Pflügers Archiv - European Journal of Physiology

, Volume 461, Issue 2, pp 211–223

TRP channels and their implications in metabolic diseases

Invited Review

Abstract

The transient receptor potential (TRP) channel superfamily is composed of 28 nonselective cation channels that are ubiquitously expressed in many cell types and have considerable functional diversity. Although changes in TRP channel expression and function have been reported in cardiovascular disease and renal disorders, the pathogenic roles of TRP channels in metabolic diseases have not been systemically reviewed. In this review, we summarised the distribution of TRP channels in several metabolic tissues and discussed their roles in mediating and regulating various physiological and pathophysiological metabolic processes and diseases including diabetes, obesity, dyslipidaemia, metabolic syndrome, atherosclerosis, metabolic bone diseases and electrolyte disturbances. This review provides new insight into the involvement of TRP channels in the pathogenesis of metabolic disorders and implicates these channels as potential therapeutic targets for the management of metabolic diseases.

Keywords

Transient receptor potential channels Metabolic diseases Diabetes Obesity 

References

  1. 1.
    Abramowitz J, Birnbaumer L (2007) Know thy neighbor: a survey of diseases and complex syndromes that map to chromosomal regions encoding TRP channels. Handb Exp Pharmacol 379–408Google Scholar
  2. 2.
    Ahuja KD, Robertson IK, Geraghty DP, Ball MJ (2006) Effects of chili consumption on postprandial glucose, insulin, and energy metabolism. Am J Clin Nutr 84:63–69PubMedGoogle Scholar
  3. 3.
    Akiba Y, Kato S, Katsube K, Nakamura M, Takeuchi K, Ishii H, Hibi T (2004) Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats. Biochem Biophys Res Commun 321:219–225PubMedCrossRefGoogle Scholar
  4. 4.
    Avelino A, Cruz C, Nagy I, Cruz F (2002) Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 109:787–798PubMedCrossRefGoogle Scholar
  5. 5.
    Bae YM, Kim A, Lee YJ, Lim W, Noh YH, Kim EJ, Kim J, Kim TK, Park SW, Kim B, Cho SI, Kim DK, Ho WK (2007) Enhancement of receptor-operated cation current and TRPC6 expression in arterial smooth muscle cells of deoxycorticosterone acetate-salt hypertensive rats. J Hypertens 25:809–817PubMedCrossRefGoogle Scholar
  6. 6.
    Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, Sward K (2003) Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res 93:839–847PubMedCrossRefGoogle Scholar
  7. 7.
    Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, Sturek M (2008) Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am J Physiol Heart Circ Physiol 294:H2489–2496PubMedCrossRefGoogle Scholar
  8. 8.
    Brixel LR, Monteilh-Zoller MK, Ingenbrandt CS, Fleig A, Penner R, Enklaar T, Zabel BU, Prawitt D. TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Arch 460:69–76Google Scholar
  9. 9.
    Brixel LR, Monteilh-Zoller MK, Ingenbrandt CS, Fleig A, Penner R, Enklaar T, Zabel BU, Prawitt D (2010) TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Arch 460:69–76PubMedCrossRefGoogle Scholar
  10. 10.
    Brownlow SL, Harper AG, Harper MT, Sage SO (2004) A role for hTRPC1 and lipid raft domains in store-mediated calcium entry in human platelets. Cell Calcium 35:107–113PubMedCrossRefGoogle Scholar
  11. 11.
    Castro J, Aromataris EC, Rychkov GY, Barritt GJ (2009) A small component of the endoplasmic reticulum is required for store-operated Ca2+ channel activation in liver cells: evidence from studies using TRPV1 and taurodeoxycholic acid. Biochem J 418:553–566PubMedCrossRefGoogle Scholar
  12. 12.
    Chanda S, Mould A, Esmail A, Bley K (2005) Toxicity studies with pure trans-capsaicin delivered to dogs via intravenous administration. Regul Toxicol Pharmacol 43:66–75PubMedCrossRefGoogle Scholar
  13. 13.
    Cheal KL, Abbasi F, Lamendola C, McLaughlin T, Reaven GM, Ford ES (2004) Relationship to insulin resistance of the adult treatment panel III diagnostic criteria for identification of the metabolic syndrome. Diabetes 53:1195–1200PubMedCrossRefGoogle Scholar
  14. 14.
    Chen X, Yang D, He H, Luo Z, Ma S, Feng X, Cao T, Ma L, Yan Z, Liu D, Tepel M, Zhu Z (2010) Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels. J Cell Mol Med 14:2483–2494Google Scholar
  15. 15.
    Chubanov V, Waldegger S, Mederos y Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci USA 101:2894–2899PubMedCrossRefGoogle Scholar
  16. 16.
    Chung AW, Au Yeung K, Chum E, Okon EB, van Breemen C (2009) Diabetes modulates capacitative calcium entry and expression of transient receptor potential canonical channels in human saphenous vein. Eur J Pharmacol 613:114–118PubMedCrossRefGoogle Scholar
  17. 17.
    Cioffi DL (2007) The skinny on TRPV1. Circ Res 100:934–936PubMedCrossRefGoogle Scholar
  18. 18.
    Cui J, Himms-Hagen J (1992) Long-term decrease in body fat and in brown adipose tissue in capsaicin-desensitized rats. Am J Physiol 262:R568–573PubMedGoogle Scholar
  19. 19.
    Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25:6980–6989PubMedCrossRefGoogle Scholar
  20. 20.
    Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE (2009) TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol Heart Circ Physiol 297:H1096–H1102PubMedCrossRefGoogle Scholar
  21. 21.
    Edwards JM, Neeb ZP, Alloosh MA, Long X, Bratz IN, Peller CR, Byrd JP, Kumar S, Obukhov AG, Sturek M (2010) Exercise training decreases store-operated Ca2+ entry associated with metabolic syndrome and coronary atherosclerosis. Cardiovasc Res 85:631–640PubMedCrossRefGoogle Scholar
  22. 22.
    Firth AL, Remillard CV, Yuan JX (2007) TRP channels in hypertension. Biochim Biophys Acta 1772:895–906PubMedGoogle Scholar
  23. 23.
    Flemming PK, Dedman AM, Xu SZ, Li J, Zeng F, Naylor J, Benham CD, Bateson AN, Muraki K, Beech DJ (2006) Sensing of lysophospholipids by TRPC5 calcium channel. J Biol Chem 281:4977–4982PubMedCrossRefGoogle Scholar
  24. 24.
    Gao F, Sui D, Garavito RM, Worden RM, Wang DH (2009) Salt intake augments hypotensive effects of transient receptor potential vanilloid 4: functional significance and implication. Hypertension 53:228–235PubMedCrossRefGoogle Scholar
  25. 25.
    Gao F, Wang DH (2010) Impairment in function and expression of transient receptor potential vanilloid type 4 in Dahl salt-sensitive rats: significance and mechanism. Hypertension 55:1018–1025PubMedCrossRefGoogle Scholar
  26. 26.
    Gram DX, Ahren B, Nagy I, Olsen UB, Brand CL, Sundler F, Tabanera R, Svendsen O, Carr RD, Santha P, Wierup N, Hansen AJ (2007) Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci 25:213–223PubMedCrossRefGoogle Scholar
  27. 27.
    Gram DX, Hansen AJ, Deacon CF, Brand CL, Ribel U, Wilken M, Carr RD, Svendsen O, Ahren B (2005) Sensory nerve desensitization by resiniferatoxin improves glucose tolerance and increases insulin secretion in Zucker diabetic fatty rats and is associated with reduced plasma activity of dipeptidyl peptidase IV. Eur J Pharmacol 509:211–217PubMedCrossRefGoogle Scholar
  28. 28.
    Graziani A, Rosker C, Kohlwein SD, Zhu MX, Romanin C, Sattler W, Groschner K, Poteser M (2006) Cellular cholesterol controls TRPC3 function: evidence from a novel dominant-negative knockdown strategy. Biochem J 396:147–155PubMedCrossRefGoogle Scholar
  29. 29.
    Guillot E, Coste A, Angel I (1996) Involvement of capsaicin-sensitive nerves in the regulation of glucose tolerance in diabetic rats. Life Sci 59:969–977PubMedCrossRefGoogle Scholar
  30. 30.
    Herson PS, Dulock KA, Ashford ML (1997) Characterization of a nicotinamide–adenine dinucleotide-dependent cation channel in the CRI-G1 rat insulinoma cell line. J Physiol 505(Pt 1):65–76PubMedCrossRefGoogle Scholar
  31. 31.
    Hoenderop JG, Bindels RJ (2008) Calciotropic and magnesiotropic TRP channels. Physiology (Bethesda) 23:32–40Google Scholar
  32. 32.
    Hsu CL, Yen GC (2007) Effects of capsaicin on induction of apoptosis and inhibition of adipogenesis in 3T3-L1 cells. J Agric Food Chem 55:1730–1736PubMedCrossRefGoogle Scholar
  33. 33.
    Hsu YJ, Hoenderop JG, Bindels RJ (2007) TRP channels in kidney disease. Biochim Biophys Acta 1772:928–936PubMedGoogle Scholar
  34. 34.
    Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ (2005) Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 338:694–699PubMedCrossRefGoogle Scholar
  35. 35.
    Inamura K, Sano Y, Mochizuki S, Yokoi H, Miyake A, Nozawa K, Kitada C, Matsushime H, Furuichi K (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201–207PubMedCrossRefGoogle Scholar
  36. 36.
    Inoue N, Matsunaga Y, Satoh H, Takahashi M (2007) Enhanced energy expenditure and fat oxidation in humans with high BMI scores by the ingestion of novel and non-pungent capsaicin analogues (capsinoids). Biosci Biotechnol Biochem 71:380–389PubMedCrossRefGoogle Scholar
  37. 37.
    Jacobson DA, Philipson LH (2007) TRP channels of the pancreatic beta cell. Handb Exp Pharmacol 409–424Google Scholar
  38. 38.
    Janssen SW, Hoenderop JG, Hermus AR, Sweep FC, Martens GJ, Bindels RJ (2002) Expression of the novel epithelial Ca2+ channel ECaC1 in rat pancreatic islets. J Histochem Cytochem 50:789–798PubMedGoogle Scholar
  39. 39.
    Kahn-Kirby AH, Dantzker JL, Apicella AJ, Schafer WR, Browse J, Bargmann CI, Watts JL (2004) Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119:889–900PubMedCrossRefGoogle Scholar
  40. 40.
    Kang JH, Kim CS, Han IS, Kawada T, Yu R (2007) Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. FEBS Lett 581:4389–4396PubMedCrossRefGoogle Scholar
  41. 41.
    Kannan KB, Barlos D, Hauser CJ (2007) Free cholesterol alters lipid raft structure and function regulating neutrophil Ca2+ entry and respiratory burst: correlations with calcium channel raft trafficking. J Immunol 178:5253–5261PubMedGoogle Scholar
  42. 42.
    Karlsson S, Scheurink AJ, Steffens AB, Ahren B (1994) Involvement of capsaicin-sensitive nerves in regulation of insulin secretion and glucose tolerance in conscious mice. Am J Physiol 267:R1071–1077PubMedGoogle Scholar
  43. 43.
    Kawada T, Hagihara K, Iwai K (1986) Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J Nutr 116:1272–1278PubMedGoogle Scholar
  44. 44.
    Kawada T, Watanabe T, Takaishi T, Tanaka T, Iwai K (1986) Capsaicin-induced beta-adrenergic action on energy metabolism in rats: influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proc Soc Exp Biol Med 183:250–256PubMedGoogle Scholar
  45. 45.
    Kim KM, Kawada T, Ishihara K, Inoue K, Fushiki T (1997) Increase in swimming endurance capacity of mice by capsaicin-induced adrenal catecholamine secretion. Biosci Biotechnol Biochem 61:1718–1723PubMedCrossRefGoogle Scholar
  46. 46.
    Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757PubMedCrossRefGoogle Scholar
  47. 47.
    Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgardh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98:557–563PubMedCrossRefGoogle Scholar
  48. 48.
    Kunert-Keil C, Bisping F, Kruger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7:159PubMedCrossRefGoogle Scholar
  49. 49.
    Kwan HY, Huang Y, Yao X (2007) TRP channels in endothelial function and dysfunction. Biochim Biophys Acta 1772:907–914PubMedGoogle Scholar
  50. 50.
    Lanner JT, Bruton JD, Assefaw-Redda Y, Andronache Z, Zhang SJ, Severa D, Zhang ZB, Melzer W, Zhang SL, Katz A, Westerblad H (2009) Knockdown of TRPC3 with siRNA coupled to carbon nanotubes results in decreased insulin-mediated glucose uptake in adult skeletal muscle cells. FASEB J 23:1728–1738PubMedCrossRefGoogle Scholar
  51. 51.
    Larsson KP, Peltonen HM, Bart G, Louhivuori LM, Penttonen A, Antikainen M, Kukkonen JP, Akerman KE (2005) Orexin-A-induced Ca2+ entry: evidence for involvement of trpc channels and protein kinase C regulation. J Biol Chem 280:1771–1781PubMedCrossRefGoogle Scholar
  52. 52.
    Leung FW (2008) Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution. Life Sci 83:1–5PubMedCrossRefGoogle Scholar
  53. 53.
    Li J, Wang DH (2003) High-salt-induced increase in blood pressure: role of capsaicin-sensitive sensory nerves. J Hypertens 21:577–582PubMedCrossRefGoogle Scholar
  54. 54.
    Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537PubMedCrossRefGoogle Scholar
  55. 55.
    Liu D, Maier A, Scholze A, Rauch U, Boltzen U, Zhao Z, Zhu Z, Tepel M (2008) High glucose enhances transient receptor potential channel canonical type 6-dependent calcium influx in human platelets via phosphatidylinositol 3-kinase-dependent pathway. Arterioscler Thromb Vasc Biol 28:746–751PubMedCrossRefGoogle Scholar
  56. 56.
    Liu D, Scholze A, Zhu Z, Kreutz R, Wehland-von-Trebra M, Zidek W, Tepel M (2005) Increased transient receptor potential channel TRPC3 expression in spontaneously hypertensive rats. Am J Hypertens 18:1503–1507PubMedCrossRefGoogle Scholar
  57. 57.
    Liu D, Scholze A, Zhu Z, Krueger K, Thilo F, Burkert A, Streffer K, Holz S, Harteneck C, Zidek W, Tepel M (2006) Transient receptor potential channels in essential hypertension. J Hypertens 24:1105–1114PubMedCrossRefGoogle Scholar
  58. 58.
    Liu D, Yang D, He H, Chen X, Cao T, Feng X, Ma L, Luo Z, Wang L, Yan Z, Zhu Z, Tepel M (2009) Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53:70–76PubMedCrossRefGoogle Scholar
  59. 59.
    Liu D, Zhu Z, Tepel M (2008) The role of transient receptor potential channels in metabolic syndrome. Hypertens Res 31:1989–1995PubMedCrossRefGoogle Scholar
  60. 60.
    Liu DY, Thilo F, Scholze A, Wittstock A, Zhao ZG, Harteneck C, Zidek W, Zhu ZM, Tepel M (2007) Increased store-operated and 1-oleoyl-2-acetyl-sn-glycerol-induced calcium influx in monocytes is mediated by transient receptor potential canonical channels in human essential hypertension. J Hypertens 25:799–808PubMedCrossRefGoogle Scholar
  61. 61.
    Manjunatha H, Srinivasan K (2007) Hypolipidemic and antioxidant effects of curcumin and capsaicin in high-fat-fed rats. Can J Physiol Pharmacol 85:588–596PubMedCrossRefGoogle Scholar
  62. 62.
    Masuda Y, Haramizu S, Oki K, Ohnuki K, Watanabe T, Yazawa S, Kawada T, Hashizume S, Fushiki T (2003) Up-regulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog. J Appl Physiol 95:2408–2415PubMedGoogle Scholar
  63. 63.
    Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londono JE, Uhl S, Voets T, Hummel B, van den Bergh A, Herijgers P, Nilius B, Flockerzi V, Schweda F, Freichel M (2010) Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J Clin Invest 120(9):3267–3279PubMedCrossRefGoogle Scholar
  64. 64.
    Matta JA, Miyares RL, Ahern GP (2007) TRPV1 is a novel target for omega-3 polyunsaturated fatty acids. J Physiol 578:397–411PubMedCrossRefGoogle Scholar
  65. 65.
    Melnyk A, Himms-Hagen J (1995) Resistance to aging-associated obesity in capsaicin-desensitized rats one year after treatment. Obes Res 3:337–344PubMedGoogle Scholar
  66. 66.
    Miedel MT, Rbaibi Y, Guerriero CJ, Colletti G, Weixel KM, Weisz OA, Kiselyov K (2008) Membrane traffic and turnover in TRP-ML1-deficient cells: a revised model for mucolipidosis type IV pathogenesis. J Exp Med 205:1477–1490PubMedCrossRefGoogle Scholar
  67. 67.
    Mizuno A, Matsumoto N, Imai M, Suzuki M (2003) Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol 285:C96–C101PubMedGoogle Scholar
  68. 68.
    Moesgaard SG, Brand CL, Sturis J, Ahren B, Wilken M, Fleckner J, Carr RD, Svendsen O, Hansen AJ, Gram DX (2005) Sensory nerve inactivation by resiniferatoxin improves insulin sensitivity in male obese Zucker rats. Am J Physiol Endocrinol Metab 288:E1137–E1145PubMedCrossRefGoogle Scholar
  69. 69.
    Montezano AC, Zimmerman D, Yusuf H, Burger D, Chignalia AZ, Wadhera V, van Leeuwen FN, Touyz RM (2010) Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension 56(3):453–462PubMedCrossRefGoogle Scholar
  70. 70.
    Mori Y, Otabe S, Dina C, Yasuda K, Populaire C, Lecoeur C, Vatin V, Durand E, Hara K, Okada T, Tobe K, Boutin P, Kadowaki T, Froguel P (2002) Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate Loci on 7p and 11p. Diabetes 51:1247–1255PubMedCrossRefGoogle Scholar
  71. 71.
    Motter AL, Ahern GP (2008) TRPV1-null mice are protected from diet-induced obesity. FEBS Lett 582:2257–2262PubMedCrossRefGoogle Scholar
  72. 72.
    Niehof M, Borlak J (2008) HNF4 alpha and the Ca-channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes 57:1069–1077PubMedCrossRefGoogle Scholar
  73. 73.
    Nijenhuis T, Hoenderop JG, Nilius B, Bindels RJ (2003) (Patho)physiological implications of the novel epithelial Ca2+ channels TRPV5 and TRPV6. Pflugers Arch 446:401–409PubMedCrossRefGoogle Scholar
  74. 74.
    Nilius B (2007) TRP channels in disease. Biochim Biophys Acta 1772:805–812PubMedGoogle Scholar
  75. 75.
    Nilius B, Mahieu F, Karashima Y, Voets T (2007) Regulation of TRP channels: a voltage-lipid connection. Biochem Soc Trans 35:105–108PubMedCrossRefGoogle Scholar
  76. 76.
    Norman AW, Frankel JB, Heldt AM, Grodsky GM (1980) Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 209:823–825PubMedCrossRefGoogle Scholar
  77. 77.
    Ohnuki K, Haramizu S, Oki K, Watanabe T, Yazawa S, Fushiki T (2001) Administration of capsiate, a non-pungent capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci Biotechnol Biochem 65:2735–2740PubMedCrossRefGoogle Scholar
  78. 78.
    Pare M, Albrecht PJ, Noto CJ, Bodkin NL, Pittenger GL, Schreyer DJ, Tigno XT, Hansen BC, Rice FL (2007) Differential hypertrophy and atrophy among all types of cutaneous innervation in the glabrous skin of the monkey hand during aging and naturally occurring type 2 diabetes. J Comp Neurol 501:543–567PubMedCrossRefGoogle Scholar
  79. 79.
    Pettersson M, Ahren B, Bottcher G, Sundler F (1986) Calcitonin gene-related peptide: occurrence in pancreatic islets in the mouse and the rat and inhibition of insulin secretion in the mouse. Endocrinology 119:865–869PubMedCrossRefGoogle Scholar
  80. 80.
    Poteser M, Graziani A, Eder P, Yates A, Machler H, Romanin C, Groschner K (2008) Identification of a rare subset of adipose tissue-resident progenitor cells, which express CD133 and TRPC3 as a VEGF-regulated Ca2+ entry channel. FEBS Lett 582:2696–2702PubMedCrossRefGoogle Scholar
  81. 81.
    Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281:13588–13595PubMedCrossRefGoogle Scholar
  82. 82.
    Putney JW Jr (2007) Inositol lipids and TRPC channel activation. Biochem Soc Symp 37–45Google Scholar
  83. 83.
    Raptis AE, Viberti G (2001) Pathogenesis of diabetic nephropathy. Exp Clin Endocrinol Diabetes 109(Suppl 2):S424–437PubMedCrossRefGoogle Scholar
  84. 84.
    Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, Yantha J, Tsui H, Tang L, Tsai S, Santamaria P, Driver JP, Serreze D, Salter MW, Dosch HM (2006) TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127:1123–1135PubMedCrossRefGoogle Scholar
  85. 85.
    Ruiz C, Gutknecht S, Delay E, Kinnamon S (2006) Detection of NaCl and KCl in TRPV1 knockout mice. Chem Senses 31:813–820PubMedCrossRefGoogle Scholar
  86. 86.
    Schlingmann KP, Gudermann T (2005) A critical role of TRPM channel-kinase for human magnesium transport. J Physiol 566:301–308PubMedCrossRefGoogle Scholar
  87. 87.
    Schlingmann KP, Waldegger S, Konrad M, Chubanov V, Gudermann T (2007) TRPM6 and TRPM7—Gatekeepers of human magnesium metabolism. Biochim Biophys Acta 1772:813–821PubMedGoogle Scholar
  88. 88.
    Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200PubMedCrossRefGoogle Scholar
  89. 89.
    Schrem H, Klempnauer J, Borlak J (2002) Liver-enriched transcription factors in liver function and development. Part I: the hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol Rev 54:129–158PubMedCrossRefGoogle Scholar
  90. 90.
    Scotland RS, Chauhan S, Davis C, De Felipe C, Hunt S, Kabir J, Kotsonis P, Oh U, Ahluwalia A (2004) Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction. Circ Res 95:1027–1034PubMedCrossRefGoogle Scholar
  91. 91.
    Shin KO, Moritani T (2007) Alterations of autonomic nervous activity and energy metabolism by capsaicin ingestion during aerobic exercise in healthy men. J Nutr Sci Vitaminol (Tokyo) 53:124–132CrossRefGoogle Scholar
  92. 92.
    Snitker S, Fujishima Y, Shen H, Ott S, Pi-Sunyer X, Furuhata Y, Sato H, Takahashi M (2009) Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr 89:45–50PubMedCrossRefGoogle Scholar
  93. 93.
    Song Y, Hsu YH, Niu T, Manson JE, Buring JE, Liu S (2009) Common genetic variants of the ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7), magnesium intake, and risk of type 2 diabetes in women. BMC Med Genet 10:4PubMedCrossRefGoogle Scholar
  94. 94.
    Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S, Kiselyov K (2006) TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 281:7294–7301PubMedCrossRefGoogle Scholar
  95. 95.
    Spiegel DM, Farmer B (2009) Long-term effects of magnesium carbonate on coronary artery calcification and bone mineral density in hemodialysis patients: a pilot study. Hemodial Int 13:453–459PubMedCrossRefGoogle Scholar
  96. 96.
    Stefanini M, Urbas JV, Urbas JE (1978) Gaisbock’s syndrome: its hematologic, biochemical and hormonal parameters. Angiology 29:520–533PubMedCrossRefGoogle Scholar
  97. 97.
    Suri A, Szallasi A (2008) The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol Sci 29:29–36PubMedCrossRefGoogle Scholar
  98. 98.
    Takahashi Y, Watanabe H, Murakami M, Ohba T, Radovanovic M, Ono K, Iijima T, Ito H (2007) Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy. Atherosclerosis 195:287–296PubMedCrossRefGoogle Scholar
  99. 99.
    Tani Y, Fujioka T, Sumioka M, Furuichi Y, Hamada H, Watanabe T (2004) Effects of capsinoid on serum and liver lipids in hyperlipidemic rats. J Nutr Sci Vitaminol (Tokyo) 50:351–355Google Scholar
  100. 100.
    Thilo F, Scholze A, Liu DY, Zidek W, Tepel M (2008) Association of transient receptor potential canonical type 3 (TRPC3) channel transcripts with proinflammatory cytokines. Arch Biochem Biophys 471:57–62PubMedCrossRefGoogle Scholar
  101. 101.
    Tong Q, Hirschler-Laszkiewicz I, Zhang W, Conrad K, Neagley DW, Barber DL, Cheung JY, Miller BA (2008) TRPC3 is the erythropoietin-regulated calcium channel in human erythroid cells. J Biol Chem 283:10385–10395PubMedCrossRefGoogle Scholar
  102. 102.
    Touyz RM, He Y, Montezano AC, Yao G, Chubanov V, Gudermann T, Callera GE (2006) Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 290:R73–78PubMedGoogle Scholar
  103. 103.
    Trzeciakiewicz A, Opolski A, Mazur A (2005) TRPM7: a protein responsible for magnesium homeostasis in a cell. Postepy Hig Med Dosw (Online) 59:496–502Google Scholar
  104. 104.
    Van Buren JJ, Bhat S, Rotello R, Pauza ME, Premkumar LS (2005) Sensitization and translocation of TRPV1 by insulin and IGF-I. Mol Pain 1:17PubMedCrossRefGoogle Scholar
  105. 105.
    van de Wall EH, Gram DX, Strubbe JH, Scheurink AJ, Koolhaas JM (2005) Ablation of capsaicin-sensitive afferent nerves affects insulin response during an intravenous glucose tolerance test. Life Sci 77:1283–1292PubMedCrossRefGoogle Scholar
  106. 106.
    van der Eerden BC, Hoenderop JG, de Vries TJ, Schoenmaker T, Buurman CJ, Uitterlinden AG, Pols HA, Bindels RJ, van Leeuwen JP (2005) The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc Natl Acad Sci USA 102:17507–17512PubMedCrossRefGoogle Scholar
  107. 107.
    Voets T, Talavera K, Owsianik G, Nilius B (2005) Sensing with TRP channels. Nat Chem Biol 1:85–92PubMedCrossRefGoogle Scholar
  108. 108.
    Wahlqvist ML, Wattanapenpaiboon N (2001) Hot foods—unexpected help with energy balance? Lancet 358:348–349PubMedCrossRefGoogle Scholar
  109. 109.
    Wang H, Maechler P, Antinozzi PA, Hagenfeldt KA, Wollheim CB (2000) Hepatocyte nuclear factor 4alpha regulates the expression of pancreatic beta -cell genes implicated in glucose metabolism and nutrient-induced insulin secretion. J Biol Chem 275:35953–35959PubMedCrossRefGoogle Scholar
  110. 110.
    Wang X, Miyares RL, Ahern GP (2005) Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J Physiol 564:541–547PubMedCrossRefGoogle Scholar
  111. 111.
    Wang Y, Wang DH (2006) A novel mechanism contributing to development of Dahl salt-sensitive hypertension: role of the transient receptor potential vanilloid type 1. Hypertension 47:609–614PubMedCrossRefGoogle Scholar
  112. 112.
    Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H (2008) TRP channel and cardiovascular disease. Pharmacol Ther 118:337–351PubMedCrossRefGoogle Scholar
  113. 113.
    Wei Z, Wang L, Han J, Song J, Yao L, Shao L, Sun Z, Zheng L (2009) Decreased expression of transient receptor potential vanilloid 1 impaires the postischemic recovery of diabetic mouse hearts. Circ J 73:1127–1132PubMedCrossRefGoogle Scholar
  114. 114.
    Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A, Reus K, Meese E, Bonkhoff H, Flockerzi V (2001) Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 276:19461–19468PubMedCrossRefGoogle Scholar
  115. 115.
    Wuensch T, Thilo F, Krueger K, Scholze A, Ristow M, Tepel M (2010) High glucose-induced oxidative stress increases transient receptor potential channel expression in human monocytes. Diabetes 59:844–849PubMedCrossRefGoogle Scholar
  116. 116.
    Xin H, Tanaka H, Yamaguchi M, Takemori S, Nakamura A, Kohama K (2005) Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle. Biochem Biophys Res Commun 332:756–762PubMedCrossRefGoogle Scholar
  117. 117.
    Yang D, Luo Z, Ma S, Wong WT, Ma L, Zhong J, He H, Zhao Z, Cao T, Yan Z, Liu D, Arendshorst WJ, Huang Y, Tepel M, Zhu Z (2010) Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension. Cell Metab 12:130–141PubMedCrossRefGoogle Scholar
  118. 118.
    Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97:853–863PubMedCrossRefGoogle Scholar
  119. 119.
    Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, Yan ZC, Wang LJ, Zhao ZG, Zhu SJ, Schrader M, Thilo F, Zhu ZM, Tepel M (2007) Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res 100:1063–1070PubMedCrossRefGoogle Scholar
  120. 120.
    Zhu Y, Wang DH (2008) Segmental regulation of sodium and water excretion by TRPV1 activation in the kidney. J Cardiovasc Pharmacol 51:437–442PubMedCrossRefGoogle Scholar
  121. 121.
    Zhu Y, Wang Y, Wang DH (2005) Diuresis and natriuresis caused by activation of VR1-positive sensory nerves in renal pelvis of rats. Hypertension 46:992–997PubMedCrossRefGoogle Scholar
  122. 122.
    Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, Freeman MR (2002) Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest 82:1755–1764PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Zhiming Zhu
    • 1
  • Zhidan Luo
    • 1
  • Shuangtao Ma
    • 1
  • Daoyan Liu
    • 1
  1. 1.Department of Hypertension and Endocrinology, Centre for Hypertension and Metabolic Diseases and Chongqing Institute of Hypertension, Daping HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations