeuchi K, Uchibori Y, Ando-Akatsuka Y, Tominaga M, Tominaga T (2004) DIP (mDia interacting protein) is a key molecule regulating Rho and Rac in a Src-dependent manner. EMBO J 23:760–771PubMedCrossRefGoogle Scholar
  27. 27.
    Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, Naruse K, Koizumi S, Takeda M, Tominaga M (2009) The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem 284:21257–21264PubMedCrossRefGoogle Scholar
  28. 28.
    Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472PubMedCrossRefGoogle Scholar
  29. 29.
    Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 127:2525–2532PubMedCrossRefGoogle Scholar
  30. 30.
    Perez-Moreno M, Jamora C, Fuchs E (2003) Sticky business: orchestrating cellular signals at adherens junctions. Cell 112:535–548PubMedCrossRefGoogle Scholar
  31. 31.
    Ponec M, Gibbs S, Weerheim A, Kempenaar J, Mulder A, Mommaas AM (1997) Epidermal growth factor and temperature regulate keratinocyte differentiation. Arch Dermatol Res 289:317–326PubMedCrossRefGoogle Scholar
  32. 32.
    Rogers J, Harding C, Mayo A, Banks J, Rawlings A (1996) Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res 288:765–770PubMedCrossRefGoogle Scholar
  33. 33.
    Sokabe T, Fukumi-Tominaga T, Yonemura S, Mizuno A, Tominaga M (2010) The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem 285:18749–18758PubMedCrossRefGoogle Scholar
  34. 34.
    Sokabe T, Tominaga M (2010) The TRPV4 cation channel: a molecule linking skin temperature and barrier function. Commun Integr Biol 3:619–621PubMedCrossRefGoogle Scholar
  35. 35.
    Suzuki M, Watanabe Y, Oyama Y, Mizuno A, Kusano E, Hirao A, Ookawara S (2003) Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci Lett 353:189–192PubMedCrossRefGoogle Scholar
  36. 36.
    Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Gunzel D, Fromm M, Kemler R, Krieg T, Niessen CM (2005) E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J 24:1146–1156PubMedCrossRefGoogle Scholar
  37. 37.
    Turksen K, Troy TC (2003) Overexpression of the calcium sensing receptor accelerates epidermal differentiation and permeability barrier formation in vivo. Mech Dev 120:733–744PubMedCrossRefGoogle Scholar
  38. 38.
    Uenishi T, Sugiura H, Uehara M (2001) Changes in the seasonal dependence of atopic dermatitis in Japan. J Dermatol 28:244–247PubMedGoogle Scholar
  39. 39.
    Uter W, Gefeller O, Schwanitz HJ (1998) An epidemiological study of the influence of season (cold and dry air) on the occurrence of irritant skin changes of the hands. Br J Dermatol 138:266–272PubMedCrossRefGoogle Scholar
  40. 40.
    Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T, Morisseau C, Hammock BD, Fleming I, Busse R, Nilius B (2005) Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 97:908–915PubMedCrossRefGoogle Scholar
  41. 41.
    Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438PubMedCrossRefGoogle Scholar
  42. 42.
    Webb P (1992) Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions. Eur J Appl Physiol Occup Physiol 64:471–476PubMedCrossRefGoogle Scholar
  43. 43.
    Wu L, Gao X, Brown RC, Heller S, O’Neil RG (2007) Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 293:F1699–F1713PubMedCrossRefGoogle Scholar
  44. 44.
    Xu H, Zhao H, Tian W, Yoshida K, Roullet JB, Cohen DM (2003) Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 mediates its response to hypotonic stress. J Biol Chem 278:11520–11527PubMedCrossRefGoogle Scholar
  45. 45.
    Yamamoto T, Saeki Y, Kurasawa M, Kuroda S, Arase S, Sasaki H (2008) Effect of RNA interference of tight junction-related molecules on intercellular barrier function in cultured human keratinocytes. Arch Dermatol Res 300:517–524PubMedCrossRefGoogle Scholar
  46. 46.
    Yoshikawa N, Imokawa G, Akimoto K, Jin K, Higaki Y, Kawashima M (1994) Regional analysis of ceramides within the stratum corneum in relation to seasonal changes. Dermatology 188:207–214PubMedCrossRefGoogle Scholar
  47. 47.
    Zhu G, Gulsvik A, Bakke P, Ghatta S, Anderson W, Lomas DA, Silverman EK, Pillai SG (2009) Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum Mol Genet 18:2053–2062PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Naoko Kida
    • 1
    • 2
  • Takaaki Sokabe
    • 2
  • Makiko Kashio
    • 2
  • Kunitaka Haruna
    • 3
  • Yuki Mizuno
    • 3
  • Yasushi Suga
    • 3
  • Kazuko Nishikawa
    • 1
  • Akiko Kanamaru
    • 1
  • Maya Hongo
    • 1
  • Ai Oba
    • 1
  • Makoto Tominaga
    • 2
    • 4
  1. 1.POLA Chemical Industries, Inc.YokohamaJapan
  2. 2.Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences)National Institutes of Natural SciencesOkazakiJapan
  3. 3.Department of DermatologyJuntendo University Urayasu HospitalUrayasuJapan
  4. 4.Department of Physiological SciencesThe Graduate University for Advanced StudiesOkazakiJapan

Personalised recommendations