Pflügers Archiv - European Journal of Physiology

, Volume 461, Issue 2, pp 225–233 | Cite as

Mutant human β4 subunit identified in amyotrophic lateral sclerosis patients impairs nicotinic receptor function

  • Claudia Moriconi
  • Silvia Di Angelantonio
  • Alessio Piccioni
  • Flavia Trettel
  • Mario Sabatelli
  • Francesca Grassi
Ion Channels, Receptors and Transporters

Abstract

Recently identified mutations in the genes encoding the neuronal nicotinic ACh receptor (nAChR) subunits in patients affected by sporadic amyotrophic lateral sclerosis (sALS) may represent a factor which enhances disease susceptibility, in particular in association with ambient causes such as cigarette smoking. In this work, we characterize the functional properties of nAChRs containing the β4R349C subunit, the mutation most frequently encountered in sALS patients. The mutation was coexpressed with wild-type α3 or α4 subunits or with mutant α4R487Q subunit, which has been detected in one patient together with β4R349C mutation. None of the functional parameters examined showed differences between α4β4 and α4R487Qβ4 nAChRs. By contrast, β4R349C mutation, independent of the companion α subunit, caused the reduction in potency of both ACh and nicotine, decreased the density of whole-cell current evoked by maximal transmitter concentrations, and altered the kinetics of ACh-evoked whole-cell currents. These data confirm that sALS-associated mutations in nicotinic subunits may markedly perturb cholinergic transmission in individuals bearing the mutations.

Keywords

Nicotinic receptor Amyotrophic lateral sclerosis Whole-cell recording Desensitization Receptor expression 

Notes

Acknowledgements

This work has been partly funded by Associazione Viva La Vita ONLUS. The Authors wish to remember Prof. Fabrizio Eusebi, who started this work, but unfortunately never saw its conclusion.

References

  1. 1.
    Akaike A, Takada-Takatori Y, Kume T, Izumi Y (2010) Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 40:211–216PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson CR, Stevens CF (1973) Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol 235:655–691PubMedGoogle Scholar
  3. 3.
    Armon C (2009) Smoking may be considered an established risk factor for sporadic ALS. Neurology 73:1693–1698PubMedCrossRefGoogle Scholar
  4. 4.
    Cooper ST, Millar NS (1998) Host cell-specific folding of the neuronal nicotinic receptor alpha8 subunit. J Neurochem 70:2585–2593PubMedCrossRefGoogle Scholar
  5. 5.
    Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324PubMedCrossRefGoogle Scholar
  6. 6.
    Di Angelantonio S, Bernardi G, Mercuri NB (2004) Methamidophos transiently inhibits neuronal nicotinic receptors of rat substantia nigra dopaminergic neurons via open channel block. Neurosci Lett 369:208–213PubMedCrossRefGoogle Scholar
  7. 7.
    Di Castro A, Martinello K, Grassi F, Eusebi F, Engel AG (2007) Pathogenic point mutations in a transmembrane domain of the epsilon subunit increase the Ca2+ permeability of the human endplate ACh receptor. J Physiol 579:671–677PubMedCrossRefGoogle Scholar
  8. 8.
    Dourado M, Sargent PB (2002) Properties of nicotinic receptors underlying Renshaw cell excitation by alpha-motor neurons in neonatal rat spinal cord. J Neurophysiol 87:3117–3125PubMedGoogle Scholar
  9. 9.
    Eccles JC, Fatt P, Koketsu K (1954) Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol 26:524–562Google Scholar
  10. 10.
    Fucile S, Sucapane A, Grassi A, Eusebi F, Engel AG (2006) The human adult subtype AChR channel has high Ca2+ permeability. J Physiol 573:35–43PubMedCrossRefGoogle Scholar
  11. 11.
    Gahring LC, Persiyanov K, Rogers SW (2004) Neuronal and astrocyte expression of nicotinic receptor subunit beta4 in the adult mouse brain. J Comp Neurol 468:322–333PubMedCrossRefGoogle Scholar
  12. 12.
    Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Progr Neurobiol 74:363–396CrossRefGoogle Scholar
  13. 13.
    Gotti C, Clementi F, Fornari A, Gaimarri A, Guiducci S, Manfredi I, Moretti M, Pedrazzi P, Pucci L, Zoli M (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78:703–711PubMedCrossRefGoogle Scholar
  14. 14.
    Guo X, Lester RAJ (2007) Regulation of nicotinic acetylcholine receptor desensitization by Ca2+. J Neurophysiol 97:93–101PubMedCrossRefGoogle Scholar
  15. 15.
    Hogg RC, Raggenbass M, Bertrand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1–46PubMedCrossRefGoogle Scholar
  16. 16.
    Kracun S, Harkness PC, Gibb AJ, Millar NS (2008) Influence of the M3-M4 intracellular domain upon nicotinic acetylcholine receptor assembly, targeting and function. Br J Pharmacol 153:1474–1484PubMedCrossRefGoogle Scholar
  17. 17.
    Lamotte d'Incamps B, Ascher P (2008) Four excitatory postsynaptic ionotropic receptors coactivated at the motoneuron–Renshaw cell synapse. J Neurosci 228:14121–14131CrossRefGoogle Scholar
  18. 18.
    MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 22:443–485PubMedCrossRefGoogle Scholar
  19. 19.
    Nakamizo T, Kawamata J, Yamashita H, Kanki R, Kihara T, Sawada H, Akaike A, Shimohama S (2005) Stimulation of nicotinic acetylcholine receptors protects motor neurons. Biochem Biophys Res Commun 330:1285–1289PubMedCrossRefGoogle Scholar
  20. 20.
    Ohno K, Quiram PA, Milone M, Wang H-L, Harper MC, Pruitt JN II, Brengman JM, Pao L, Fishbeck KH, Crawford TO, Sine SM, Engel AG (1997) Congenital myasthenic syndromes due to heteroallelic nonsense/missense mutations in the acetylcholine receptor ε subunit gene: identification and functional characterization of six new mutations. Hum Mol Genet 6:753–766PubMedCrossRefGoogle Scholar
  21. 21.
    Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7:710–723PubMedCrossRefGoogle Scholar
  22. 22.
    Picciotto MR, Addy NA, Mineur YS, Brunzell DH (2008) It is not "either/or": activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol 84:329–342PubMedCrossRefGoogle Scholar
  23. 23.
    Picciotto MR, Zoli M (2002) Nicotinic receptors in aging and dementia. J Neurobiol 53:641–655PubMedCrossRefGoogle Scholar
  24. 24.
    Picciotto MR, Zoli M (2008) Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer’s and Parkinson's disease. Front Biosci 13:492–504PubMedCrossRefGoogle Scholar
  25. 25.
    Poorthuis RB, Bloem B, Mansvelder HD (2010) Desensitization of nicotinic acetylcholine receptors by nicotine alters neuronal network function of the prefrontal cortex. FENS. Abstract vol. 5, 075.32Google Scholar
  26. 26.
    Quitadamo C, Fabbretti E, Lamanauskas N, Nistri A (2005) Activation and desensitization of neuronal nicotinic receptors modulate glutamatergic transmission on neonatal rat hypoglossal motoneurons. Eur J Neurosci 22:2723–2734PubMedCrossRefGoogle Scholar
  27. 27.
    Sabatelli M, Eusebi F, Al-Chalabi A, Conte A, Madia F, Luigetti M, Mancuso I, Limatola C, Trettel F, Sobrero F, Di Angelantonio S, Grassi F, Di Castro A, Moriconi C, Fucile S, Lattante S, Marangi G, Murdolo M, Orteschi D, Del Grande A, Tonali P, Neri G, Zollino M (2009) Rare missense variants of neuronal nicotinic acetylcholine receptor altering receptor function are associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 18:397–400CrossRefGoogle Scholar
  28. 28.
    Simpson CL, Al-Chalabi A (2006) Amyotrophic lateral sclerosis as a complex genetic disease. Biochim Biophys Acta 1762:973–985PubMedGoogle Scholar
  29. 29.
    Sutedja NA, Veldink JH, Fischer K, Kromhout H, Heederik D, Huisman MH, Wokke JH, Van Den Berg LH (2009) Exposure to chemicals and metals and risk of amyotrophic lateral sclerosis: a systematic review. Amyotroph Lateral Scler 10:302–309PubMedCrossRefGoogle Scholar
  30. 30.
    Temburni MK, Blitzblau RC, Jacob MH (2000) Receptor targeting and heterogeneity at interneuronal nicotinic cholinergic synapses in vivo. J Physiol 525:21–29PubMedCrossRefGoogle Scholar
  31. 31.
    Wang HL, Ohno K, Milone M, Brengman JM, Evoli A, Batocchi AP, Middleton LT, Christodoulou K, Engel AG, Sine SM (2000) Fundamental gating mechanism of nicotinic receptor channel revealed by mutation causing a congenital myasthenic syndrome. J Gen Physiol 116:449–462PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Claudia Moriconi
    • 1
  • Silvia Di Angelantonio
    • 2
  • Alessio Piccioni
    • 1
  • Flavia Trettel
    • 1
  • Mario Sabatelli
    • 3
  • Francesca Grassi
    • 1
  1. 1.Dipartimento di Fisiologia e FarmacologiaUniversita’ SapienzaRomeItaly
  2. 2.Dipartimento di Biologia e BiotecnologieUniversita’ SapienzaRomeItaly
  3. 3.Istituto di NeurologiaUniversità Cattolica del Sacro CuoreRomeItaly

Personalised recommendations