Pflügers Archiv - European Journal of Physiology

, Volume 461, Issue 1, pp 191–202 | Cite as

Effects of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers on the proliferation and cell cycle progression of embryonic stem cells

  • Yuen-Ting Lau
  • Chun-Kit Wong
  • Jialie Luo
  • Lok-Hang Leung
  • Pui-Fong Tsang
  • Zhao-Xiang Bian
  • Suk-Ying Tsang
Signaling and Cell Physiology


Embryonic stem cells (ESCs) can uniquely proliferate indefinitely and differentiate into all cell lineages. ESCs may therefore provide an unlimited supply of cells for cell-based therapies. Previous study reported the presence of hyperpolarization-activated inward currents in undifferentiated mouse (m) ESCs, but the functional role of this hyperpolarization-activated current in mESCs is unknown. In this study, the role of this current in maintaining the proliferative capacity and the cell cycle progression of ESCs was investigated. In D3 mESCs, this hyperpolarization-activated inward current can be blocked by HCN channel blocker ZD7288. Application of the HCN channel blockers, cesium (1–10 mM) or ZD7288 (0.1–30 μM), attenuated cell proliferation in a concentration-dependent manner. Both HCN blockers were found to be non-cytotoxic to mESCs as determined by cell viability test. Interestingly, ZD7288 at 10 and 30 μM was found to decrease the proportion of cells in G0/G1 phase and increase the proportion of cells in S phase. This suggests that this hyperpolarization-activated current can affect the cell cycle progression in mESCs. In summary, the present investigation suggests that ESC proliferation and cell cycle progression can be regulated by this hyperpolarization-activated current.


Ion channels Hyperpolarization-activated channels Stem cell Cell cycle Excitability 



Embryonic stem cells

HCN channel

Hyperpolarization-activated cyclic nucleotide-gated channel


TATA-box binding protein



This study was supported by the Direct Grant for Research from the Chinese University of Hong Kong (CUHK) and the Lee Hysan Foundation Research Grant. Y.T.L. and C.K.W. were supported by postgraduate studentships from the CUHK. We would like to thank Ms Cecilia Sze-Lee Leung and Dr. Winnie Poon for their excellent technical support.


  1. 1.
    Aponte Y, Lien CC, Reisinger E, Jonas P (2006) Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J Physiol 574:229–243CrossRefPubMedGoogle Scholar
  2. 2.
    Barrow AJ, Wu SM (2009) Low-conductance HCN1 ion channels augment the frequency response of rod and cone photoreceptors. J Neurosci 29:5841–5853CrossRefPubMedGoogle Scholar
  3. 3.
    Bartek J, Lukas J (2001) Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 13:738–747CrossRefPubMedGoogle Scholar
  4. 4.
    Baruscotti M, Bucchi A, Difrancesco D (2005) Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther 107:59–79CrossRefPubMedGoogle Scholar
  5. 5.
    Behfar A, Perez-Terzic C, Faustino RS, Arrell DK, Hodgson DM, Yamada S, Puceat M, Niederlander N, Alekseev AE, Zingman LV, Terzic A (2007) Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 204:405–420CrossRefPubMedGoogle Scholar
  6. 6.
    Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89:847–885CrossRefPubMedGoogle Scholar
  7. 7.
    Bolivar JJ, Tapia D, Arenas G, Castanon-Arreola M, Torres H, Galarraga E (2008) A hyperpolarization-activated, cyclic nucleotide-gated, (Ih-like) cationic current and HCN gene expression in renal inner medullary collecting duct cells. Am J Physiol Cell Physiol 294:C893–906CrossRefPubMedGoogle Scholar
  8. 8.
    Chen J, Mitcheson JS, Tristani-Firouzi M, Lin M, Sanguinetti MC (2001) The S4-S5 linker couples voltage sensing and activation of pacemaker channels. Proc Natl Acad Sci USA 98:11277–11282CrossRefPubMedGoogle Scholar
  9. 9.
    Felix R, Sandoval A, Sanchez D, Gomora JC, De la Vega-Beltran JL, Trevino CL, Darszon A (2003) ZD7288 inhibits low-threshold Ca(2+) channel activity and regulates sperm function. Biochem Biophys Res Commun 311:187–192CrossRefPubMedGoogle Scholar
  10. 10.
    Fujii-Yamamoto H, Kim JM, Arai K, Masai H (2005) Cell cycle and developmental regulations of replication factors in mouse embryonic stem cells. J Biol Chem 280:12976–12987CrossRefPubMedGoogle Scholar
  11. 11.
    Gonzalez-Iglesias AE, Kretschmannova K, Tomic M, Stojilkovic SS (2006) ZD7288 inhibits exocytosis in an HCN-independent manner and downstream of voltage-gated calcium influx in pituitary lactotrophs. Biochem Biophys Res Commun 346:845–850CrossRefPubMedGoogle Scholar
  12. 12.
    Jiang YQ, Sun Q, Tu HY, Wan Y (2008) Characteristics of HCN channels and their participation in neuropathic pain. Neurochem Res 33:1979–1989CrossRefPubMedGoogle Scholar
  13. 13.
    Jirmanova L, Afanassieff M, Gobert-Gosse S, Markossian S, Savatier P (2002) Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 21:5515–5528CrossRefPubMedGoogle Scholar
  14. 14.
    Kapur N, Mignery GA, Banach K (2007) Cell cycle-dependent calcium oscillations in mouse embryonic stem cells. Am J Physiol Cell Physiol 292:C1510–1518CrossRefPubMedGoogle Scholar
  15. 15.
    Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414PubMedGoogle Scholar
  16. 16.
    Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, Shachar M, Feinberg MS, Guetta E, Itskovitz-Eldor J (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93:1278–1284CrossRefPubMedGoogle Scholar
  17. 17.
    Li YL, Tran TP, Muelleman R, Schultz HD (2008) Blunted excitability of aortic baroreceptor neurons in diabetic rats: involvement of hyperpolarization-activated channel. Cardiovasc Res 79:715–721CrossRefPubMedGoogle Scholar
  18. 18.
    Liu N, Lu M, Tian X, Han Z (2007) Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. J Cell Physiol 211:279–286CrossRefPubMedGoogle Scholar
  19. 19.
    Maric D, Maric I, Barker JL (1998) Buoyant density gradient fractionation and flow cytometric analysis of embryonic rat cortical neurons and progenitor cells. Methods 16:247–259CrossRefPubMedGoogle Scholar
  20. 20.
    Mistrik P, Mader R, Michalakis S, Weidinger M, Pfeifer A, Biel M (2005) The murine HCN3 gene encodes a hyperpolarization-activated cation channel with slow kinetics and unique response to cyclic nucleotides. J Biol Chem 280:27056–27061CrossRefPubMedGoogle Scholar
  21. 21.
    Ng SY, Chin CH, Lau YT, Luo J, Wong CK, Bian ZX, Tsang SY (2010) Role of voltage-gated potassium channels in the fate determination of embryonic stem cells. J Cell Physiol 224:165–177PubMedGoogle Scholar
  22. 22.
    Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357CrossRefPubMedGoogle Scholar
  23. 23.
    Petkova-Kirova P, Gagov H, Krien U, Duridanova D, Noack T, Schubert R (2000) 4-Aminopyridine affects rat arterial smooth muscle BK(Ca) currents by changing intracellular pH. Br J Pharmacol 131:1643–1650CrossRefPubMedGoogle Scholar
  24. 24.
    Proenza C, Angoli D, Agranovich E, Macri V, Accili EA (2002) Pacemaker channels produce an instantaneous current. J Biol Chem 277:5101–5109CrossRefPubMedGoogle Scholar
  25. 25.
    Proenza C, Yellen G (2006) Distinct populations of HCN pacemaker channels produce voltage-dependent and voltage-independent currents. J Gen Physiol 127:183–190CrossRefPubMedGoogle Scholar
  26. 26.
    Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480CrossRefPubMedGoogle Scholar
  27. 27.
    Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR (1998) Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93:717–729CrossRefPubMedGoogle Scholar
  28. 28.
    Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21:8320–8333CrossRefPubMedGoogle Scholar
  29. 29.
    Stieber J, Stockl G, Herrmann S, Hassfurth B, Hofmann F (2005) Functional expression of the human HCN3 channel. J Biol Chem 280:34635–34643CrossRefPubMedGoogle Scholar
  30. 30.
    Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, Lebl DR, Caffarelli AD, de Bruin JL, Fedoseyeva EV, Robbins RC (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112:I166–172PubMedGoogle Scholar
  31. 31.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefPubMedGoogle Scholar
  32. 32.
    Tsang SY, Moore JC, Huizen RV, Chan CW, Li RA (2007) Ectopic expression of systemic RNA interference defective protein in embryonic stem cells. Biochem Biophys Res Commun 357:480–486CrossRefPubMedGoogle Scholar
  33. 33.
    Varghese A, Tenbroek EM, Coles J Jr, Sigg DC (2006) Endogenous channels in HEK cells and potential roles in HCN ionic current measurements. Prog Biophys Mol Biol 90:26–37CrossRefPubMedGoogle Scholar
  34. 34.
    Vemana S, Pandey S, Larsson HP (2008) Intracellular Mg2+ is a voltage-dependent pore blocker of HCN channels. Am J Physiol Cell Physiol 295:C557–565CrossRefPubMedGoogle Scholar
  35. 35.
    Wang K, Xue T, Tsang SY, Van Huizen R, Wong CW, Lai KW, Ye Z, Cheng L, Au KW, Zhang J, Li GR, Lau CP, Tse HF, Li RA (2005) Electrophysiological properties of pluripotent human and mouse embryonic stem cells. Stem Cells 23:1526–1534CrossRefPubMedGoogle Scholar
  36. 36.
    White J, Dalton S (2005) Cell cycle control of embryonic stem cells. Stem Cell Rev 1:131–138CrossRefPubMedGoogle Scholar
  37. 37.
    Wong C, Stearns T (2005) Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 6:6CrossRefPubMedGoogle Scholar
  38. 38.
    Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marban E, Tomaselli GF, Li RA (2005) Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111:11–20CrossRefPubMedGoogle Scholar
  39. 39.
    Yanagida E, Shoji S, Hirayama Y, Yoshikawa F, Otsu K, Uematsu H, Hiraoka M, Furuichi T, Kawano S (2004) Functional expression of Ca2+ signaling pathways in mouse embryonic stem cells. Cell Calcium 36:135–146CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang YM, Shang L, Hartzell C, Narlow M, Cribbs L, Dudley SC Jr (2003) Characterization and regulation of T-type Ca2+ channels in embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 285:H2770–2779PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yuen-Ting Lau
    • 1
    • 6
  • Chun-Kit Wong
    • 1
  • Jialie Luo
    • 7
  • Lok-Hang Leung
    • 8
  • Pui-Fong Tsang
    • 1
  • Zhao-Xiang Bian
    • 7
  • Suk-Ying Tsang
    • 1
    • 2
    • 3
    • 4
    • 5
    • 9
  1. 1.Biochemistry Program, School of Life SciencesChinese University of Hong KongHong KongChina
  2. 2.Cell and Molecular Biology Program, School of Life SciencesChinese University of Hong KongHong KongChina
  3. 3.State Key Laboratory of AgrobiotechnologyChinese University of Hong KongHong KongChina
  4. 4.Stem Cell and Regeneration Program, School of Biomedical SciencesChinese University of Hong KongHong KongChina
  5. 5.Key Laboratory for Regenerative Medicine, Ministry of EducationChinese University of Hong KongHong KongChina
  6. 6.Molecular Biotechnology Program, School of Life SciencesChinese University of Hong KongHong KongChina
  7. 7.School of Chinese MedicineHong Kong Baptist UniversityHong KongChina
  8. 8.Faculty of MedicineChinese University of Hong KongHong KongChina
  9. 9.School of Life SciencesChinese University of Hong KongHong KongChina

Personalised recommendations