Pflügers Archiv - European Journal of Physiology

, Volume 462, Issue 2, pp 209–217

Role of cellular mechanics in the function and life span of vascular endothelium

  • Katrin Kliche
  • Pia Jeggle
  • Hermann Pavenstädt
  • Hans Oberleithner
Invited Review

Abstract

The vascular endothelium plays a crucial role in vessel homeostasis and is implicated in the pathogenesis of cardiovascular disease. The function and life span of endothelial cells, therefore, have a large impact upon the quality and expectancy of an individual’s life. Exposure to haemodynamic forces determines the phenotype of endothelial cells. Turbulent blood flow, disturbed shear stress and a rising tension of the vessel wall result in endothelial dysfunction and an enhanced endothelial cell turnover. In this scenario, the role of endothelial mechanics is yet poorly described. The streaming blood exerts shear forces transmitted to the soft cortical actin mesh immediately underneath the plasma membrane. The mechanical properties of this actin cortex seem to be an important regulator of endothelial function. Aldosterone and high plasma sodium stiffen the endothelial cell cortex which is accompanied by a decrease in NO release. If endothelial stiffening is only transient, it may be a useful mechanism to compensate for any decrease in arterial blood pressure. Long-term stiffening of the cell, however, may lead to endothelial dysfunction and may contribute to cardiovascular disorders, as observed in disturbed aldosterone/sodium homeostasis. In this case, the mineralocorticoid receptor antagonist spironolactone maintains the endothelial cell cortex soft and thereby preserves normal endothelial function and longevity. This may explain the recently observed beneficial effects of spironolactone on the cardiovascular system. Taken together, the review highlights the importance of elasticity for normal endothelial function.

Keywords

Aldosterone Mechanical properties Endothelium Cytoskeleton Nitric oxide 

References

  1. 1.
    Adrogue HJ, Madias NE (2007) Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 356:1966–1978PubMedCrossRefGoogle Scholar
  2. 2.
    Aird WC (2008) Endothelium in health and disease. Pharmacol Rep 60:139–143PubMedGoogle Scholar
  3. 3.
    Barrett-Connor E, Bush TL (1991) Estrogen and coronary heart disease in women. JAMA 265:1861–1867PubMedCrossRefGoogle Scholar
  4. 4.
    Benetos A, Lacolley P, Safar ME (1997) Prevention of aortic fibrosis by spironolactone in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 17:1152–1156PubMedCrossRefGoogle Scholar
  5. 5.
    Blacher J, Amah G, Girerd X, Kheder A, Ben Mais H, London GM, Safar ME (1997) Association between increased plasma levels of aldosterone and decreased systemic arterial compliance in subjects with essential hypertension. Am J Hypertens 10:1326–1334PubMedCrossRefGoogle Scholar
  6. 6.
    Brilla CG, Matsubara LS, Weber KT (1993) Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol 25:563–575PubMedCrossRefGoogle Scholar
  7. 7.
    Brooks AR, Lelkes PI, Rubanyi GM (2002) Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol Genomics 9:27–41PubMedGoogle Scholar
  8. 8.
    Cantiello HF, Stow JL, Prat AG, Ausiello DA (1991) Actin filaments regulate epithelial Na+ channel activity. Am J Physiol 261:C882–C888PubMedGoogle Scholar
  9. 9.
    Caplan BA, Schwartz CJ (1973) Increased endothelial cell turnover in areas of in vivo Evans Blue uptake in the pig aorta. Atherosclerosis 17:401–417PubMedCrossRefGoogle Scholar
  10. 10.
    Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, Yuan S, Shyy JY, Chien S (2001) DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics 7:55–63PubMedCrossRefGoogle Scholar
  11. 11.
    Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6:16–26PubMedCrossRefGoogle Scholar
  12. 12.
    Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA 83:2114–2117PubMedCrossRefGoogle Scholar
  13. 13.
    Davies PF, Zilberberg J, Helmke BP (2003) Spatial microstimuli in endothelial mechanosignaling. Circ Res 92:359–370PubMedCrossRefGoogle Scholar
  14. 14.
    De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68PubMedCrossRefGoogle Scholar
  15. 15.
    de Nigris F, Lerman LO, Ignarro SW, Sica G, Lerman A, Palinski W, Ignarro LJ, Napoli C (2003) Beneficial effects of antioxidants and l-arginine on oxidation-sensitive gene expression and endothelial NO synthase activity at sites of disturbed shear stress. Proc Natl Acad Sci USA 100:1420–1425PubMedCrossRefGoogle Scholar
  16. 16.
    Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185PubMedCrossRefGoogle Scholar
  17. 17.
    Dimmeler S, Haendeler J, Nehls M, Zeiher AM (1997) Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185:601–607PubMedCrossRefGoogle Scholar
  18. 18.
    Dimmeler S, Haendeler J, Zeiher AM (2002) Regulation of endothelial cell apoptosis in atherothrombosis. Curr Opin Lipidol 13:531–536PubMedCrossRefGoogle Scholar
  19. 19.
    Florentin RA, Nam SC, Lee KT, Thomas WA (1969) Increased 3H-thymidine incorporation into endothelial cells of swine fed cholesterol for 3 days. Exp Mol Pathol 10:250–255PubMedCrossRefGoogle Scholar
  20. 20.
    Foteinos G, Hu Y, Xiao Q, Metzler B, Xu Q (2008) Rapid endothelial turnover in atherosclerosis-prone areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation 117:1856–1863PubMedCrossRefGoogle Scholar
  21. 21.
    Fournet-Bourguignon MP, Castedo-Delrieu M, Bidouard JP, Leonce S, Saboureau D, Delescluse I, Vilaine JP, Vanhoutte PM (2000) Phenotypic and functional changes in regenerated porcine coronary endothelial cells: increased uptake of modified LDL and reduced production of NO. Circ Res 86:854–861PubMedGoogle Scholar
  22. 22.
    Funder JW (2005) Relative aldosterone excess: relative to what? Hypertension 46:643–644PubMedCrossRefGoogle Scholar
  23. 23.
    Garg UC, Hassid A (1990) Nitric oxide-generating vasodilators inhibit mitogenesis and proliferation of BALB/C 3T3 fibroblasts by a cyclic GMP-independent mechanism. Biochem Biophys Res Commun 171:474–479PubMedCrossRefGoogle Scholar
  24. 24.
    Hillebrand U, Hausberg M, Stock C, Shahin V, Nikova D, Riethmuller C, Kliche K, Ludwig T, Schillers H, Schneider SW, Oberleithner H (2006) 17beta-estradiol increases volume, apical surface and elasticity of human endothelium mediated by Na+/H+ exchange. Cardiovasc Res 69:916–924PubMedCrossRefGoogle Scholar
  25. 25.
    Hobson B, Denekamp J (1984) Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49:405–413PubMedCrossRefGoogle Scholar
  26. 26.
    Hornsby PJ (2010) Senescence and life span. Pflugers Arch 459:291–299PubMedCrossRefGoogle Scholar
  27. 27.
    Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599PubMedCrossRefGoogle Scholar
  28. 28.
    Kasas S, Wang X, Hirling H, Marsault R, Huni B, Yersin A, Regazzi R, Grenningloh G, Riederer B, Forro L, Dietler G, Catsicas S (2005) Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil Cytoskeleton 62:124–132PubMedCrossRefGoogle Scholar
  29. 29.
    Kondrikov D, Han HR, Block ER, Su Y (2006) Growth and density-dependent regulation of NO synthase by the actin cytoskeleton in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 290:L41–L50PubMedCrossRefGoogle Scholar
  30. 30.
    Kumar A, Meyerrose G, Sood V, Roongsritong C (2006) Diastolic heart failure in the elderly and the potential role of aldosterone antagonists. Drugs Aging 23:299–308PubMedCrossRefGoogle Scholar
  31. 31.
    Kusche-Vihrog K, Sobczak K, Bangel N, Wilhelmi M, Nechyporuk-Zloy V, Schwab A, Schillers H, Oberleithner H (2008) Aldosterone and amiloride alter ENaC abundance in vascular endothelium. Pflugers Arch 455:849–857PubMedCrossRefGoogle Scholar
  32. 32.
    Lombes M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP (1992) Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 71:503–510PubMedGoogle Scholar
  33. 33.
    Maron BA, Leopold JA (2010) Aldosterone receptor antagonists: effective but often forgotten. Circulation 121:934–939PubMedCrossRefGoogle Scholar
  34. 34.
    Mazzochi C, Bubien JK, Smith PR, Benos DJ (2006) The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin. J Biol Chem 281:6528–6538PubMedCrossRefGoogle Scholar
  35. 35.
    Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng 103:172–176PubMedCrossRefGoogle Scholar
  36. 36.
    Nishizaka MK, Zaman MA, Green SA, Renfroe KY, Calhoun DA (2004) Impaired endothelium-dependent flow-mediated vasodilation in hypertensive subjects with hyperaldosteronism. Circulation 109:2857–2861PubMedCrossRefGoogle Scholar
  37. 37.
    Oberleithner H (2005) Aldosterone makes human endothelium stiff and vulnerable. Kidney Int 67:1680–1682PubMedCrossRefGoogle Scholar
  38. 38.
    Oberleithner H, Riethmuller C, Ludwig T, Hausberg M, Schillers H (2006) Aldosterone remodels human endothelium. Acta Physiol (Oxf) 187:305–312CrossRefGoogle Scholar
  39. 39.
    Oberleithner H, Riethmuller C, Schillers H, Macgregor GA, de Wardener HE, Hausberg M (2007) Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci USA 104:16281–16286PubMedCrossRefGoogle Scholar
  40. 40.
    Oberleithner H, Callies C, Kusche-Vihrog K, Schillers H, Shahin V, Riethmuller C, Macgregor GA, de Wardener HE (2009) Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA 106:2829–2834PubMedCrossRefGoogle Scholar
  41. 41.
    Oberleithner H, Kusche-Vihrog K, Schillers H (2010) Endothelial cells as vascular salt sensors. Kidney Int 77:490–494PubMedCrossRefGoogle Scholar
  42. 42.
    Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Pritchard WF, Powell S, Chang GY, Stoeckert CJ Jr, Davies PF (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci USA 101:2482–2487PubMedCrossRefGoogle Scholar
  43. 43.
    Pesen D, Hoh JH (2005) Modes of remodeling in the cortical cytoskeleton of vascular endothelial cells. FEBS Lett 579:473–476PubMedCrossRefGoogle Scholar
  44. 44.
    Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717PubMedCrossRefGoogle Scholar
  45. 45.
    Prasain N, Stevens T (2009) The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res 77:53–63PubMedCrossRefGoogle Scholar
  46. 46.
    Radomski MW, Palmer RM, Moncada S (1987) Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 92:181–187PubMedGoogle Scholar
  47. 47.
    Rajagopalan S, Duquaine D, King S, Pitt B, Patel P (2002) Mineralocorticoid receptor antagonism in experimental atherosclerosis. Circulation 105:2212–2216PubMedCrossRefGoogle Scholar
  48. 48.
    Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81:177–199PubMedCrossRefGoogle Scholar
  49. 49.
    Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126PubMedCrossRefGoogle Scholar
  50. 50.
    Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250:H1145–H1149PubMedGoogle Scholar
  51. 51.
    Sato M, Suzuki K, Ueki Y, Ohashi T (2007) Microelastic mapping of living endothelial cells exposed to shear stress in relation to three-dimensional distribution of actin filaments. Acta Biomater 3:311–319PubMedCrossRefGoogle Scholar
  52. 52.
    Schiffrin EL (2006) Effects of aldosterone on the vasculature. Hypertension 47:312–318PubMedCrossRefGoogle Scholar
  53. 53.
    Schnittler HJ, Schneider SW, Raifer H, Luo F, Dieterich P, Just I, Aktories K (2001) Role of actin filaments in endothelial cell–cell adhesion and membrane stability under fluid shear stress. Pflugers Arch 442:675–687PubMedCrossRefGoogle Scholar
  54. 54.
    Schwartz SM (1978) Selection and characterization of bovine aortic endothelial cells. In Vitro 14:966–980PubMedCrossRefGoogle Scholar
  55. 55.
    Schwartz SM, Benditt EP (1977) Aortic endothelial cell replication. I. Effects of age and hypertension in the rat. Circ Res 41:248–255PubMedGoogle Scholar
  56. 56.
    Schwartz SM, Gajdusek CM, Selden SC III (1981) Vascular wall growth control: the role of the endothelium. Arteriosclerosis 1:107–126PubMedGoogle Scholar
  57. 57.
    Serban DN, Nilius B, Vanhoutte PM (2010) The endothelial saga: the past, the present, the future. Pflugers Arch 459:787–792PubMedCrossRefGoogle Scholar
  58. 58.
    Silvestre JS, Robert V, Heymes C, Aupetit-Faisant B, Mouas C, Moalic JM, Swynghedauw B, Delcayre C (1998) Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation. J Biol Chem 273:4883–4891PubMedCrossRefGoogle Scholar
  59. 59.
    Spaet TH, Lejnieks I (1967) Mitotic activity of rabbit blood vessels. Proc Soc Exp Biol Med 125:1197–1201PubMedGoogle Scholar
  60. 60.
    Su Y, Edwards-Bennett S, Bubb MR, Block ER (2003) Regulation of endothelial nitric oxide synthase by the actin cytoskeleton. Am J Physiol Cell Physiol 284:C1542–C1549PubMedGoogle Scholar
  61. 61.
    Takeda Y, Miyamori I, Yoneda T, Iki K, Hatakeyama H, Blair IA, Hsieh FY, Takeda R (1995) Production of aldosterone in isolated rat blood vessels. Hypertension 25:170–173PubMedGoogle Scholar
  62. 62.
    Taylor RG, Lewis JC (1986) Endothelial cell proliferation and monocyte adhesion to atherosclerotic lesions of white carneau pigeons. Am J Pathol 125:152–160PubMedGoogle Scholar
  63. 63.
    Tomaschitz A, Pilz S (2010) Aldosterone to renin ratio—a reliable screening tool for primary aldosteronism? Horm Metab Res 42:382–391PubMedCrossRefGoogle Scholar
  64. 64.
    Vanhoutte PM (2010) Regeneration of the endothelium in vascular injury. Cardiovasc Drugs Ther 24:299–303PubMedCrossRefGoogle Scholar
  65. 65.
    Wagner AH, Guldenzoph B, Lienenluke B, Hecker M (2004) CD154/CD40-mediated expression of CD154 in endothelial cells: consequences for endothelial cell–monocyte interaction. Arterioscler Thromb Vasc Biol 24:715–720PubMedCrossRefGoogle Scholar
  66. 66.
    Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282:C606–C616PubMedGoogle Scholar
  67. 67.
    Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci USA 100:7988–7995PubMedCrossRefGoogle Scholar
  68. 68.
    Williams TA, Verhovez A, Milan A, Veglio F, Mulatero P (2006) Protective effect of spironolactone on endothelial cell apoptosis. Endocrinology 147:2496–2505PubMedCrossRefGoogle Scholar
  69. 69.
    Wong AJ, Pollard TD, Herman IM (1983) Actin filament stress fibers in vascular endothelial cells in vivo. Science 219:867–869PubMedCrossRefGoogle Scholar
  70. 70.
    Xu Q (2009) Disturbed flow-enhanced endothelial turnover in atherosclerosis. Trends Cardiovasc Med 19:191–195PubMedCrossRefGoogle Scholar
  71. 71.
    Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Katrin Kliche
    • 1
    • 2
  • Pia Jeggle
    • 1
  • Hermann Pavenstädt
    • 2
  • Hans Oberleithner
    • 1
  1. 1.Institute of Physiology IIUniversity of MünsterMünsterGermany
  2. 2.Department of Internal Medicine DUniversity of MünsterMünsterGermany

Personalised recommendations