Pflügers Archiv - European Journal of Physiology

, Volume 463, Issue 2, pp 247–256

ClC-5 mutations associated with Dent’s disease: a major role of the dimer interface

  • Stéphane Lourdel
  • Teddy Grand
  • Johanna Burgos
  • Wendy González
  • Francisco V. Sepúlveda
  • Jacques Teulon
Invited Review

Abstract

Dent’s disease is an X-linked recessive disorder affecting the proximal tubules. Mutations in the 2Cl/H+ exchanger ClC-5 gene CLCN5 are frequently associated with Dent’s disease. Functional characterization of mutations of CLCN5 have helped to elucidate the physiopathology of Dent’s disease and provided evidence that several different mechanisms underlie the ClC-5 dysfunction in Dent’s disease. Modeling studies indicate that many CLCN5 mutations are located at the interface between the monomers of ClC-5, demonstrating that this protein region plays an important role in Dent’s disease. On the basis of functional data, CLCN5 mutations can be divided into three different classes. Class 1 mutations impair processing and folding, and as a result, the ClC-5 mutants are retained within the endoplasmic reticulum and targeted for degradation by quality control mechanisms. Class 2 mutations induce a delay in protein processing and reduce the stability of ClC-5. As a consequence, the cell surface expression and currents of the ClC-5 mutants are lower. Class 3 mutations do not alter the trafficking of ClC-5 to the cell surface and early endosomes but induce altered electrical activity. Here, we discuss the functional consequences of the three classes of CLCN5 mutations on ClC-5 structure and function.

Keywords

Dent’s disease Chloride/proton exchanger CLCN5 ClC-5 Mutation 

References

  1. 1.
    Abagyan R, Trotov M, Kuznetsov D (1994) ICM-A a new method for structure modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506CrossRefGoogle Scholar
  2. 2.
    Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427:803–807PubMedCrossRefGoogle Scholar
  3. 3.
    Accardi A, Walden M, Nguitragool W, Jayaram H, Williams C, Miller C (2005) Separate ion pathways in a Cl/H+ exchanger. J Gen Physiol 126:563–570PubMedCrossRefGoogle Scholar
  4. 4.
    Becq F, Mall MA, Sheppard DN, Conese M, Zegarra-Moran O (2011) Pharmacological therapy for cystic fibrosis: from bench to bedside. J Cyst Fibros 10(Suppl 2):S129–145PubMedCrossRefGoogle Scholar
  5. 5.
    Chen TY, Hwang TC (2008) CLC-0 and CFTR: chloride channels evolved from transporters. Physiol Rev 88:351–387PubMedCrossRefGoogle Scholar
  6. 6.
    Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ (2003) Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci U S A 100:8472–8477PubMedCrossRefGoogle Scholar
  7. 7.
    Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T, deVernejoul MC, Van Hul W (2001) Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 10:2861–2867PubMedCrossRefGoogle Scholar
  8. 8.
    Dent CE, Friedman M (1964) Hypercalcuric rickets associated with renal tubular damage. Arch Dis Child 39:240–249PubMedCrossRefGoogle Scholar
  9. 9.
    Devuyst O, Thakker RV (2010) Dent's disease. Orphanet J Rare Dis 5:28PubMedCrossRefGoogle Scholar
  10. 10.
    Devuyst O, Christie PT, Courtoy PJ, Beauwens R, Thakker RV (1999) Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent’s disease. Hum Mol Genet 8:247–257PubMedCrossRefGoogle Scholar
  11. 11.
    Dowland LK, Luyckx VA, Enck AH, Leclercq B, Yu AS (2000) Molecular cloning and characterization of an intracellular chloride channel in the proximal tubule cell line, LLC-PK1. J Biol Chem 275:37765–37773PubMedCrossRefGoogle Scholar
  12. 12.
    Dutzler R (2007) A structural perspective on ClC channel and transporter function. FEBS Lett 581:2839–2844PubMedCrossRefGoogle Scholar
  13. 13.
    Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294PubMedCrossRefGoogle Scholar
  14. 14.
    Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108–112PubMedCrossRefGoogle Scholar
  15. 15.
    Fahlke C, Yu HT, Beck CL, Rhodes TH, George AL Jr (1997) Pore-forming segments in voltage-gated chloride channels. Nature 390:529–532PubMedCrossRefGoogle Scholar
  16. 16.
    Feng L, Campbell EB, Hsiung Y, MacKinnon R (2010) Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330:635–641PubMedCrossRefGoogle Scholar
  17. 17.
    Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, Andolina M, Flanagan A, Horwitz EM, Mihci E, Notarangelo LD, Ramenghi U, Teti A, Van Hove J, Vujic D, Young T, Albertini A, Orchard PJ, Vezzoni P, Villa A (2003) Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res 18:1740–1747PubMedCrossRefGoogle Scholar
  18. 18.
    Grand T, Mordasini D, L'Hoste S, Pennaforte T, Genete M, Biyeyeme MJ, Vargas-Poussou R, Blanchard A, Teulon J, Lourdel S (2009) Novel CLCN5 mutations in patients with Dent’s disease result in altered ion currents or impaired exchanger processing. Kidney Int 76:999–1005PubMedCrossRefGoogle Scholar
  19. 19.
    Grand T, L'Hoste S, Mordasini D, Defontaine N, Keck M, Pennaforte T, Genete M, Laghmani K, Teulon J, Lourdel S (2011) Heterogeneity in the processing of CLCN5 mutants related to Dent disease. Hum Mutat 32:476–483PubMedCrossRefGoogle Scholar
  20. 20.
    Gregersen N, Bross P, Vang S, Christensen JH (2006) Protein misfolding and human disease. Annu Rev Genomics Hum Genet 7:103–124PubMedCrossRefGoogle Scholar
  21. 21.
    Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci U S A 95:8075–8080PubMedCrossRefGoogle Scholar
  22. 22.
    Gunther W, Piwon N, Jentsch TJ (2003) The ClC-5 chloride channel knock-out mouse - an animal model for Dent's disease. Pflugers Arch 445:456–462PubMedGoogle Scholar
  23. 23.
    Hara-Chikuma M, Wang Y, Guggino SE, Guggino WB, Verkman AS (2005) Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Biochem Biophys Res Commun 329:941–946PubMedCrossRefGoogle Scholar
  24. 24.
    Hoopes RR Jr, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, Simckes A, Tasic V, Toenshoff B, Suchy SF, Nussbaum RL, Scheinman SJ (2005) Dent Disease with mutations in OCRL1. Am J Hum Genet 76:260–267PubMedCrossRefGoogle Scholar
  25. 25.
    Hryciw DH, Wang Y, Devuyst O, Pollock CA, Poronnik P, Guggino WB (2003) Cofilin interacts with ClC-5 and regulates albumin uptake in proximal tubule cell lines. J Biol Chem 278:40169–40176PubMedCrossRefGoogle Scholar
  26. 26.
    Hryciw DH, Ekberg J, Lee A, Lensink IL, Kumar S, Guggino WB, Cook DI, Pollock CA, Poronnik P (2004) Nedd4-2 functionally interacts with ClC-5: involvement in constitutive albumin endocytosis in proximal tubule cells. J Biol Chem 279:54996–55007PubMedCrossRefGoogle Scholar
  27. 27.
    Hryciw DH, Ekberg J, Ferguson C, Lee A, Wang D, Parton RG, Pollock CA, Yun CC, Poronnik P (2006) Regulation of albumin endocytosis by PSD95/Dlg/ZO-1 (PDZ) scaffolds. Interaction of Na+-H+ exchange regulatory factor-2 with ClC-5. J Biol Chem 281:16068–16077PubMedCrossRefGoogle Scholar
  28. 28.
    Hryciw DH, Ekberg J, Pollock CA, Poronnik P (2006) ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake. Int J Biochem Cell Biol 38:1036–1042PubMedCrossRefGoogle Scholar
  29. 29.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38PubMedCrossRefGoogle Scholar
  30. 30.
    Jentsch TJ (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 43:3–36PubMedCrossRefGoogle Scholar
  31. 31.
    Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449PubMedCrossRefGoogle Scholar
  32. 32.
    Lloyd SE, Gunther W, Pearce SH, Thomson A, Bianchi ML, Bosio M, Craig IW, Fisher SE, Scheinman SJ, Wrong O, Jentsch TJ, Thakker RV (1997) Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders. Hum Mol Genet 6:1233–1239PubMedCrossRefGoogle Scholar
  33. 33.
    Lossin C, George AL Jr (2008) Myotonia congenita. Adv Genet 63:25–55PubMedCrossRefGoogle Scholar
  34. 34.
    Ludwig M, Doroszewicz J, Seyberth HW, Bokenkamp A, Balluch B, Nuutinen M, Utsch B, Waldegger S (2005) Functional evaluation of Dent's disease-causing mutations: implications for ClC-5 channel trafficking and internalization. Hum Genet 117:228–237PubMedCrossRefGoogle Scholar
  35. 35.
    Matsuda JJ, Filali MS, Collins MM, Volk KA, Lamb FS (2010) The ClC-3 Cl-/H+ antiporter becomes uncoupled at low extracellular pH. J Biol Chem 285:2569–2579PubMedCrossRefGoogle Scholar
  36. 36.
    Meyer S, Savaresi S, Forster IC, Dutzler R (2007) Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5. Nat Struct Mol Biol 14:60–67PubMedCrossRefGoogle Scholar
  37. 37.
    Mo L, Xiong W, Qian T, Sun H, Wills NK (2004) Coexpression of complementary fragments of ClC-5 and restoration of chloride channel function in a Dent's disease mutation. Am J Physiol Cell Physiol 286:C79–89PubMedCrossRefGoogle Scholar
  38. 38.
    Morimoto T, Uchida S, Sakamoto H, Kondo Y, Hanamizu H, Fukui M, Tomino Y, Nagano N, Sasaki S, Marumo F (1998) Mutations in CLCN5 chloride channel in Japanese patients with low molecular weight proteinuria. J Am Soc Nephrol 9:811–818PubMedGoogle Scholar
  39. 39.
    Neagoe I, Stauber T, Fidzinski P, Bergsdorf EY, Jentsch TJ (2010) The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression. J Biol Chem 285:21689–21697PubMedCrossRefGoogle Scholar
  40. 40.
    Novarino G, Weinert S, Rickheit G, Jentsch TJ (2010) Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328:1398–1401PubMedCrossRefGoogle Scholar
  41. 41.
    Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423PubMedCrossRefGoogle Scholar
  42. 42.
    Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ (2000) ClC-5 Cl channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408:369–373PubMedCrossRefGoogle Scholar
  43. 43.
    Pook MA, Wrong O, Wooding C, Norden AG, Feest TG, Thakker RV (1993) Dent's disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS255 and maps to Xp11.22. Hum Mol Genet 2:2129–2134PubMedCrossRefGoogle Scholar
  44. 44.
    Reed AA, Loh NY, Terryn S, Lippiat JD, Partridge C, Galvanovskis J, Williams SE, Jouret F, Wu FT, Courtoy PJ, Nesbit MA, Rorsman P, Devuyst O, Ashcroft FM, Thakker RV (2010) CLC-5 and KIF3B interact to facilitate CLC-5 plasma membrane expression, endocytosis, and microtubular transport: relevance to pathophysiology of Dent's disease. Am J Physiol Renal Physiol 298:F365–380PubMedCrossRefGoogle Scholar
  45. 45.
    Sakamoto H, Sado Y, Naito I, Kwon TH, Inoue S, Endo K, Kawasaki M, Uchida S, Nielsen S, Sasaki S, Marumo F (1999) Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: colocalization with H+-ATPase. Am J Physiol 277:F957–965PubMedGoogle Scholar
  46. 46.
    Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–427PubMedCrossRefGoogle Scholar
  47. 47.
    Scheinman SJ (1998) X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int 53:3–17PubMedCrossRefGoogle Scholar
  48. 48.
    Smith AJ, Reed AA, Loh NY, Thakker RV, Lippiat JD (2009) Characterization of Dent's disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure. Am J Physiol Renal Physiol 296:F390–397PubMedCrossRefGoogle Scholar
  49. 49.
    Steinmeyer K, Schwappach B, Bens M, Vandewalle A, Jentsch TJ (1995) Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J Biol Chem 270:31172–31177PubMedCrossRefGoogle Scholar
  50. 50.
    Suzuki T, Rai T, Hayama A, Sohara E, Suda S, Itoh T, Sasaki S, Uchida S (2006) Intracellular localization of ClC chloride channels and their ability to form hetero-oligomers. J Cell Physiol 206:792–798PubMedCrossRefGoogle Scholar
  51. 51.
    Tanuma A, Sato H, Takeda T, Hosojima M, Obayashi H, Hama H, Iino N, Hosaka K, Kaseda R, Imai N, Ueno M, Yamazaki M, Sakimura K, Gejyo F, Saito A (2007) Functional characterization of a novel missense CLCN5 mutation causing alterations in proximal tubular endocytic machinery in Dent's disease. Nephron Physiol 107:p87–97PubMedCrossRefGoogle Scholar
  52. 52.
    Waguespack SG, Koller DL, White KE, Fishburn T, Carn G, Buckwalter KA, Johnson M, Kocisko M, Evans WE, Foroud T, Econs MJ (2003) Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II. J Bone Miner Res 18:1513–1518PubMedCrossRefGoogle Scholar
  53. 53.
    Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent's disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945PubMedCrossRefGoogle Scholar
  54. 54.
    Wang Y, Cai H, Cebotaru L, Hryciw DH, Weinman EJ, Donowitz M, Guggino SE, Guggino WB (2005) ClC-5: role in endocytosis in the proximal tubule. Am J Physiol Renal Physiol 289:F850–862PubMedCrossRefGoogle Scholar
  55. 55.
    Wartosch L, Fuhrmann JC, Schweizer M, Stauber T, Jentsch TJ (2009) Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. Faseb J 23:4056–4068PubMedCrossRefGoogle Scholar
  56. 56.
    Wellhauser L, Luna-Chavez C, D'Antonio C, Tainer J, Bear CE (2011) ATP induces conformational changes in the carboxyl-terminal region of ClC-5. J Biol Chem 286:6733–6741PubMedCrossRefGoogle Scholar
  57. 57.
    Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254PubMedCrossRefGoogle Scholar
  58. 58.
    Wrong OM, Norden AG, Feest TG (1994) Dent's disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473–493PubMedGoogle Scholar
  59. 59.
    Wu F, Roche P, Christie PT, Loh NY, Reed AA, Esnouf RM, Thakker RV (2003) Modeling study of human renal chloride channel (hCLC-5) mutations suggests a structural-functional relationship. Kidney Int 63:1426–1432PubMedCrossRefGoogle Scholar
  60. 60.
    Wu F, Reed AA, Williams SE, Loh NY, Lippiat JD, Christie PT, Large O, Bettinelli A, Dillon MJ, Goldraich NP, Hoppe B, Lhotta K, Loirat C, Malik R, Morel D, Kotanko P, Roussel B, Rubinger D, Schrander-Stumpel C, Serdaroglu E, Nesbit MA, Ashcroft F, Thakker RV (2009) Mutational analysis of CLC-5, cofilin and CLC-4 in patients with Dent's disease. Nephron Physiol 112:p53–62PubMedCrossRefGoogle Scholar
  61. 61.
    Yamamoto K, Cox JP, Friedrich T, Christie PT, Bald M, Houtman PN, Lapsley MJ, Patzer L, Tsimaratos M, Van'T Hoff WG, Yamaoka K, Jentsch TJ, Thakker RV (2000) Characterization of renal chloride channel (CLCN5) mutations in Dent's disease. J Am Soc Nephrol 11:1460–1468PubMedGoogle Scholar
  62. 62.
    Zdebik AA, Zifarelli G, Bergsdorf EY, Soliani P, Scheel O, Jentsch TJ, Pusch M (2008) Determinants of anion-proton coupling in mammalian endosomal CLC proteins. J Biol Chem 283:4219–4227PubMedCrossRefGoogle Scholar
  63. 63.
    Zielenski J, Tsui LC (1995) Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 29:777–807PubMedCrossRefGoogle Scholar
  64. 64.
    Zifarelli G, Pusch M (2009) Intracellular regulation of human ClC-5 by adenine nucleotides. EMBO Rep 10:1111–1116PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stéphane Lourdel
    • 1
    • 2
    • 3
    • 6
  • Teddy Grand
    • 1
    • 2
    • 3
  • Johanna Burgos
    • 4
  • Wendy González
    • 5
  • Francisco V. Sepúlveda
    • 4
  • Jacques Teulon
    • 1
    • 2
    • 3
  1. 1.UPMC Univ Paris 06, UMR_S 872Laboratoire de génomique, physiologie et physiopathologie rénalesParisFrance
  2. 2.INSERM, UMR_S 872Laboratoire de génomique, physiologie et physiopathologie rénalesParisFrance
  3. 3.CNRS, ERL 7226Laboratoire de génomique, physiologie et physiopathologie rénalesParisFrance
  4. 4.Centro de Estudios Científicos (CECs)ValdiviaChile
  5. 5.Centro de Bioinformática y Simulación MolecularUniversidad de TalcaTalcaChile
  6. 6.UMR_S 872, ERL 7226Laboratoire de génomique, physiologie et physiopathologie rénalesParis cedex 06France

Personalised recommendations