Advertisement

Waking with the hypothalamus

  • Helmut L. Haas
  • Jian-Sheng Lin
Invited Review

Abstract

An essential component of the whole-body homoeostasis provided by the hypothalamus is the management of available energy. This includes the regulation of sleeping and waking, feeding and drinking, body temperature and activity, as well as the endocrinium. The waking brain, in particular the cerebral cortex, needs to be activated through neuronal pathways ascending from the brainstem reticular formation (ascending reticular activating system, ARAS) and reaching the cortical structures by a dorsal route through the thalamus and a ventral route, including the hypothalamus and the basal forebrain. This review concentrates on the more recently explored ventral route and the hypothalamus with its different regions involved in the control of the waking state.

Keywords

Cortical activation Circadian and homoeostatic regulation Histamine Orexin/hypocretin 

Notes

Acknowledgements

This work was supported by the European Community, QLRT-2001-00826 (H.L.H and J.-S.L.), Deutsche Forschungsgemeinschaft, DFG SFB 575/3 (H.L.H.), and INSERM/UCBL-U628 (J.-S.L). We are grateful to C. Anaclet for contributing to the data presented in Fig. 3.

References

  1. 1.
    Adamantidis A, Salvert D, Goutagny R, Lakaye B, Gervasoni D, Grisar T, Luppi PH, Fort P (2008) Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. Eur J Neurosci 27:1793–1800PubMedGoogle Scholar
  2. 2.
    Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre JP, Akaoka H, Sergeeva OA, Yanagisawa M, Ohtsu H, Franco P, Haas HL, Lin JS (2009) Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci 29:14423–14438PubMedGoogle Scholar
  3. 3.
    Arnulf I, Leu-Semenescu S (2009) Sleepiness in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S101–S104PubMedGoogle Scholar
  4. 4.
    Arrang JM, Garbarg M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302:832–837PubMedGoogle Scholar
  5. 5.
    Aston-Jones G, Smith RJ, Moorman DE, Richardson KA (2009) Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56:112–121PubMedGoogle Scholar
  6. 6.
    Barnes WG, Hough LB (2002) Membrane-bound histamine N-methyltransferase in mouse brain: possible role in the synaptic inactivation of neuronal histamine. J Neurochem 82:1262–1271PubMedGoogle Scholar
  7. 7.
    Bauer RM, Vela MB, Simon T, Waldrop TG (1988) A GABAergic mechanism in the posterior hypothalamus modulates baroreflex bradycardia. Brain Res Bull 20:633–641PubMedGoogle Scholar
  8. 8.
    Bayer L, Eggermann E, Saint-Mleux B, Machard D, Jones BE, Muhlethaler M, Serafin M (2002) Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J Neurosci 22:7835–7839PubMedGoogle Scholar
  9. 9.
    Bayer L, Serafin M, Eggermann E, Saint-Mleux B, Marchard D, Jones BE, Muhlethaler M (2004) Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons. J Neurosci 24:6760–6764PubMedGoogle Scholar
  10. 10.
    Belardetti F, Borgia R, Mancia M (1977) Prosencephalic mechanisms of ecog desynchronization in Cerveau-Isole cats. Electroencephalogr Clin Neurophysiol 42:213–225PubMedGoogle Scholar
  11. 11.
    Benington JH, Kodali SK, Heller HC (1995) Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Res 692:79–85PubMedGoogle Scholar
  12. 12.
    Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat-brain—an immunization and hybridization histochemical characterization. J Comp Neurol 319:218–245PubMedGoogle Scholar
  13. 13.
    Bjorness TE, Greene RW (2009) Adenosine and sleep. Curr Neuropharmacol 7:238–245PubMedGoogle Scholar
  14. 14.
    Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204PubMedGoogle Scholar
  15. 15.
    Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14:557–568PubMedGoogle Scholar
  16. 16.
    Brown RE, Sergeeva O, Eriksson KS, Haas HL (2001) Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 40:457–459PubMedGoogle Scholar
  17. 17.
    Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22:8850–8859PubMedGoogle Scholar
  18. 18.
    Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de LL (2009) Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 29:10939–10949PubMedGoogle Scholar
  19. 19.
    Chou TC, Lee CE, Lu J, Elmquist JK, Hara J, Willie JT, Beuckmann CT, Chemelli RM, Sakurai T, Yanagisawa M, Saper CB, Scammell TE (2001) Orexin (hypocretin) neurons contain dynorphin. J Neurosci 21:RC168PubMedGoogle Scholar
  20. 20.
    Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 96:748–753PubMedGoogle Scholar
  21. 21.
    de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327PubMedGoogle Scholar
  22. 22.
    Denoyer M, Sallanon M, Buda C, Kitahama K, Jouvet M (1991) Neurotoxic lesion of the mesencephalic reticular-formation and or the posterior hypothalamus does not alter waking in the cat. Brain Res 539:287–303PubMedGoogle Scholar
  23. 23.
    Douglas WW (1985) Histamine and serotonin and their antagonists. In: Gilman AG, Goodman LS, Rall TW, Murad F (eds) The pharmacological basis of therapeutics. Macmillan, New York, pp 605–635Google Scholar
  24. 24.
    Eggermann E, Bayer L, Serafin M, Saint-Mleux B, Bernheim L, Machard D, Jones BE, Muhlethaler M (2003) The wake-promoting hypocretin-orexin neurons are in an intrinsic state of membrane depolarization. J Neurosci 23:1557–1562PubMedGoogle Scholar
  25. 25.
    Eriksson KS, Sergeeva O, Brown RE, Haas HL (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomamillary nucleus. J Neurosci 21:9273–9279PubMedGoogle Scholar
  26. 26.
    Ford B, Holmes CJ, Mainville L, Jones BE (1995) GABAergic neurons in the rat pontomesencephalic tegmentum—codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 363:177–196PubMedGoogle Scholar
  27. 27.
    Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlethaler M, Serafin M (2000) Identification of sleep-promoting neurons in vitro. Nature 404:992–995PubMedGoogle Scholar
  28. 28.
    Gerashchenko D, Salin-Pascual R, Shiromani PJ (2001) Effects of hypocretin-saporin injections into the medial septum on sleep and hippocampal theta. Brain Res 913:106–115PubMedGoogle Scholar
  29. 29.
    Gorelova N, Reiner PB (1996) Histamine depolarizes cholinergic septal neurons. J Neurophysiol 75:707–714PubMedGoogle Scholar
  30. 30.
    Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded invitro. J Neurosci 9:3463–3481PubMedGoogle Scholar
  31. 31.
    Haas HL, Reiner PB (1988) Membrane properties of histaminergic tuberomamillary neurones of the rat hypothalamus in vitro. J Physiol Lond 399:633–646PubMedGoogle Scholar
  32. 32.
    Haas HL, Selbach O (2000) Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 362:375–381PubMedGoogle Scholar
  33. 33.
    Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241PubMedGoogle Scholar
  34. 34.
    Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Taylor SG, Routledge C, Hemmati P, Munton RP, Ashmeade TE, Shah AS, Hatcher JP, Hatcher PD, Jones DN, Smith MI, Piper DC, Hunter AJ, Porter RA, Upton N (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA 96:10911–10916PubMedGoogle Scholar
  35. 35.
    Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci USA 106:2418–2422PubMedGoogle Scholar
  36. 36.
    Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, van den Pol AN (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol 415:145–159PubMedGoogle Scholar
  37. 37.
    Huang ZL, Qu WM, Li WD, Mochizuki T, Eguchi N, Watanabe T, Urade Y, Hayaishi O (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci USA 98:9965–9970PubMedGoogle Scholar
  38. 38.
    Huston JP, Haas HL, Boix F, Pfister M, Decking U, Schrader J, Schwarting RK (1996) Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats. Neuroscience 73:99–107PubMedGoogle Scholar
  39. 39.
    Jaeger LB, Farr SA, Banks WA, Morley JE (2002) Effects of orexin-A on memory processing. Peptides 23:1683–1688PubMedGoogle Scholar
  40. 40.
    John J, Wu MF, Boehmer LN, Siegel JM (2004) Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42:619–634PubMedGoogle Scholar
  41. 41.
    Jones BE (1993) The organization of central cholinergic systems and their functional importance in sleep-waking states. In: Cuello AC (ed) Progress in brain research. Elsevier, Amsterdam, pp 61–71Google Scholar
  42. 42.
    Jones BE (2008) Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems. Ann N Y Acad Sci 1129:26–34PubMedGoogle Scholar
  43. 43.
    Jones DN, Gartlon J, Parker F, Taylor SG, Routledge C, Hemmati P, Munton RP, Ashmeade TE, Hatcher JP, Johns A, Porter RA, Hagan JJ, Hunter AJ, Upton N (2001) Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity. Psychopharmacology (Berl) 153:210–218Google Scholar
  44. 44.
    Jouvet M (1972) Role of monoamines and acetylcholine-containing neurons in regulation of sleep-waking cycle. Ergeb Physiol Biol Chem Exp Pharmakol 64:166–307Google Scholar
  45. 45.
    Jouvet M (1993) From amines to sleep—a citation-classic commentary on the role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol 64:166–307Google Scholar
  46. 46.
    Khateb A, Fort P, Pegna A, Jones BE, Muhlethaler M (1995) Cholinergic nucleus basalis neurons are excited by histamine in-vitro. Neuroscience 69:495–506PubMedGoogle Scholar
  47. 47.
    Kiyono S, Seo ML, Shibagaki M, Watanabe T, Maeyama K, Wada H (1985) Effects of alpha-fluoromethylhistidine on sleep-waking parameters in rats. Physiol Behav 34:615–617PubMedGoogle Scholar
  48. 48.
    Kohler C, Swanson LW, Haglund L, Wu JY (1985) The cytoarchitecture, histochemistry and projections of the tuberomamillary nucleus in the rat. Neuroscience 16:85–110PubMedGoogle Scholar
  49. 49.
    Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 23:7–11PubMedGoogle Scholar
  50. 50.
    Korotkova TM, Klyuch BP, Ponomarenko AA, Lin JS, Haas HL, Sergeeva OA (2007) Modafinil inhibits rat midbrain dopaminergic neurons through D2-like receptors. Neuropharmacology 52:626–633PubMedGoogle Scholar
  51. 51.
    Krilowicz BL, Szymusiak R, McGinty D (1994) Regulation of posterior lateral hypothalamic arousal related neuronal discharge by preoptic-anterior hypothalamic warming. Brain Res 668:30–38PubMedGoogle Scholar
  52. 52.
    Kukkonen JP, Holmqvist T, Ammoun S, Akerman KEO (2002) Functions of the orexinergic/hypocretinergic system. Am J Physiol Cell Physiol 283:C1567–C1591PubMedGoogle Scholar
  53. 53.
    Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716–6720PubMedGoogle Scholar
  54. 54.
    Leurs R, Bakker RA, Timmerman H, De Esch IJP (2005) The histamine H-3 receptor: from gene cloning to H-3 receptor drugs. Nat Rev Drug Discov 4:107–120PubMedGoogle Scholar
  55. 55.
    Li Y, Gao XB, Sakurai T, van den Pol AN (2002) Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36:1169–1181PubMedGoogle Scholar
  56. 56.
    Lin JS (2000) Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev 4:471–503PubMedGoogle Scholar
  57. 57.
    Lin JS, Luppi PH, Salvert D, Sakai K, Jouvet M (1986) Histamine-containing neurons in the cat hypothalamus. Comptes Rendus de l Academie des Sciences Serie Iii-Sciences de la Vie-Life Sciences 303:371–376Google Scholar
  58. 58.
    Lin JS, Sakai K, Vanni MG, Jouvet M (1989) A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 479:225–240PubMedGoogle Scholar
  59. 59.
    Lin JS, Roussel B, Akaoka H, Fort P, Debilly G, Jouvet M (1992) Role of catecholamines in the modafinil and amphetamine induced wakefulness, a comparative pharmacological study in the cat. Brain Res 591:319–326PubMedGoogle Scholar
  60. 60.
    Lin JS, Kitahama K, Fort P, Panula P, Denney RM, Jouvet M (1993) Histaminergic system in the cat hypothalamus with reference to type-B monoamine-oxidase. J Comp Neurol 330:405–420PubMedGoogle Scholar
  61. 61.
    Lin JS, Sakai K, Jouvet M (1994) Hypothalamo-preoptic histaminergic projections in sleep-wake control in the cat. Eur J Neurosci 6:618–625PubMedGoogle Scholar
  62. 62.
    Lin JS, Hou YP, Jouvet M (1996) Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. Proc Natl Acad Sci USA 93:14128–14133PubMedGoogle Scholar
  63. 63.
    Lin JS, Hou YP, Sakai K, Jouvet M (1996) Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J Neurosci 16:1523–1537PubMedGoogle Scholar
  64. 64.
    Lin JS, Dauvilliers Y, Arnulf I, Bastuji H, Anaclet C, Parmentier R, Kocher L, Yanagisawa M, Lehert P, Ligneau X, Perrin D, Robert P, Roux M, Lecomte JM, Schwartz JC (2008) An inverse agonist of the histamine H-3 receptor improves wakefulness in narcolepsy: studies in orexin(−/−) mice and patients. Neurobiol Dis 30:74–83PubMedGoogle Scholar
  65. 65.
    Lin JS, Sergeeva OA, Haas HL (2010) Histamine H3-receptors and sleep-wake regulation. J Pharmacol Exp Ther 336:17–23PubMedGoogle Scholar
  66. 66.
    Liu YW, Li J, Ye JH (2010) Histamine regulates activities of neurons in the ventrolateral preoptic nucleus. J Physiol 588:4103–4116PubMedGoogle Scholar
  67. 67.
    Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25PubMedGoogle Scholar
  68. 68.
    Martins PJ, D’Almeida V, Pedrazzoli M, Lin L, Mignot E, Tufik S (2004) Increased hypocretin-1 (orexin-a) levels in cerebrospinal fluid of rats after short-term forced activity. Regul Pept 117:155–158PubMedGoogle Scholar
  69. 69.
    McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral-cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388PubMedGoogle Scholar
  70. 70.
    McCormick DA, Williamson A (1991) Modulation of neuronal firing mode in cat and guinea-pig lgnd by histamine—possible cellular mechanisms of histaminergic control of arousal. J Neurosci 11:3188–3199PubMedGoogle Scholar
  71. 71.
    Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798PubMedGoogle Scholar
  72. 72.
    Mochizuki T, Yamatodani A, Okakura K, Horii A, Inagaki N, Wada H (1992) Circadian-rhythm of histamine-release from the hypothalamus of freely moving rats. Physiol Behav 51:391–394PubMedGoogle Scholar
  73. 73.
    Mochizuki T, Arrigoni E, Marcus JN, Clark EL, Yamamoto M, Honer M, Borroni E, Lowell BB, Elmquist JK, Scammell TE (2011) Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci USA 108:4471–4476PubMedGoogle Scholar
  74. 74.
    Monnier M, Fallert M, Battacharya IC (1967) Waking action of histamine. Experientia 23:21–22PubMedGoogle Scholar
  75. 75.
    Monti JM (1993) Involvement of histamine in the control of the waking state. Life Sci 53:1331–1338PubMedGoogle Scholar
  76. 76.
    Moruzzi G (1972) The sleep-waking cycle. Ergeb Physiol Biol Chem Exp Pharmakol 64:1Google Scholar
  77. 77.
    Nauta WHJ (1946) Hypothalamic regulation of sleep in rats. Experimental study. J Neurophysiol 9:285–316PubMedGoogle Scholar
  78. 78.
    Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M (2002) The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 5:979–984PubMedGoogle Scholar
  79. 79.
    Nishino S, Arrigoni J, Shelton J, Kanbayashi T, Dement WC, Mignot E (1997) Effects of thyrotropin-releasing hormone and its analogs on daytime sleepiness and cataplexy in canine narcolepsy. J Neurosci 17:6401–6408PubMedGoogle Scholar
  80. 80.
    Nishino S, Ripley B, Overeem S, Nevsimalova S, Lammers GJ, Vankova J, Okun M, Rogers W, Brooks S, Mignot E (2001) Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann Neurol 50:381–388PubMedGoogle Scholar
  81. 81.
    Nishino S, Sakurai E, Nevsimalova S, Yoshida Y, Watanabe T, Yanai K, Mignot E (2009) Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 32:175–180PubMedGoogle Scholar
  82. 82.
    Nitz D, Siegel JM (1996) GABA release in posterior hypothalamus across sleep-wake cycle. Am J Physiol 271:R1707–R1712PubMedGoogle Scholar
  83. 83.
    Ohshima Y, Iwase M, Izumizaki M, Ishiguro T, Kanamaru M, Nakayama H, Gejyo F, Homma I (2007) Hypoxic ventilatory response during light and dark periods and the involvement of histamine H1 receptor in mice. Am J Physiol Regul Integr Comp Physiol 293:R1350–R1356PubMedGoogle Scholar
  84. 84.
    Panula P, Yang HY, Costa E (1984) Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci USA 81:2572–2576PubMedGoogle Scholar
  85. 85.
    Pape HC, McCormick DA (1989) Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340:715–718PubMedGoogle Scholar
  86. 86.
    Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 22:7695–7711PubMedGoogle Scholar
  87. 87.
    Parmentier R, Anaclet C, Guhennec C, Brousseau E, Bricout D, Giboulot T, Bozyczko-Coyne D, Spiegel K, Ohtsu H, Williams M, Lin JS (2007) The brain H-3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Biochem Pharmacol 73:1157–1171PubMedGoogle Scholar
  88. 88.
    Parmentier R, Kolbaev S, Klyuch BP, Vandael D, Lin JS, Selbach O, Haas HL, Sergeeva OA (2009) Excitation of histaminergic tuberomamillary neurons by thyrotropin-releasing hormone. J Neurosci 29:4471–4483PubMedGoogle Scholar
  89. 89.
    Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015PubMedGoogle Scholar
  90. 90.
    Philippu A, Prast H (2001) Importance of histamine in modulatory processes, locomotion and memory. Behav Brain Res 124:151–159PubMedGoogle Scholar
  91. 91.
    Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268PubMedGoogle Scholar
  92. 92.
    Prell GD, Green JP (1986) Histamine as a neuroregulator. Annu Rev Neurosci 9:209–254PubMedGoogle Scholar
  93. 93.
    Reiner PB, Kamondi A (1994) Mechanisms of antihistamine-induced sedation in the human brain—H-1 receptor activation reduces a background leakage potassium current. Neuroscience 59:579–588PubMedGoogle Scholar
  94. 94.
    Reymann KG, Frey JU (2007) The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52:24–40PubMedGoogle Scholar
  95. 95.
    Sakai K (1991) Physiological properties and afferent connections of the locus coeruleus and adjacent tegmental neurons involved in the generation of paradoxical sleep in the cat. In: Barnes CD, Pompeiano O (eds) Progress in brain research. Elsevier, Amsterdam, pp 31–45Google Scholar
  96. 96.
    Sakai K, Salvert D, Kitahama K, Kimura H, Maeda T, Jouvet M (1983) Ascending and descending projections of caudal hypothalamic neurons stained by serotonin immunohistochemistry after administration of 5-hydroxytryptophan in the cat. Comptes Rendus de l Academie des Sciences Serie Iii-Sciences de la Vie-Life Sciences 296:1013–1018Google Scholar
  97. 97.
    Sakai K, El Mansari M, Lin JS, Zhang JG, Vanni-Mercier G (1990) The posterior hypothalamus in the regulation of wakefulness and paradoxical sleep. In: Mancia M, Marini G (eds) The diencephalon and sleep. Raven, New York, pp 171–198Google Scholar
  98. 98.
    Sakai K, Yoshimoto Y, Luppi PH, Fort P, Elmansari M, Salvert D, Jouvet M (1990) Lower brain-stem afferents to the cat posterior hypothalamus—a double-labeling study. Brain Res Bull 24:437–455PubMedGoogle Scholar
  99. 99.
    Sakai K, Takahashi K, Anaclet C, Lin JS (2010) Sleep-waking discharge of ventral tuberomamillary neurons in wild-type and histidine decarboxylase knock-out mice. Front Behav Neurosci 4:1–10Google Scholar
  100. 100.
    Sakumoto T, Sakai K, Jouvet M, Kimura H, Maeda T (1984) 5-HT immunoreactive hypothalamic neurons in rat and cat after 5-HTP administration. Brain Res Bull 12:721–733PubMedGoogle Scholar
  101. 101.
    Sakurai T (2002) Roles of orexins in regulation of feeding and wakefulness. Neuroreport 13:987–995PubMedGoogle Scholar
  102. 102.
    Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181PubMedGoogle Scholar
  103. 103.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585PubMedGoogle Scholar
  104. 104.
    Sallanon M, Sakai K, Buda C, Puymartin M, Jouvet M (1988) Increase of paradoxical sleep induced by microinjections of ibotenic acid into the ventrolateral part of the posterior hypothalamus in the cat. Arch Ital Biol 126:87–97PubMedGoogle Scholar
  105. 105.
    Sallanon M, Denoyer M, Kitahama K, Aubert C, Gay N, Jouvet M (1989) Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience 32:669–683PubMedGoogle Scholar
  106. 106.
    Saper CB (1985) Organization of cerebral cortical afferent systems in the rat. 2. Hypothalamocortical projections. J Comp Neurol 237:21–46PubMedGoogle Scholar
  107. 107.
    Saper CB, Akil H, Watson SJ (1986) Lateral hypothalamic innervation of the cerebral-cortex—immunoreactive staining for a peptide resembling but immunochemically distinct from pituitary arcuate alpha-melanocyte stimulating hormone. Brain Res Bull 16:107–120PubMedGoogle Scholar
  108. 108.
    Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263PubMedGoogle Scholar
  109. 109.
    Schmidt MH, Valatx JL, Sakai K, Fort P, Jouvet M (2000) Role of the lateral preoptic area in sleep-related erectile mechanisms and sleep generation in the rat. J Neurosci 20:6640–6647PubMedGoogle Scholar
  110. 110.
    Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71:1–51PubMedGoogle Scholar
  111. 111.
    Selbach O, Brown RE, Haas HL (1997) Long-term increase of hippocampal excitability by histamine and cyclic AMP. Neuropharmacology 36:1539–1548PubMedGoogle Scholar
  112. 112.
    Selbach O, Doreulee N, Bohla C, Eriksson KS, Sergeeva OA, Poelchen W, Brown RE, Haas HL (2004) Orexins/hypocretins cause sharp wave- and theta-related synaptic plasticity in the hippocampus via glutamatergic, GABAergic, noradrenergic, and cholinergic signaling. Neuroscience 127:519–528PubMedGoogle Scholar
  113. 113.
    Selbach O, Bohla C, Barbara A, Doreulee N, Eriksson KS, Sergeeva OA, Haas HL (2010) Orexins/hypocretins control bistability of hippocampal long-term synaptic plasticity through co-activation of multiple kinases. Acta Physiol (Oxf) 198:277–285Google Scholar
  114. 114.
    Sergeeva OA, Klyuch BP, Fleischer W, Eriksson KS, Korotkova TM, Siebler M, Haas HL (2006) P2Y receptor-mediated excitation in the posterior hypothalamus. Eur J Neurosci 24:1413–1426PubMedGoogle Scholar
  115. 115.
    Sergeeva OA, Amberger BT, Haas HL (2007) Editing of AMPA and serotonin 2C receptors in individual central neurons, controlling wakefulness. Cell Mol Neurobiol 27:669–680PubMedGoogle Scholar
  116. 116.
    Shekhar A, Dimicco JA (1987) Defense reaction elicited by injection of GABA antagonists and synthesis inhibitors into the posterior hypothalamus in rats. Neuropharmacology 26:407–417PubMedGoogle Scholar
  117. 117.
    Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomamillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721PubMedGoogle Scholar
  118. 118.
    Siegel JM, Boehmer LN (2006) Narcolepsy and the hypocretin system—where motion meets emotion. Nat Clin Pract Neurol 2:548–556PubMedGoogle Scholar
  119. 119.
    Stehle J (1991) Effects of histamine on spontaneous electrical activity of neurons in rat suprachiasmatic nucleus. Neurosci Lett 130:217–220PubMedGoogle Scholar
  120. 120.
    Steriade M (1991) Alertness, quiet sleep, dreaming. In: Peters A (ed) Cerebral cortex. Plenum, New York, pp 279–357Google Scholar
  121. 121.
    Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum, New YorkGoogle Scholar
  122. 122.
    Steriade M, McCarley R (2005) Brainstem control of wakefulness and sleep. Plenum, New YorkGoogle Scholar
  123. 123.
    Strecker RE, Nalwalk J, Dauphin LJ, Thakkar MM, Chen Y, Ramesh V, Hough LB, McCarley RW (2002) Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience 113:663–670PubMedGoogle Scholar
  124. 124.
    Suntsova N, Guzman-Marin R, Kumar S, Alam MN, Szymusiak R, McGinty D (2007) The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J Neurosci 27:1616–1630PubMedGoogle Scholar
  125. 125.
    Szymusiak R, McGinty D (1986) Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res 370:82–92PubMedGoogle Scholar
  126. 126.
    Szymusiak R, Gvilia I, McGinty D (2007) Hypothalamic control of sleep. Sleep Med 8:291–301PubMedGoogle Scholar
  127. 127.
    Takahashi K, Lin JS, Sakai K (2006) Neuronal activity of histaminergic tuberomamillary neurons during wake-sleep states in the mouse. J Neurosci 26:10292–10298PubMedGoogle Scholar
  128. 128.
    Takahashi K, Lin JS, Sakai K (2008) Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153:860–870PubMedGoogle Scholar
  129. 129.
    Takahashi K, Lin JS, Sakai K (2009) Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience 161:269–292PubMedGoogle Scholar
  130. 130.
    Takahashi K, Kayama Y, Lin JS, Sakai K (2010) Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience 169:1115–1126PubMedGoogle Scholar
  131. 131.
    Takeda N, Inagaki S, Taguchi Y, Tohyama M, Watanabe T, Wada H (1984) Origins of histamine-containing fibers in the cerebral cortex of rats studied by immunohistochemistry with histidine decarboxylase as a marker and transection. Brain Res 323:55–63PubMedGoogle Scholar
  132. 132.
    Tsujino N, Sakurai T (2009) Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 61:162–176PubMedGoogle Scholar
  133. 133.
    Uteshev VV, Stevens DR, Haas HL (1996) Alpha-bungarotoxin-sensitive nicotinic responses in rat tuberomamillary neurons. Pflugers Arch 432:607–613PubMedGoogle Scholar
  134. 134.
    Valdes JL, Farias P, Ocampo-Garces A, Cortes N, Seron-Ferre M, Torrealba F (2005) Arousal and differential Fos expression in histaminergic neurons of the ascending arousal system during a feeding-related motivated behaviour. Eur J Neurosci 21:1931–1942PubMedGoogle Scholar
  135. 135.
    Vanni-Mercier G, Gigout S, Debilly G, Lin JS (2003) Waking selective neurons in the posterior hypothalamus and their response to histamine H3-receptor ligands: an electrophysiological study in freely moving cats. Behav Brain Res 144:227–241PubMedGoogle Scholar
  136. 136.
    Vincent SR, Hokfelt T, Skirboll LR, Wu JY (1983) Hypothalamic gamma-aminobutyric acid neurons project to the neocortex. Science 220:1309–1311PubMedGoogle Scholar
  137. 137.
    von Economo C (1926) Die Pathologie des Schlafes. In: von Bethe A, Bergmann GV, Embden G, Ellinger A (eds) Handbuch der Normalen und Pathologischen Physiologie. Springer, Berlin, pp 591–610Google Scholar
  138. 138.
    Waldrop TG, Bauer RM, Iwamoto GA (1988) Microinjection of GABA antagonists into the posterior hypothalamus elicits locomotor-activity and A cardiorespiratory activation. Brain Res 444:84–94PubMedGoogle Scholar
  139. 139.
    Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295:13–25PubMedGoogle Scholar
  140. 140.
    Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D (2007) Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci USA 104:10685–10690PubMedGoogle Scholar
  141. 141.
    Willie JT, Chemelli RM, Sinton CM, Yanagisawa M (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 24:429–458PubMedGoogle Scholar
  142. 142.
    Wilson CL, Motter BC, Lindsley DB (1976) Influences of hypothalamic-stimulation upon septal and hippocampal electrical-activity in cat. Brain Res 107:55–68PubMedGoogle Scholar
  143. 143.
    Wouterlood FG, Sauren YMHF, Steinbusch HWM (1986) Histaminergic neurons in the rat-brain—correlative immunocytochemistry, golgi impregnation, and electron-microscopy. J Comp Neurol 252:227–244PubMedGoogle Scholar
  144. 144.
    Xu C, Michelsen KA, Wu M, Morozova E, Panula P, Alreja M (2004) Histamine innervation and activation of septohippocampal GABAergic neurones: involvement of local ACh release. J Physiol 561:657–670PubMedGoogle Scholar
  145. 145.
    Yanovsky Y, Li S, Klyuch BP, Yao Q, Blandina P, Passani MB, Lin JS, Haas HL, Sergeeva OA (2011) l-Dopa activates histaminergic neurons. J Physiol 589:1349–1366PubMedGoogle Scholar
  146. 146.
    Yoshimoto Y, Sakai K, Luppi PH, Fort P, Salvert D, Jouvet M (1989) Forebrain afferents to the cat posterior hypothalamus—a double labeling study. Brain Res Bull 23:83–104PubMedGoogle Scholar
  147. 147.
    Zeitzer JM, Nishino S, Mignot E (2006) The neurobiology of hypocretins (orexins), narcolepsy and related therapeutic interventions. Trends Pharmacol Sci 27:368–374PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of NeurophysiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
  2. 2.Integrative Physiology of Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292Claude Bernard University Lyon 1LyonFrance

Personalised recommendations