Advertisement

Role of the ubiquitin system in regulating ion transport

  • Daniela RotinEmail author
  • Olivier StaubEmail author
Invited Review

Abstract

Ion channels and transporters play a critical role in ion and fluid homeostasis and thus in normal animal physiology and pathology. Tight regulation of these transmembrane proteins is therefore essential. In recent years, many studies have focused their attention on the role of the ubiquitin system in regulating ion channels and transporters, initialed by the discoveries of the role of this system in processing of Cystic Fibrosis Transmembrane Regulator (CFTR), and in regulating endocytosis of the epithelial Na+ channel (ENaC) by the Nedd4 family of ubiquitin ligases (mainly Nedd4-2). In this review, we discuss the role of the ubiquitin system in ER Associated Degradation (ERAD) of ion channels, and in the regulation of endocytosis and lysosomal sorting of ion channels and transporters, focusing primarily in mammalian cells. We also briefly discuss the role of ubiquitin like molecules (such as SUMO) in such regulation, for which much less is known so far.

Keywords

Aldosterone Anion channel Cation channel Cystic fibrosis transmembrane conductance regulator Electrophysiology Epithelial Na channels Ion channel Potassium channel Signal transduction Sodium channel 

Notes

Acknowledgements

Work from the authors’ laboratories described in this review was funded by the Canadian Institute of Health Research and the Canadian CF Foundation (to DR), and the Swiss National Science Foundation (to OS).

References

  1. 1.
    Abriel H, Kamynina E, Horisberger JD, Staub O (2000) Regulation of the cardiac voltage-gated Na+ channel (H1) by the ubiquitin-protein ligase Nedd4. FEBS Lett 466:377–380PubMedCrossRefGoogle Scholar
  2. 2.
    Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, Rotin D, Staub O (1999) Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’s syndrome. J Clin Invest 103:667–673PubMedCrossRefGoogle Scholar
  3. 3.
    Abriel H, Staub O (2005) Ubiquitylation of ion channels. Physiol Bethesda 20:398–407CrossRefGoogle Scholar
  4. 4.
    Adams CM, Snyder PM, Welsh MJ (1997) Interactions between subunits of the human epithelial sodium channel. J Biol Chem 272:27295–27300PubMedCrossRefGoogle Scholar
  5. 5.
    Ahner A, Nakatsukasa K, Zhang H, Frizzell RA, Brodsky JL (2007) Small heat-shock proteins select deltaF508-CFTR for endoplasmic reticulum-associated degradation. Mol Biol Cell 18:806–814PubMedCrossRefGoogle Scholar
  6. 6.
    Almaca J, Kongsuphol P, Hieke B, Ousingsawat J, Viollet B, Schreiber R, Amaral MD, Kunzelmann K (2009) AMPK controls epithelial Na(+) channels through Nedd4-2 and causes an epithelial phenotype when mutated. Pflugers Arch 458:713–721PubMedCrossRefGoogle Scholar
  7. 7.
    Alvarez de la Rosa D, Zhang P, Naray-Fejes-Toth A, Fejes-Toth G, Canessa CM (1999) The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 274:37834–37839PubMedCrossRefGoogle Scholar
  8. 8.
    Araki N, Umemura M, Miyagi Y, Yabana M, Miki Y, Tamura K, Uchino K, Aoki R, Goshima Y, Umemura S, Ishigami T (2008) Expression, transcription, and possible antagonistic interaction of the human Nedd4L gene variant: implications for essential hypertension. Hypertension 51:773–777PubMedCrossRefGoogle Scholar
  9. 9.
    Auberson M, Hoffmann-Pochon N, Vandewalle A, Kellenberger S, Schild L (2003) Epithelial Na+ channel mutants causing Liddle’s syndrome retain ability to respond to aldosterone and vasopressin. Am J Physiol Ren Physiol 285:F459–F471Google Scholar
  10. 10.
    Baltaev R, Strutz-Seebohm N, Korniychuk G, Myssina S, Lang F, Seebohm G (2005) Regulation of cardiac shal-related potassium channel Kv 4.3 by serum- and glucocorticoid-inducible kinase isoforms in Xenopus oocytes. Pflugers Arch 450:26–33PubMedCrossRefGoogle Scholar
  11. 11.
    Benson MD, Li QJ, Kieckhafer K, Dudek D, Whorton MR, Sunahara RK, Iniguez-Lluhi JA, Martens JR (2007) SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proc Natl Acad Sci USA 104:1805–1810PubMedCrossRefGoogle Scholar
  12. 12.
    Bertog M, Cuffe JE, Pradervand S, Hummler E, Hartner A, Porst M, Hilgers KF, Rossier BC, Korbmacher C (2008) Aldosterone responsiveness of the epithelial sodium channel (ENaC) in colon is increased in a mouse model for Liddle’s syndrome. J Physiol 586:459–475PubMedCrossRefGoogle Scholar
  13. 13.
    Bhalla V, Daidie D, Li H, Pao AC, LaGrange LP, Wang J, Vandewalle A, Stockand JD, Staub O, Pearce D (2005) Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4–2 by inducing interaction with 14-3-3. Mol Endocrinol 19:3073–3084PubMedCrossRefGoogle Scholar
  14. 14.
    Bhalla V, Oyster NM, Fitch AC, Wijngaarden MA, Neumann D, Schlattner U, Pearce D, Hallows KR (2006) AMP-activated kinase inhibits the epithelial Na+ channel through functional regulation of the ubiquitin ligase Nedd4-2. J Biol Chem 281:26159–26169PubMedCrossRefGoogle Scholar
  15. 15.
    Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314PubMedCrossRefGoogle Scholar
  16. 16.
    Blanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hubner CA, Jentsch TJ (2007) Leukoencephalopathy upon disruption of the chloride channel ClC-2. J Neurosci 27:6581–6589PubMedCrossRefGoogle Scholar
  17. 17.
    Boehmer C, Laufer J, Jeyaraj S, Klaus F, Lindner R, Lang F, Palmada M (2008) Modulation of the voltage-gated potassium channel Kv1.5 by the SGK1 protein kinase involves inhibition of channel ubiquitination. Cell Physiol Biochem 22:591–600PubMedCrossRefGoogle Scholar
  18. 18.
    Boehmer C, Palmada M, Rajamanickam J, Schniepp R, Amara S, Lang F (2006) Post-translational regulation of EAAT2 function by co-expressed ubiquitin ligase Nedd4-2 is impacted by SGK kinases. J Neurochem 97:911–921PubMedCrossRefGoogle Scholar
  19. 19.
    Bonifacino JS, Cosson P, Klausner RD (1990) Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains. Cell 63:503–513PubMedCrossRefGoogle Scholar
  20. 20.
    Bonny O, Chraibi A, Loffing J, Jaeger NF, Grunder S, Horisberger JD, Rossier BC (1999) Functional expression of a pseudohypoaldosteronism type I mutated epithelial Na+ channel lacking the pore-forming region of its alpha subunit. J Clin Invest 104:967–974PubMedCrossRefGoogle Scholar
  21. 21.
    Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ (2001) Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption. EMBO J 20:1289–1299PubMedCrossRefGoogle Scholar
  22. 22.
    Boucher RC (2007) Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med 58:157–170PubMedCrossRefGoogle Scholar
  23. 23.
    Boulkroun S, Ruffieux-Daidie D, Vitagliano JJ, Poirot O, Charles RP, Lagnaz D, Firsov D, Kellenberger S, Staub O (2008) Vasopressin-inducible ubiquitin-specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3. Am J Physiol Ren Physiol 295:F889–F900CrossRefGoogle Scholar
  24. 24.
    Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM, Hughey RP, Kleyman TR (2007) Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit. J Biol Chem 282:6153–6160PubMedCrossRefGoogle Scholar
  25. 25.
    Bruns JB, Hu B, Ahn YJ, Sheng S, Hughey RP, Kleyman TR (2003) Multiple epithelial Na+ channel domains participate in subunit assembly. Am J Physiol Ren Physiol 285:F600–F609Google Scholar
  26. 26.
    Buck TM, Kolb AR, Boyd CR, Kleyman TR, Brodsky JL (2010) The endoplasmic reticulum-associated degradation of the epithelial sodium channel requires a unique complement of molecular chaperones. Mol Biol Cell 21:1047–1058PubMedCrossRefGoogle Scholar
  27. 27.
    Butterworth MB, Edinger RS, Ovaa H, Burg D, Johnson JP, Frizzell RA (2007) The deubiquitinating enzyme UCH-L3 regulates the apical membrane recycling of the epithelial sodium channel. J Biol Chem 282:37885–37893PubMedCrossRefGoogle Scholar
  28. 28.
    Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467PubMedCrossRefGoogle Scholar
  29. 29.
    Caramelo JJ, Parodi AJ (2007) How sugars convey information on protein conformation in the endoplasmic reticulum. Semin Cell Dev Biol 18:732–742PubMedCrossRefGoogle Scholar
  30. 30.
    Carattino MD, Edinger RS, Grieser HJ, Wise R, Neumann D, Schlattner U, Johnson JP, Kleyman TR, Hallows KR (2005) Epithelial sodium channel inhibition by AMP-activated protein kinase in oocytes and polarized renal epithelial cells. J Biol Chem 280:17608–17616PubMedCrossRefGoogle Scholar
  31. 31.
    Carattino MD, Hughey RP, Kleyman TR (2008) Proteolytic processing of the epithelial sodium channel gamma subunit has a dominant role in channel activation. J Biol Chem 283:25290–25295PubMedCrossRefGoogle Scholar
  32. 32.
    Carattino MD, Passero CJ, Steren CA, Maarouf AB, Pilewski JM, Myerburg MM, Hughey RP, Kleyman TR (2008) Defining an inhibitory domain in the alpha-subunit of the epithelial sodium channel. Am J Physiol Ren Physiol 294:F47–F52CrossRefGoogle Scholar
  33. 33.
    Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126:361–373PubMedCrossRefGoogle Scholar
  34. 34.
    Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson-Williams C, Rossier BC, Lifton RP (1996) Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12:248–253PubMedCrossRefGoogle Scholar
  35. 35.
    Chen B, Mariano J, Tsai YC, Chan AH, Cohen M, Weissman AM (2006) The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc Natl Acad Sci USA 103:341–346PubMedCrossRefGoogle Scholar
  36. 36.
    Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D (1999) Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci USA 96:2514–2519PubMedCrossRefGoogle Scholar
  37. 37.
    Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O'Riordan CR, Smith AE (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834PubMedCrossRefGoogle Scholar
  38. 38.
    Christianson JC, Green WN (2004) Regulation of nicotinic receptor expression by the ubiquitin-proteasome system. EMBO J 23:4156–4165PubMedCrossRefGoogle Scholar
  39. 39.
    Dahlmann A, Pradervand S, Hummler E, Rossier BC, Frindt G, Palmer LG (2003) Mineralocorticoid regulation of epithelial Na+ channels is maintained in a mouse model of Liddle’s syndrome. Am J Physiol Ren Physiol 285:F310–F318Google Scholar
  40. 40.
    Dai XQ, Kolic J, Marchi P, Sipione S, Macdonald PE (2009) SUMOylation regulates Kv2.1 and modulates pancreatic beta-cell excitability. J Cell Sci 122:775–779PubMedCrossRefGoogle Scholar
  41. 41.
    Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O (2001) Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 20:7052–7059PubMedCrossRefGoogle Scholar
  42. 42.
    Debonneville C, Staub O (2004) Participation of the ubiquitin-conjugating enzyme UBE2E3 in Nedd4-2-dependent regulation of the epithelial Na+ channel. Mol Cell Biol 24:2397–2409PubMedCrossRefGoogle Scholar
  43. 43.
    Diakov A, Korbmacher C (2004) A novel pathway of epithelial sodium channel activation involves a serum- and glucocorticoid-inducible kinase consensus motif in the C terminus of the channel’s alpha-subunit. J Biol Chem 279:38134–38142PubMedCrossRefGoogle Scholar
  44. 44.
    Dibbens LM, Ekberg J, Taylor I, Hodgson BL, Conroy SJ, Lensink IL, Kumar S, Zielinski MA, Harkin LA, Sutherland GR, Adams DJ, Berkovic SF, Scheffer IE, Mulley JC, Poronnik P (2007) NEDD4-2 as a potential candidate susceptibility gene for epileptic photosensitivity. Genes Brain Behav 6:750–755PubMedCrossRefGoogle Scholar
  45. 45.
    Dinudom A, Harvey KF, Komwatana P, Young JA, Kumar S, Cook DI (1998) Nedd4 mediates control of an epithelial Na+ channel in salivary duct cells by cytosolic Na+. Proc Natl Acad Sci USA 95:7169–7173PubMedCrossRefGoogle Scholar
  46. 46.
    Donaldson SH, Boucher RC (2007) Sodium channels and cystic fibrosis. Chest 132:1631–1636PubMedCrossRefGoogle Scholar
  47. 47.
    Duc C, Farman N, Canessa CM, Bonvalet JP, Rossier BC (1994) Cell-specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry. J Cell Biol 127:1907–1921PubMedCrossRefGoogle Scholar
  48. 48.
    Dunn DM, Ishigami T, Pankow J, von Niederhausern A, Alder J, Hunt SC, Leppert MF, Lalouel JM, Weiss RB (2002) Common variant of human NEDD4L activates a cryptic splice site to form a frameshifted transcript. J Hum Genet 47:665–676PubMedCrossRefGoogle Scholar
  49. 49.
    Edinger RS, Lebowitz J, Li H, Alzamora R, Wang H, Johnson JP, Hallows KR (2009) Functional regulation of the epithelial Na+ channel by IkappaB kinase-beta occurs via phosphorylation of the ubiquitin ligase Nedd4-2. J Biol Chem 284:150–157PubMedCrossRefGoogle Scholar
  50. 50.
    Ekberg J, Schuetz F, Boase NA, Conroy SJ, Manning J, Kumar S, Poronnik P, Adams DJ (2007) Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by ubiquitination. Novel role for Nedd4-2. J Biol Chem 282:12135–12142PubMedCrossRefGoogle Scholar
  51. 51.
    Embark HM, Bohmer C, Palmada M, Rajamanickam J, Wyatt AW, Wallisch S, Capasso G, Waldegger P, Seyberth HW, Waldegger S, Lang F (2004) Regulation of CLC-Ka/barttin by the ubiquitin ligase Nedd4-2 and the serum- and glucocorticoid-dependent kinases. Kidney Int 66:1918–1925PubMedCrossRefGoogle Scholar
  52. 52.
    Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, An-Gourfinkel I, Brice A, LeGuern E, Moulard B, Chaigne D, Buresi C, Malafosse A (2000) Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS + 2. Nat Genet 24:343–345PubMedCrossRefGoogle Scholar
  53. 53.
    Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K + secretion. Nature 414:558–561PubMedCrossRefGoogle Scholar
  54. 54.
    Fakitsas P, Adam G, Daidie D, van Bemmelen MX, Fouladkou F, Patrignani A, Wagner U, Warth R, Camargo SM, Staub O, Verrey F (2007) Early aldosterone-induced gene product regulates the epithelial sodium channel by deubiquitylation. J Am Soc Nephrol 18:1084–1092PubMedCrossRefGoogle Scholar
  55. 55.
    Fejes-Toth G, Frindt G, Naray-Fejes-Toth A, Palmer LG (2008) Epithelial Na+ channel activation and processing in mice lacking SGK1. Am J Physiol Ren Physiol 294:F1298–F1305CrossRefGoogle Scholar
  56. 56.
    Feliciangeli S, Bendahhou S, Sandoz G, Gounon P, Reichold M, Warth R, Lazdunski M, Barhanin J, Lesage F (2007) Does sumoylation control K2P1/TWIK1 background K + channels? Cell 130:563–569PubMedCrossRefGoogle Scholar
  57. 57.
    Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier BC (1996) Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci USA 93:15370–15375PubMedCrossRefGoogle Scholar
  58. 58.
    Flores SY, Loffing-Cueni D, Kamynina E, Daidie D, Gerbex C, Chabanel S, Dudler J, Loffing J, Staub O (2005) Aldosterone-induced serum and glucocorticoid-induced kinase 1 expression is accompanied by Nedd4-2 phosphorylation and increased Na + transport in cortical collecting duct cells. J Am Soc Nephrol 16:2279–2287PubMedCrossRefGoogle Scholar
  59. 59.
    Foot NJ, Dalton HE, Shearwin-Whyatt LM, Dorstyn L, Tan SS, Yang B, Kumar S (2008) Regulation of the divalent metal ion transporter DMT1 and iron homeostasis by a ubiquitin-dependent mechanism involving Ndfips and WWP2. Blood 112:4268–4275PubMedCrossRefGoogle Scholar
  60. 60.
    Fotia AB, Dinudom A, Shearwin KE, Koch JP, Korbmacher C, Cook DI, Kumar S (2003) The role of individual Nedd4-2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels. FASEB J 17:70–72PubMedGoogle Scholar
  61. 61.
    Fotia AB, Ekberg J, Adams DJ, Cook DI, Poronnik P, Kumar S (2004) Regulation of neuronal voltage-gated sodium channels by the ubiquitin-protein ligases Nedd4 and Nedd4-2. J Biol Chem 279:28930–28935PubMedCrossRefGoogle Scholar
  62. 62.
    Fouladkou F, Alikhani-Koopaei R, Vogt B, Flores SY, Malbert-Colas L, Lecomte MC, Loffing J, Frey FJ, Frey BM, Staub O (2004) A naturally occurring human Nedd4-2 variant displays impaired ENaC regulation in Xenopus laevis oocytes. Am J Physiol Ren Physiol 287:F550–F561CrossRefGoogle Scholar
  63. 63.
    Galan JM, Haguenauer-Tsapis R (1997) Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 16:5847–5854PubMedCrossRefGoogle Scholar
  64. 64.
    Galan JM, Moreau V, Andre B, Volland C, Haguenauer-Tsapis R (1996) Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J Biol Chem 271:10946–10952PubMedCrossRefGoogle Scholar
  65. 65.
    Gao Y, Chotoo CK, Balut CM, Sun F, Bailey MA, Devor DC (2008) Role of S3 and S4 transmembrane domain charged amino acids in channel biogenesis and gating of KCa2.3 and KCa3.1. J Biol Chem 283:9049–9059PubMedCrossRefGoogle Scholar
  66. 66.
    Gasser A, Cheng X, Gilmore ES, Tyrrell L, Waxman SG, Dib-Hajj SD (2010) Two Nedd4-binding motifs underlie modulation of sodium channel Nav1.6 by p38 MAPK. J Biol Chem 285:26149−26161Google Scholar
  67. 67.
    Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428PubMedGoogle Scholar
  68. 68.
    Gnann A, Riordan JR, Wolf DH (2004) Cystic fibrosis transmembrane conductance regulator degradation depends on the lectins Htm1p/EDEM and the Cdc48 protein complex in yeast. Mol Biol Cell 15:4125–4135PubMedCrossRefGoogle Scholar
  69. 69.
    Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan W, Kleyman TR, Rubenstein RC (2006) Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proc Natl Acad Sci USA 103:5817–5822PubMedCrossRefGoogle Scholar
  70. 70.
    Goldstein SA, Wang KW, Ilan N, Pausch MH (1998) Sequence and function of the two P domain potassium channels: implications of an emerging superfamily. J Mol Med 76:13–20PubMedCrossRefGoogle Scholar
  71. 71.
    Gorrie GH, Vallis Y, Stephenson A, Whitfield J, Browning B, Smart TG, Moss SJ (1997) Assembly of GABAA receptors composed of alpha1 and beta2 subunits in both cultured neurons and fibroblasts. J Neurosci 17:6587–6596PubMedGoogle Scholar
  72. 72.
    Gunther W, Piwon N, Jentsch TJ (2003) The ClC-5 chloride channel knock-out mouse - an animal model for Dent’s disease. Pflugers Arch 445:456–462PubMedGoogle Scholar
  73. 73.
    Gupta R, Kus B, Fladd C, Wasmuth J, Tonikian R, Sidhu S, Krogan NJ, Parkinson J, Rotin D (2007) Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol Syst Biol 3:116PubMedCrossRefGoogle Scholar
  74. 74.
    Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP (1995) Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 11:76–82PubMedCrossRefGoogle Scholar
  75. 75.
    Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets R, Nelson-Williams C, Rossier BC, Lifton RP (1995) A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci USA 92:11495–11499PubMedCrossRefGoogle Scholar
  76. 76.
    Harvey KF, Dinudom A, Cook DI, Kumar S (2001) The Nedd4-like protein KIAA0439 is a potential regulator of the epithelial sodium channel. J Biol Chem 276:8597–8601PubMedCrossRefGoogle Scholar
  77. 77.
    He Y, Hryciw DH, Carroll ML, Myers SA, Whitbread AK, Kumar S, Poronnik P, Hooper JD (2008) The ubiquitin-protein ligase Nedd4-2 differentially interacts with and regulates members of the Tweety family of chloride ion channels. J Biol Chem 283:24000–24010PubMedCrossRefGoogle Scholar
  78. 78.
    Hein C, Springael JY, Volland C, Haguenauer-Tsapis R, Andre B (1995) NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol 18:77–87PubMedCrossRefGoogle Scholar
  79. 79.
    Henke G, Maier G, Wallisch S, Boehmer C, Lang F (2004) Regulation of the voltage gated K + channel Kv1.3 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid inducible kinase SGK1. J Cell Physiol 199:194–199PubMedCrossRefGoogle Scholar
  80. 80.
    Henry PC, Kanelis V, O'Brien MC, Kim B, Gautschi I, Forman-Kay J, Schild L, Rotin D (2003) Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na + channel. J Biol Chem 278:20019–20028PubMedCrossRefGoogle Scholar
  81. 81.
    Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172PubMedCrossRefGoogle Scholar
  82. 82.
    Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287PubMedCrossRefGoogle Scholar
  83. 83.
    Howitt J, Putz U, Lackovic J, Doan A, Dorstyn L, Cheng H, Yang B, Chan-Ling T, Silke J, Kumar S, Tan SS (2009) Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proc Natl Acad Sci USA 106:15489–15494PubMedCrossRefGoogle Scholar
  84. 84.
    Hryciw DH, Ekberg J, Lee A, Lensink IL, Kumar S, Guggino WB, Cook DI, Pollock CA, Poronnik P (2004) Nedd4-2 functionally interacts with ClC-5: involvement in constitutive albumin endocytosis in proximal tubule cells. J Biol Chem 279:54996–55007PubMedCrossRefGoogle Scholar
  85. 85.
    Hu J, Wittekind SG, Barr MM (2007) STAM and Hrs down-regulate ciliary TRP receptors. Mol Biol Cell 18:3277–3289PubMedCrossRefGoogle Scholar
  86. 86.
    Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, Johnson JP, Stockand JD, Kleyman TR (2004) Epithelial sodium channels are activated by furin-dependent proteolysis. J Biol Chem 279:18111–18114PubMedCrossRefGoogle Scholar
  87. 87.
    Hughey RP, Bruns JB, Kinlough CL, Kleyman TR (2004) Distinct pools of epithelial sodium channels are expressed at the plasma membrane. J Biol Chem 279:48491–48494PubMedCrossRefGoogle Scholar
  88. 88.
    Hughey RP, Carattino MD, Kleyman TR (2007) Role of proteolysis in the activation of epithelial sodium channels. Curr Opin Nephrol Hypertens 16:444–450PubMedCrossRefGoogle Scholar
  89. 89.
    Hummler E, Vallon V (2005) Lessons from mouse mutants of epithelial sodium channel and its regulatory proteins. J Am Soc Nephrol 16:3160–3166PubMedCrossRefGoogle Scholar
  90. 90.
    Ichimura T, Yamamura H, Sasamoto K, Tominaga Y, Taoka M, Kakiuchi K, Shinkawa T, Takahashi N, Shimada S, Isobe T (2005) 14-3-3 proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase. J Biol Chem 280:13187–13194PubMedCrossRefGoogle Scholar
  91. 91.
    Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13:2384–2398PubMedCrossRefGoogle Scholar
  92. 92.
    Itani OA, Campbell JR, Herrero J, Snyder PM, Thomas CP (2003) Alternate promoters and variable splicing lead to hNedd4-2 isoforms with a C2 domain and varying number of WW domains. Am J Physiol Ren Physiol 285:F916–F929Google Scholar
  93. 93.
    Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135PubMedCrossRefGoogle Scholar
  94. 94.
    Jentsch TJ (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 43:3–36PubMedCrossRefGoogle Scholar
  95. 95.
    Jespersen T, Membrez M, Nicolas CS, Pitard B, Staub O, Olesen SP, Baro I, Abriel H (2007) The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family. Cardiovasc Res 74:64–74PubMedCrossRefGoogle Scholar
  96. 96.
    Joch M, Ase AR, Chen CX, MacDonald PA, Kontogiannea M, Corera AT, Brice A, Seguela P, Fon EA (2007) Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol Biol Cell 18:3105–3118PubMedCrossRefGoogle Scholar
  97. 97.
    Kabra R, Knight KK, Zhou R, Snyder PM (2008) Nedd4-2 induces endocytosis and degradation of proteolytically cleaved epithelial Na+ channels. J Biol Chem 283:6033–6039PubMedCrossRefGoogle Scholar
  98. 98.
    Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der Sluijs P, Klumperman J, Deen PM (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA 103:18344–18349PubMedCrossRefGoogle Scholar
  99. 99.
    Kamynina E, Debonneville C, Bens M, Vandewalle A, Staub O (2001) A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. FASEB J 15:204–214PubMedCrossRefGoogle Scholar
  100. 100.
    Kamynina E, Tauxe C, Staub O (2001) Distinct characteristics of two human Nedd4 proteins with respect to epithelial Na(+) channel regulation. Am J Physiol Ren Physiol 281:F469–F477Google Scholar
  101. 101.
    Kanelis V, Bruce MC, Skrynnikov NR, Rotin D, Forman-Kay JD (2006) Structural determinants for high-affinity binding in a Nedd4 WW3* domain-Comm PY motif complex. Structure 14:543–553PubMedCrossRefGoogle Scholar
  102. 102.
    Kanelis V, Rotin D, Forman-Kay JD (2001) Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nat Struct Biol 8:407–412PubMedCrossRefGoogle Scholar
  103. 103.
    Kashlan OB, Mueller GM, Qamar MZ, Poland PA, Ahner A, Rubenstein RC, Hughey RP, Brodsky JL, Kleyman TR (2007) Small heat shock protein alphaA-crystallin regulates epithelial sodium channel expression. J Biol Chem 282:28149–28156PubMedCrossRefGoogle Scholar
  104. 104.
    Kato A, Rouach N, Nicoll RA, Bredt DS (2005) Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc Natl Acad Sci USA 102:5600–5605PubMedCrossRefGoogle Scholar
  105. 105.
    Keating MT, Sanguinetti MC (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104:569–580PubMedCrossRefGoogle Scholar
  106. 106.
    Kellenberger S, Gautschi I, Rossier BC, Schild L (1998) Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system. J Clin Invest 101:2741–2750PubMedCrossRefGoogle Scholar
  107. 107.
    Kikkert M, Doolman R, Dai M, Avner R, Hassink G, van Voorden S, Thanedar S, Roitelman J, Chau V, Wiertz E (2004) Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J Biol Chem 279:3525–3534PubMedCrossRefGoogle Scholar
  108. 108.
    Knight KK, Olson DR, Zhou R, Snyder PM (2006) Liddle’s syndrome mutations increase Na + transport through dual effects on epithelial Na+ channel surface expression and proteolytic cleavage. Proc Natl Acad Sci USA 103:2805–2808PubMedCrossRefGoogle Scholar
  109. 109.
    Kopito RR (1999) Biosynthesis and degradation of CFTR. Physiol Rev 79:S167–S173PubMedGoogle Scholar
  110. 110.
    Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Brink P, Pongs O (2009) Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 119:2737–2744PubMedCrossRefGoogle Scholar
  111. 111.
    Lauwers E, Jacob C, Andre B (2009) K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J Cell Biol 185:493–502PubMedCrossRefGoogle Scholar
  112. 112.
    Lee IH, Dinudom A, Sanchez-Perez A, Kumar S, Cook DI (2007) Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4-2. J Biol Chem 282:29866–29873PubMedCrossRefGoogle Scholar
  113. 113.
    Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996) TWIK-1, a ubiquitous human weakly inward rectifying K + channel with a novel structure. EMBO J 15:1004–1011PubMedGoogle Scholar
  114. 114.
    Levkowitz G, Klapper LN, Tzahar E, Freywald A, Sela M, Yarden Y (1996) Coupling of the c-Cbl protooncogene product to ErbB-1/EGF-receptor but not to other ErbB proteins. Oncogene 12:1117–1125PubMedGoogle Scholar
  115. 115.
    Leykauf K, Salek M, Bomke J, Frech M, Lehmann WD, Durst M, Alonso A (2006) Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process. J Cell Sci 119:3634–3642PubMedCrossRefGoogle Scholar
  116. 116.
    Li T, Koshy S, Folkesson HG (2007) Involvement of {alpha}ENaC and Nedd4-2 in the conversion from lung fluid secretion to fluid absorption at birth in the rat as assayed by RNA interference analysis. Am J Physiol Lung Cell Mol Physiol 293:L1069–L1078PubMedCrossRefGoogle Scholar
  117. 117.
    Li T, Koshy S, Folkesson HG (2009) IL-1beta-induced cortisol stimulates lung fluid absorption in fetal guinea pigs via SGK-mediated Nedd4-2 inhibition. Am J Physiol Lung Cell Mol Physiol 296:L527–L533PubMedCrossRefGoogle Scholar
  118. 118.
    Liang X, Butterworth MB, Peters KW, Walker WH, Frizzell RA (2008) An obligatory heterodimer of 14-3-3beta and 14-3-3epsilon is required for aldosterone regulation of the epithelial sodium channel. J Biol Chem 283:27418–27425PubMedCrossRefGoogle Scholar
  119. 119.
    Liang X, Peters KW, Butterworth MB, Frizzell RA (2006) 14-3-3 isoforms are induced by aldosterone and participate in its regulation of epithelial sodium channels. J Biol Chem 281:16323–16332PubMedCrossRefGoogle Scholar
  120. 120.
    Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556PubMedCrossRefGoogle Scholar
  121. 121.
    Lilley BN, Ploegh HL (2005) Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc Natl Acad Sci USA 102:14296–14301PubMedCrossRefGoogle Scholar
  122. 122.
    Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD (2008) Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135:714–725PubMedCrossRefGoogle Scholar
  123. 123.
    Lin DH, Yue P, Pan CY, Sun P, Zhang X, Han Z, Roos M, Caplan M, Giebisch G, Wang WH (2009) POSH stimulates the ubiquitination and the clathrin-independent endocytosis of ROMK1 channels. J Biol Chem 284:29614–29624PubMedCrossRefGoogle Scholar
  124. 124.
    Liu XF, Supek F, Nelson N, Culotta VC (1997) Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 272:11763–11769PubMedCrossRefGoogle Scholar
  125. 125.
    Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458:111–135PubMedCrossRefGoogle Scholar
  126. 126.
    Loffing J, Zecevic M, Feraille E, Kaissling B, Asher C, Rossier BC, Firestone GL, Pearce D, Verrey F (2001) Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Ren Physiol 280:F675–F682Google Scholar
  127. 127.
    Lu C, Pribanic S, Debonneville A, Jiang C, Rotin D (2007) The PY motif of ENaC, mutated in Liddle syndrome, regulates channel internalization, sorting and mobilization from subapical pool. Traffic 8:1246–1264PubMedCrossRefGoogle Scholar
  128. 128.
    Luo F, Wang Y, Wang X, Sun K, Zhou X, Hui R (2009) A functional variant of NEDD4L is associated with hypertension, antihypertensive response, and orthostatic hypotension. Hypertension 54:796–801PubMedCrossRefGoogle Scholar
  129. 129.
    Malik B, Schlanger L, Al-Khalili O, Bao HF, Yue G, Price SR, Mitch WE, Eaton DC (2001) Enac degradation in A6 cells by the ubiquitin-proteosome proteolytic pathway. J Biol Chem 276:12903–12910PubMedCrossRefGoogle Scholar
  130. 130.
    Malik B, Yue Q, Yue G, Chen XJ, Price SR, Mitch WE, Eaton DC (2005) Role of Nedd4-2 and polyubiquitination in epithelial sodium channel degradation in untransfected renal A6 cells expressing endogenous ENaC subunits. Am J Physiol Ren Physiol 289:F107–F116CrossRefGoogle Scholar
  131. 131.
    Mall M, Grubb BR, Harkema JR, O'Neal WK, Boucher RC (2004) Increased airway epithelial Na + absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10:487–493PubMedCrossRefGoogle Scholar
  132. 132.
    Manganas LN, Akhtar S, Antonucci DE, Campomanes CR, Dolly JO, Trimmer JS (2001) Episodic ataxia type-1 mutations in the Kv1.1 potassium channel display distinct folding and intracellular trafficking properties. J Biol Chem 276:49427–49434PubMedCrossRefGoogle Scholar
  133. 133.
    Manganas LN, Wang Q, Scannevin RH, Antonucci DE, Rhodes KJ, Trimmer JS (2001) Identification of a trafficking determinant localized to the Kv1 potassium channel pore. Proc Natl Acad Sci USA 98:14055–14059PubMedCrossRefGoogle Scholar
  134. 134.
    May A, Puoti A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel alpha subunit in A6 renal cells. J Am Soc Nephrol 8:1813–1822PubMedGoogle Scholar
  135. 135.
    McDonald FJ, Price MP, Snyder PM, Welsh MJ (1995) Cloning and expression of the beta- and gamma-subunits of the human epithelial sodium channel. Am J Physiol 268:C1157–C1163PubMedGoogle Scholar
  136. 136.
    McNicholas CM, Canessa CM (1997) Diversity of channels generated by different combinations of epithelial sodium channel subunits. J Gen Physiol 109:681–692PubMedCrossRefGoogle Scholar
  137. 137.
    Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100–105PubMedCrossRefGoogle Scholar
  138. 138.
    Michlig S, Harris M, Loffing J, Rossier BC, Firsov D (2005) Progesterone down-regulates the open probability of the amiloride-sensitive epithelial sodium channel via a Nedd4-2-dependent mechanism. J Biol Chem 280:38264–38270PubMedCrossRefGoogle Scholar
  139. 139.
    Morito D, Hirao K, Oda Y, Hosokawa N, Tokunaga F, Cyr DM, Tanaka K, Iwai K, Nagata K (2008) Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol Biol Cell 19:1328–1336PubMedCrossRefGoogle Scholar
  140. 140.
    Mueller B, Lilley BN, Ploegh HL (2006) SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J Cell Biol 175:261–270PubMedCrossRefGoogle Scholar
  141. 141.
    Nakatsukasa K, Brodsky JL (2008) The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9:861–870PubMedCrossRefGoogle Scholar
  142. 142.
    Naray-Fejes-Toth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Toth G (1999) sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial na+ channels. J Biol Chem 274:16973–16978PubMedCrossRefGoogle Scholar
  143. 143.
    Nishikawa SI, Fewell SW, Kato Y, Brodsky JL, Endo T (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153:1061–1070PubMedCrossRefGoogle Scholar
  144. 144.
    O'Kelly I, Butler MH, Zilberberg N, Goldstein SA (2002) Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111:577–588PubMedCrossRefGoogle Scholar
  145. 145.
    Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, Mori K (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol 172:383–393PubMedCrossRefGoogle Scholar
  146. 146.
    Okiyoneda T, Barriere H, Bagdany M, Rabeh WM, Du K, Hohfeld J, Young JC, Lukacs GL (2010) Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 329:805–810PubMedCrossRefGoogle Scholar
  147. 147.
    Okiyoneda T, Harada K, Takeya M, Yamahira K, Wada I, Shuto T, Suico MA, Hashimoto Y, Kai H (2004) Delta F508 CFTR pool in the endoplasmic reticulum is increased by calnexin overexpression. Mol Biol Cell 15:563–574PubMedCrossRefGoogle Scholar
  148. 148.
    Orias M, Velazquez H, Tung F, Lee G, Desir GV (1997) Cloning and localization of a double-pore K channel, KCNK1: exclusive expression in distal nephron segments. Am J Physiol 273:F663–F666PubMedGoogle Scholar
  149. 149.
    Paiva S, Vieira N, Nondier I, Haguenauer-Tsapis R, Casal M, Urban-Grimal D (2009) Glucose-induced ubiquitylation and endocytosis of the yeast Jen1 transporter: role of lysine 63-linked ubiquitin chains. J Biol Chem 284:19228–19236PubMedCrossRefGoogle Scholar
  150. 150.
    Palmada M, Dieter M, Boehmer C, Waldegger S, Lang F (2004) Serum and glucocorticoid inducible kinases functionally regulate ClC-2 channels. Biochem Biophys Res Commun 321:1001–1006PubMedCrossRefGoogle Scholar
  151. 151.
    Palmer LG, Sackin H, Frindt G (1998) Regulation of Na+ channels by luminal Na+ in rat cortical collecting tubule. J Physiol 509(Pt 1):151–162PubMedCrossRefGoogle Scholar
  152. 152.
    Papadatos GA, Wallerstein PM, Head CE, Ratcliff R, Brady PA, Benndorf K, Saumarez RC, Trezise AE, Huang CL, Vandenberg JI, Colledge WH, Grace AA (2002) Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc Natl Acad Sci USA 99:6210–6215PubMedCrossRefGoogle Scholar
  153. 153.
    Passero CJ, Mueller GM, Rondon-Berrios H, Tofovic SP, Hughey RP, Kleyman TR (2008) Plasmin activates epithelial Na+ channels by cleaving the gamma subunit. J Biol Chem 283:36586–36591PubMedCrossRefGoogle Scholar
  154. 154.
    Pearce MM, Wang Y, Kelley GG, Wojcikiewicz RJ (2007) SPFH2 mediates the endoplasmic reticulum-associated degradation of inositol 1, 4, 5-trisphosphate receptors and other substrates in mammalian cells. J Biol Chem 282:20104–20115PubMedCrossRefGoogle Scholar
  155. 155.
    Persaud A, Alberts P, Amsen EM, Xiong X, Wasmuth J, Saadon Z, Fladd C, Parkinson J, Rotin D (2009) Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol Syst Biol 5:333PubMedCrossRefGoogle Scholar
  156. 156.
    Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ (2000) ClC-5 Cl− -channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373PubMedCrossRefGoogle Scholar
  157. 157.
    Plant LD, Dementieva IS, Kollewe A, Olikara S, Marks JD, Goldstein SA (2010) One SUMO is sufficient to silence the dimeric potassium channel K2P1. Proc Natl Acad Sci USA 107:10743–10748PubMedCrossRefGoogle Scholar
  158. 158.
    Pourrier M, Schram G, Nattel S (2003) Properties, expression and potential roles of cardiac K+ channel accessory subunits: MinK, MiRPs, KChIP, and KChAP. J Membr Biol 194:141–152PubMedCrossRefGoogle Scholar
  159. 159.
    Pradervand S, Wang Q, Burnier M, Beermann F, Horisberger JD, Hummler E, Rossier BC (1999) A mouse model for Liddle’s syndrome. J Am Soc Nephrol 10:2527–2533PubMedGoogle Scholar
  160. 160.
    Rabinovich E, Kerem A, Frohlich KU, Diamant N, Bar-Nun S (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626–634PubMedCrossRefGoogle Scholar
  161. 161.
    Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA (2005) Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121:37–47PubMedCrossRefGoogle Scholar
  162. 162.
    Randrianarison N, Escoubet B, Ferreira C, Fontayne A, Fowler-Jaeger N, Clerici C, Hummler E, Rossier BC, Planes C (2007) beta-Liddle mutation of the epithelial sodium channel increases alveolar fluid clearance and reduces the severity of hydrostatic pulmonary oedema in mice. J Physiol 582:777–788PubMedCrossRefGoogle Scholar
  163. 163.
    Rauh R, Dinudom A, Fotia AB, Paulides M, Kumar S, Korbmacher C, Cook DI (2006) Stimulation of the epithelial sodium channel (ENaC) by the serum- and glucocorticoid-inducible kinase (Sgk) involves the PY motifs of the channel but is independent of sodium feedback inhibition. Pflugers Arch 452:290–299PubMedCrossRefGoogle Scholar
  164. 164.
    Reid CA, Berkovic SF, Petrou S (2009) Mechanisms of human inherited epilepsies. Prog Neurobiol 87:41–57PubMedCrossRefGoogle Scholar
  165. 165.
    Ring AM, Cheng SX, Leng Q, Kahle KT, Rinehart J, Lalioti MD, Volkman HM, Wilson FH, Hebert SC, Lifton RP (2007) WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. Proc Natl Acad Sci USA 104:4020–4024PubMedCrossRefGoogle Scholar
  166. 166.
    Ring AM, Leng Q, Rinehart J, Wilson FH, Kahle KT, Hebert SC, Lifton RP (2007) An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. Proc Natl Acad Sci USA 104:4025–4029PubMedCrossRefGoogle Scholar
  167. 167.
    Riordan JR (2005) Assembly of functional CFTR chloride channels. Annu Rev Physiol 67:701–718PubMedCrossRefGoogle Scholar
  168. 168.
    Rossier BC, Schild L (2008) Epithelial sodium channel: mendelian versus essential hypertension. Hypertension 52:595–600PubMedCrossRefGoogle Scholar
  169. 169.
    Rossier BC, Stutts MJ (2009) Activation of the epithelial sodium channel (ENaC) by serine proteases. Annu Rev Physiol 71:361–379PubMedCrossRefGoogle Scholar
  170. 170.
    Rougier JS, van Bemmelen MX, Bruce MC, Jespersen T, Gavillet B, Apotheloz F, Cordonier S, Staub O, Rotin D, Abriel H (2005) Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins. Am J Physiol Cell Physiol 288:C692–C701PubMedCrossRefGoogle Scholar
  171. 171.
    Ruffieux-Daidie D, Poirot O, Boulkroun S, Verrey F, Kellenberger S, Staub O (2008) Deubiquitylation regulates activation and proteolytic cleavage of ENaC. J Am Soc Nephrol 19:2170–2180PubMedCrossRefGoogle Scholar
  172. 172.
    Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A, Zara F, Luna D, Bulteau C, Kaminska A, Ville D, Cieuta C, Picard F, Prud'homme JF, Bate L, Sundquist A, Gardiner RM, Janssen GA, de Haan GJ, Kasteleijn-Nolst-Trenite DG, Bader A, Lindhout D, Riess O, Wienker TF, Janz D, Reis A (2000) Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 9:1465–1472PubMedCrossRefGoogle Scholar
  173. 173.
    Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC (1996) Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15:2381–2387PubMedGoogle Scholar
  174. 174.
    Schmidt JW, Catterall WA (1986) Biosynthesis and processing of the alpha subunit of the voltage-sensitive sodium channel in rat brain neurons. Cell 46:437–444PubMedCrossRefGoogle Scholar
  175. 175.
    Schuetz F, Kumar S, Poronnik P, Adams DJ (2008) Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1. Am J Physiol Cell Physiol 295:C73–C80PubMedCrossRefGoogle Scholar
  176. 176.
    Schwake M, Friedrich T, Jentsch TJ (2001) An internalization signal in ClC-5, an endosomal Cl-channel mutated in dent’s disease. J Biol Chem 276:12049–12054PubMedCrossRefGoogle Scholar
  177. 177.
    Schwartz AL, Ciechanover A (2008) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73−96Google Scholar
  178. 178.
    Sheng S, Carattino MD, Bruns JB, Hughey RP, Kleyman TR (2006) Furin cleavage activates the epithelial Na+ channel by relieving Na+ self-inhibition. Am J Physiol Ren Physiol 290:F1488–F1496CrossRefGoogle Scholar
  179. 179.
    Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS (1996) Beta subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16:843–852PubMedCrossRefGoogle Scholar
  180. 180.
    Shi H, Asher C, Chigaev A, Yung Y, Reuveny E, Seger R, Garty H (2002) Interactions of beta and gamma ENaC with Nedd4 can be facilitated by an ERK-mediated phosphorylation. J Biol Chem 277:13539–13547PubMedCrossRefGoogle Scholar
  181. 181.
    Shi PP, Cao XR, Sweezer EM, Kinney TS, Williams NR, Husted RF, Nair R, Weiss RM, Williamson RA, Sigmund CD, Snyder PM, Staub O, Stokes JB, Yang B (2008) Salt-sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4-2. Am J Physiol Ren Physiol 295:F462–F470CrossRefGoogle Scholar
  182. 182.
    Shigaev A, Asher C, Latter H, Garty H, Reuveny E (2000) Regulation of sgk by aldosterone and its effects on the epithelial Na(+) channel. Am J Physiol Ren Physiol 278:F613–F619Google Scholar
  183. 183.
    Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW et al (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79:407–414PubMedCrossRefGoogle Scholar
  184. 184.
    Snyder PM, Olson DR, Kabra R, Zhou R, Steines JC (2004) cAMP and serum and glucocorticoid-inducible kinase (SGK) regulate the epithelial Na(+) channel through convergent phosphorylation of Nedd4-2. J Biol Chem 279:45753–45758PubMedCrossRefGoogle Scholar
  185. 185.
    Snyder PM, Olson DR, McDonald FJ, Bucher DB (2001) Multiple WW domains, but not the C2 domain, are required for inhibition of the epithelial Na+ channel by human Nedd4. J Biol Chem 276:28321–28326PubMedCrossRefGoogle Scholar
  186. 186.
    Snyder PM, Olson DR, Thomas BC (2002) Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J Biol Chem 277:5–8PubMedCrossRefGoogle Scholar
  187. 187.
    Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, Stokes JB, Welsh MJ (1995) Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell 83:969–978PubMedCrossRefGoogle Scholar
  188. 188.
    Snyder PM, Steines JC, Olson DR (2004) Relative contribution of Nedd4 and Nedd4-2 to ENaC regulation in epithelia determined by RNA interference. J Biol Chem 279:5042–5046PubMedCrossRefGoogle Scholar
  189. 189.
    Soetens O, De Craene JO, Andre B (2001) Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J Biol Chem 276:43949–43957PubMedCrossRefGoogle Scholar
  190. 190.
    Standley S, Roche KW, McCallum J, Sans N, Wenthold RJ (2000) PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28:887–898PubMedCrossRefGoogle Scholar
  191. 191.
    Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 15:2371–2380PubMedGoogle Scholar
  192. 192.
    Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16:6325–6336PubMedCrossRefGoogle Scholar
  193. 193.
    Stokes A, Wakano C, Koblan-Huberson M, Adra CN, Fleig A, Turner H (2006) TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal 18:1584–1594PubMedCrossRefGoogle Scholar
  194. 194.
    Stutts MJ, Rossier BC, Boucher RC (1997) Cystic fibrosis transmembrane conductance regulator inverts protein kinase A-mediated regulation of epithelial sodium channel single channel kinetics. J Biol Chem 272:14037–14040PubMedCrossRefGoogle Scholar
  195. 195.
    Suzuki M, Mizuno A (2004) A novel human Cl(-) channel family related to Drosophila flightless locus. J Biol Chem 279:22461–22468PubMedCrossRefGoogle Scholar
  196. 196.
    Swanson R, Locher M, Hochstrasser M (2001) A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev 15:2660–2674PubMedCrossRefGoogle Scholar
  197. 197.
    Thomas MA, Zosso N, Scerri I, Demaurex N, Chanson M, Staub O (2003) A tyrosine-based sorting signal is involved in connexin43 stability and gap junction turnover. J Cell Sci 116:2213–2222PubMedCrossRefGoogle Scholar
  198. 198.
    Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, Bronson R, Yaffe MB, Zhou J, Benjamin T (2007) TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol 27:6383–6395PubMedCrossRefGoogle Scholar
  199. 199.
    Tiffany AM, Manganas LN, Kim E, Hsueh YP, Sheng M, Trimmer JS (2000) PSD-95 and SAP97 exhibit distinct mechanisms for regulating K(+) channel surface expression and clustering. J Cell Biol 148:147–158PubMedCrossRefGoogle Scholar
  200. 200.
    Uchida S, Marumo F (2000) Severely impaired urine-concentrating ability in mice lacking the CLC-K1 chloride channel. Exp Nephrol 8:361–365PubMedCrossRefGoogle Scholar
  201. 201.
    Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321:569–572PubMedCrossRefGoogle Scholar
  202. 202.
    Valentijn JA, Fyfe GK, Canessa CM (1998) Biosynthesis and processing of epithelial sodium channels in Xenopus oocytes. J Biol Chem 273:30344–30351PubMedCrossRefGoogle Scholar
  203. 203.
    Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389:607–610PubMedCrossRefGoogle Scholar
  204. 204.
    van Bemmelen MX, Rougier JS, Gavillet B, Apotheloz F, Daidie D, Tateyama M, Rivolta I, Thomas MA, Kass RS, Staub O, Abriel H (2004) Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ Res 95:284–291PubMedCrossRefGoogle Scholar
  205. 205.
    VanSlyke JK, Deschenes SM, Musil LS (2000) Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol Biol Cell 11:1933–1946PubMedGoogle Scholar
  206. 206.
    Vashist S, Ng DT (2004) Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J Cell Biol 165:41–52PubMedCrossRefGoogle Scholar
  207. 207.
    Wanamaker CP, Christianson JC, Green WN (2003) Regulation of nicotinic acetylcholine receptor assembly. Ann NY Acad Sci 998:66–80PubMedCrossRefGoogle Scholar
  208. 208.
    Wang J, Peng Q, Lin Q, Childress C, Carey D, Yang W (2010) Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain-mediated auto-inhibition. J Biol Chem 285:12279–12288Google Scholar
  209. 209.
    Wang Y, Fu X, Gaiser S, Kottgen M, Kramer-Zucker A, Walz G, Wegierski T (2007) OS-9 regulates the transit and polyubiquitination of TRPV4 in the endoplasmic reticulum. J Biol Chem 282:36561–36570PubMedCrossRefGoogle Scholar
  210. 210.
    Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127PubMedCrossRefGoogle Scholar
  211. 211.
    Webster JM, Tiwari S, Weissman AM, Wojcikiewicz RJ (2003) Inositol 1, 4, 5-trisphosphate receptor ubiquitination is mediated by mammalian Ubc7, a component of the endoplasmic reticulum-associated degradation pathway, and is inhibited by chelation of intracellular Zn2+. J Biol Chem 278:38238–38246PubMedCrossRefGoogle Scholar
  212. 212.
    Webster MK, Goya L, Ge Y, Maiyar AC, Firestone GL (1993) Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol Cell Biol 13:2031–2040PubMedGoogle Scholar
  213. 213.
    Wegierski T, Hill K, Schaefer M, Walz G (2006) The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO J 25:5659–5669PubMedCrossRefGoogle Scholar
  214. 214.
    Weisz OA, Wang JM, Edinger RS, Johnson JP (2000) Non-coordinate regulation of endogenous epithelial sodium channel (ENaC) subunit expression at the apical membrane of A6 cells in response to various transporting conditions. J Biol Chem 275:39886–39893PubMedCrossRefGoogle Scholar
  215. 215.
    Wellhauser L, D'Antonio C, Bear CE (2010) ClC transporters: discoveries and challenges in defining the mechanisms underlying function and regulation of ClC-5. Pflugers Arch 460:543−557Google Scholar
  216. 216.
    Wiemuth D, Ke Y, Rohlfs M, McDonald FJ (2007) Epithelial sodium channel (ENaC) is multi-ubiquitinated at the cell surface. Biochem J 405:147–155PubMedGoogle Scholar
  217. 217.
    Wiesner S, Ogunjimi AA, Wang HR, Rotin D, Sicheri F, Wrana JL, Forman-Kay JD (2007) Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 130:651–662PubMedCrossRefGoogle Scholar
  218. 218.
    Winget JM, Mayor T The diversity of ubiquitin recognition: hot spots and varied specificity. Mol Cell 38:627–635Google Scholar
  219. 219.
    Wojcikiewicz RJ, Xu Q, Webster JM, Alzayady K, Gao C (2003) Ubiquitination and proteasomal degradation of endogenous and exogenous inositol 1, 4, 5-trisphosphate receptors in alpha T3—1 anterior pituitary cells. J Biol Chem 278:940–947PubMedCrossRefGoogle Scholar
  220. 220.
    Wrong OM, Norden AG, Feest TG (1994) Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473–493PubMedGoogle Scholar
  221. 221.
    Wulff P, Vallon V, Huang DY, Volkl H, Yu F, Richter K, Jansen M, Schlunz M, Klingel K, Loffing J, Kauselmann G, Bosl MR, Lang F, Kuhl D (2002) Impaired renal Na(+) retention in the sgk1-knockout mouse. J Clin Invest 110:1263–1268PubMedGoogle Scholar
  222. 222.
    Xu BE, Stippec S, Chu PY, Lazrak A, Li XJ, Lee BH, English JM, Ortega B, Huang CL, Cobb MH (2005) WNK1 activates SGK1 to regulate the epithelial sodium channel. Proc Natl Acad Sci USA 102:10315–10320PubMedCrossRefGoogle Scholar
  223. 223.
    Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145PubMedCrossRefGoogle Scholar
  224. 224.
    Yang JW, Vacher H, Park KS, Clark E, Trimmer JS (2007) Trafficking-dependent phosphorylation of Kv1.2 regulates voltage-gated potassium channel cell surface expression. Proc Natl Acad Sci USA 104:20055–20060PubMedCrossRefGoogle Scholar
  225. 225.
    Yang LM, Rinke R, Korbmacher C (2006) Stimulation of the epithelial sodium channel (ENaC) by cAMP involves putative ERK phosphorylation sites in the C termini of the channel’s beta- and gamma-subunit. J Biol Chem 281:9859–9868PubMedCrossRefGoogle Scholar
  226. 226.
    Yang M, Omura S, Bonifacino JS, Weissman AM (1998) Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes. J Exp Med 187:835–846PubMedCrossRefGoogle Scholar
  227. 227.
    Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 162:71–84PubMedCrossRefGoogle Scholar
  228. 228.
    Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847PubMedCrossRefGoogle Scholar
  229. 229.
    Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K, Tai T (2002) E3 ubiquitin ligase that recognizes sugar chains. Nature 418:438–442PubMedCrossRefGoogle Scholar
  230. 230.
    Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium channel family. Genome Biol 4:207PubMedCrossRefGoogle Scholar
  231. 231.
    Zerangue N, Schwappach B, Jan YN, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22:537–548PubMedCrossRefGoogle Scholar
  232. 232.
    Zhang W, Na T, Wu G, Jing H, Peng JB (2010) Downregulation of intestinal apical calcium entry channel TRPV6 by ubiquitin E3 ligase NEDD4-2. J Biol Chem (in press)Google Scholar
  233. 233.
    Zhang Y, Nijbroek G, Sullivan ML, McCracken AA, Watkins SC, Michaelis S, Brodsky JL (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12:1303–1314PubMedGoogle Scholar
  234. 234.
    Zhou R, Patel SV, Snyder PM (2007) Nedd4-2 catalyzes ubiquitination and degradation of cell surface ENaC. J Biol Chem 282:20207–20212PubMedCrossRefGoogle Scholar
  235. 235.
    Zhou Z, Treis D, Schubert SC, Harm M, Schatterny J, Hirtz S, Duerr J, Boucher RC, Mall MA (2008) Preventive but not late amiloride therapy reduces morbidity and mortality of lung disease in betaENaC-overexpressing mice. Am J Respir Crit Care Med 178:1245–1256PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Program in Cell Biology, The Hospital for Sick Children and Biochemistry DepartmentUniversity of TorontoTorontoCanada
  2. 2.Department of Pharmacology and ToxicologyUniversity of LausanneLausanneSwitzerland

Personalised recommendations