Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 460, Issue 6, pp 1073–1085 | Cite as

Inhibition by 5-HT of the synaptic responses evoked by callosal fibers on cortical neurons in the mouse

  • José A. Troca-Marín
  • Emilio Geijo-Barrientos
Neuroscience

Abstract

We have studied the modulation by 5-HT of the synaptic excitatory responses evoked by callosal fibers on cortical pyramidal neurons. We have used a mouse brain slice preparation that preserves the callosal fibers and allows their selective activation. EPSCs evoked by callosal stimulation (ccEPSCs) were recorded with patch electrodes from pyramidal neurons identified visually. We observed that 5-HT (10–40 μM) inhibited the ccEPSCs peak amplitude in 64% of the neurons; 5-HT had no effect in the remaining neurons. 5-HT also increased the frequency and amplitude of spontaneous EPSCs. This inhibition was accompanied with an increase in the coefficient of variation of the fluctuations of the ccEPSCs amplitude and with an increase in the ratio of the amplitudes of paired ccEPSCs. Agonists of 5-HT receptor subtypes 5-HT1A (8-OH-DPAT) and 5-HT2A (DOI) mimicked the effect of 5-HT; also, the effect of 8-OH-DPAT and DOI was blocked in the presence of specific blockers of 5-HT1A (WAY 100135) and 5-HT2A (MDL 11,939) receptors. Application of 5-HT did not change the amplitude of currents evoked by direct application of glutamate to neurons in which 5-HT decreased the amplitude of ccEPSC. The effects of 5-HT on ccEPSCs and on the synaptic currents evoked by intracortical stimulation were not correlated; this suggests that the effect of 5-HT was specific to particular synaptic inputs to a neuron. These results demonstrate the presynaptic modulation of the callosal synaptic responses by 5-HT and the implication of 5-HT1A and 5-HT2A receptors in this effect.

Keywords

Brain slices Serotonin Cerebral cortex 5-Hydroxytryptamine receptor Synaptic transmission 

Abbreviations

ACSF

Artificial cerebrospinal fluid

CC

Corpus callosum

ccEPSC

Synaptic currents evoked by callosal stimulation

CGP55845

((2S)-3-[[(1S)-1-(3,4-Dichlorophenyl) ethyl]amino-2-hydro xypropyl](phenylmethyl)phosphinic acid hydrochloride)

CV

Coefficient of variation

DAB, 3

3-diaminobenzidine

icEPSC

Synaptic responses evoked by intracortical stimulation

MDL 11,939

a-Phenyl-1-(2-phenylethyl)-4-piperidinemethanol

PBS

Phosphate-buffered saline

PPR

Paired-pulse ratio

8-OH-DPAT

8-Hydroxy-2-(di-n-propylamino) tetralin

DOI

(±)-2,5-Dimethoxy-4-iodoamphetamine hydrochloride

WAY 100135

(S)-N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide dihydrochloride

Notes

Acknowledgments

We are grateful to Dr. L. Almaraz for helpful comments on the manuscript, to Dr. P. Berbel for the help on the use of the Neurograph software and on drawing neurons, and to Mr. A. Pérez-Vegara for the technical assistance. This study was supported by grants AP 090/08 and PROMETEO (Generalitat Valenciana), grant PI052561 (Instituto de Salud Carlos III), grant from the Fundación Navarro-Trípodi, and Grupo Consolider (Spanish Ministry of Education and Science Grant CONSOLIDER-INGENIO 2010 CSD2007-00023).

References

  1. 1.
    Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36:589–599CrossRefPubMedGoogle Scholar
  2. 2.
    Aghajanian GK, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825:161–171CrossRefPubMedGoogle Scholar
  3. 3.
    Aghajanian GK, Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Rev 31:302–312CrossRefPubMedGoogle Scholar
  4. 4.
    Amargós-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, Toth M, Mengod G, Artigas F (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14:281–299CrossRefPubMedGoogle Scholar
  5. 5.
    Araneda R, Andrade R (1991) 5-Hydroxytryptamine2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40:399–412CrossRefPubMedGoogle Scholar
  6. 6.
    Chen C, Regehr WG (2003) Presynaptic modulation of the retinogeniculate synapse. J Neurosci 23:3130–3135PubMedGoogle Scholar
  7. 7.
    Cissé Y, Grenier F, Timofeev I, Steriade M (2003) Electrophysiological properties and input–output organization of callosal neurons in cat association cortex. J Neurophysiol 89:1402–1413CrossRefPubMedGoogle Scholar
  8. 8.
    Cissé Y, Crochet S, Timofeev I, Steriade M (2004) Synaptic responsiveness of neocortical neurons to callosal volleys during paroxysmal depolarizing shifts. Neuroscience 124:231–239CrossRefPubMedGoogle Scholar
  9. 9.
    Conti F, Manzoni T (1994) The neurotransmitters and postsynaptic actions of callosally projecting neurons. Behav Brain Res 64:37–53CrossRefPubMedGoogle Scholar
  10. 10.
    Cordeaux Y, Hill SJ (2002) Mechanisms of cross-talk between G-protein-coupled receptors. Neurosignals 11:45–57CrossRefPubMedGoogle Scholar
  11. 11.
    Cruz DA, Eggan SM, Azmitia EC, Lewis DA (2004) Serotonin1A receptors at the axon initial segment of prefrontal pyramidal neurons in schizophrenia. Am J Psychiatry 161:739–742CrossRefPubMedGoogle Scholar
  12. 12.
    Davies MF, Deisz RA, Prince DA, Peroutka SJ (1987) Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res 423:347–352CrossRefPubMedGoogle Scholar
  13. 13.
    DeFelipe J, Arellano JI, Gómez A, Azmitia EC, Muñoz A (2001) Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. J Comp Neurol 433:148–155CrossRefPubMedGoogle Scholar
  14. 14.
    De la Peña E, Geijo-Barrientos E (1996) Laminar localization, morphology, and physiological properties of pyramidal neurons that have the low-threshold calcium current in the guinea-pig medial frontal cortex. J Neurosci 16:5301–5311PubMedGoogle Scholar
  15. 15.
    De la Peña E, Geijo-Barrientos E (2000) Participation of low-threshold calcium spikes in excitatory synaptic transmission in guinea pig medial frontal cortex. Eur J Neurosci 12:1679–1686CrossRefPubMedGoogle Scholar
  16. 16.
    Devinsky O, Laff R (2003) Callosal lesions and behavior: history and modern concepts. Epilepsy Behav 4:607–617CrossRefPubMedGoogle Scholar
  17. 17.
    Faber DS, Korn H (1991) Applicability of the coefficient of variation method for analyzing synaptic plasticity. Biophys J 60:1288–1294CrossRefPubMedGoogle Scholar
  18. 18.
    Foehring RC, van Brederode JF, Kinney GA, Spain WJ (2002) Serotonergic modulation of supragranular neurons in rat sensorimotor cortex. J Neurosci 22:8238–8250PubMedGoogle Scholar
  19. 19.
    Gartside SE, Hajós-Korcsok É, Bagdy E, Hársing LG Jr, Sharp T, Hajós M (2000) Neurochemical and electrophysiological studies on the functional significance of burst firing in serotonergic neurons. Neuroscience 98(2):295–300CrossRefPubMedGoogle Scholar
  20. 20.
    Gazzaniga MS (2005) Forty-five years of split-brain research and still going strong. Nat Rev Neurosci 6:653–659CrossRefPubMedGoogle Scholar
  21. 21.
    Guo JD, Rainnie DG (2010) Presynaptic 5-HT(1B) receptor-mediated serotonergic inhibition of glutamate transmission in the bed nucleus of the stria terminalis. Neuroscience 165:1390–1401CrossRefPubMedGoogle Scholar
  22. 22.
    Geijo-Barrientos E (2000) Subthreshold inward membrane currents in guinea-pig frontal cortex neurons. Neuroscience 95:965–972CrossRefPubMedGoogle Scholar
  23. 23.
    Hori Y, Endo K, Takahashi T (1996) Long-lasting synaptic facilitation induced by serotonin in superficial dorsal horn neurones of the rat spinal cord. J Physiol 492:867–876PubMedGoogle Scholar
  24. 24.
    Innocenti GM (1986) Postnatal development of corticocortical connections. Ital J Neurol Sci 5:25–28PubMedGoogle Scholar
  25. 25.
    Innocenti GM (2009) Dynamic interactions between the cerebral hemispheres. Exp Brain Res 192:417–423CrossRefPubMedGoogle Scholar
  26. 26.
    Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA 95:735–740CrossRefPubMedGoogle Scholar
  27. 27.
    Karayannis T, Huerta-Ocampo I, Capogna M (2007) GABAergic and pyramidal neurons of deep cortical layers directly receive and differently integrate callosal input. Cereb Cortex 17:1213–1226CrossRefPubMedGoogle Scholar
  28. 28.
    Kawaguchi Y (1992) Receptor subtypes involved in callosally-induced postsynaptic potentials in rat frontal agranular cortex in vitro. Exp Brain Res 88:33–40CrossRefPubMedGoogle Scholar
  29. 29.
    Kawaguchi Y (1993) Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. J Neurophysiol 69:416–431PubMedGoogle Scholar
  30. 30.
    Kawaguchi Y (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J Neurosci 15:2638–2655PubMedGoogle Scholar
  31. 31.
    Kia HK, Miquel MC, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, Hamon M, Vergé D (1996) Immunocytochemical localization of serotonin1A receptors in the rat central nervous system. J Comp Neurol 365:289–305CrossRefPubMedGoogle Scholar
  32. 32.
    Kia HK, Brisorgueil MJ, Hamon M, Calas A, Vergé D (1996) Ultrastructural localization of 5-hydroxytryptamine1A receptors in the rat brain. J Neurosci Res 46:697–708CrossRefPubMedGoogle Scholar
  33. 33.
    Kosofsky BE, Molliver ME (1987) The serotoninergic innervation of cerebral cortex: different classes of axon terminals arise from dorsal and median raphe nuclei. Synapse 1:153–168CrossRefPubMedGoogle Scholar
  34. 34.
    Kruglikov I, Rudy B (2008) Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron 58:911–924CrossRefPubMedGoogle Scholar
  35. 35.
    Kumar SS, Huguenard JR (2001) Properties of excitatory synaptic connections mediated by the corpus callosum in the developing rat neocortex. J Neurophysiol 86:2973–2985PubMedGoogle Scholar
  36. 36.
    Kumar SS, Huguenard JR (2003) Pathway-specific differences in subunit composition of synaptic NMDA receptors on pyramidal neurons in neocortex. J Neurosci 23:10074–10083PubMedGoogle Scholar
  37. 37.
    Kumar SS, Bacci A, Kharazia V, Huguenard JR (2002) A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J Neurosci 22:3005–3015PubMedGoogle Scholar
  38. 38.
    Lambe EK, Goldman-Rakic PS, Aghajanian GK (2000) Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal cortex in the rat. Cereb Cortex 10:974–980CrossRefPubMedGoogle Scholar
  39. 39.
    Laurent A, Goaillard JM, Cases O, Lebrand C, Gaspar P, Ropert N (2002) Activity dependent presynaptic effect of serotonin 1B receptors on the somatosensory thalamocortical transmission in neonatal mice. J Neurosci 22:886–900PubMedGoogle Scholar
  40. 40.
    McQuade R, Sharp T (1995) Release of cerebral 5-hydroxytryptamine evoked by electrical stimulation of the dorsal and median raphe nuclei: effect of a neurotoxic amphetamine. Neuroscience 68(4):1079–1088CrossRefPubMedGoogle Scholar
  41. 41.
    Marek GJ, Aghajanian GK (1999) 5HT2A receptor or alpha 1-adrenoreceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur J Pharmacol 367:197–206CrossRefPubMedGoogle Scholar
  42. 42.
    Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500:409–440PubMedGoogle Scholar
  43. 43.
    Martín-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21:9856–9866PubMedGoogle Scholar
  44. 44.
    McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806PubMedGoogle Scholar
  45. 45.
    Mizutani H, Hori T, Takahashi T (2006) 5-HT1B receptor-mediated presynaptic inhibition at the calyx of Held of immature rats. Eur J Neurosci 24:1946–1954CrossRefPubMedGoogle Scholar
  46. 46.
    Mooney RD, Shi MY, Rhoades RW (1994) Modulation of retinotectal transmission by presynaptic 5-HT1B receptors in the superior colliculus of the adult hamster. J Neurophysiol 72:3–13PubMedGoogle Scholar
  47. 47.
    Murakoshi T, Song SY, Konishi S, Tanabe T (2001) Multiple G-protein-coupled receptors mediate presynaptic inhibition at single excitatory synapses in the rat visual cortex. Neurosci Lett 309:117–120CrossRefPubMedGoogle Scholar
  48. 48.
    Muramatsu M, Lapiz MD, Tanaka E, Grenhoff J (1998) Serotonin inhibits synaptic glutamate currents in rat nucleus accumbens neurons via presynaptic 5-HT1B receptors. Eur J Neurosci 10:2371–2379CrossRefPubMedGoogle Scholar
  49. 49.
    Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205–230CrossRefPubMedGoogle Scholar
  50. 50.
    Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249CrossRefPubMedGoogle Scholar
  51. 51.
    Pickard GE, Smith BN, Belenky M, Rea MA, Dudek FE, Sollars PJ (1999) 5-HT1B receptor-mediated presynaptic inhibition of retinal input to the suprachiasmatic nucleus. J Neurosci 19:4034–4045PubMedGoogle Scholar
  52. 52.
    Pompeiano M, Palacios JM, Mengod G (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 12:440–453PubMedGoogle Scholar
  53. 53.
    Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23:163–178CrossRefPubMedGoogle Scholar
  54. 54.
    Rhoades RW, Bennett-Clarke CA, Shi MY, Mooney RD (1994) Effects of 5-HT on thalamocortical synaptic transmission in the developing rat. J Neurophysiol 72:2438–2450PubMedGoogle Scholar
  55. 55.
    Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109CrossRefPubMedGoogle Scholar
  56. 56.
    Schmitz D, Empson RM, Gloveli T, Heinemann U (1995) Serotonin reduces synaptic excitation of principal cells in the superficial layers of rat hippocampal-entorhinal cortex combined slices. Neurosci Lett 190:37–40CrossRefPubMedGoogle Scholar
  57. 57.
    Schmitz D, Empson RM, Heinemann U (1995) Serotonin reduces inhibition via 5-HT1A receptors in area CA1 of rat hippocampal slices in vitro. J Neurosci 15:7217–7225PubMedGoogle Scholar
  58. 58.
    Schmitz D, Empson RM, Heinemann U (1995) Serotonin and 8-OH-DPAT reduce excitatory transmission in rat hippocampal area CA1 via reduction in presumed presynaptic Ca2+ entry. Brain Res 701:249–254CrossRefPubMedGoogle Scholar
  59. 59.
    Schmitz D, Gloveli T, Empson RM, Draguhn A, Heinemann U (1998) Serotonin reduces synaptic excitation in the superficial medial entorhinal cortex of the rat via a presynaptic mechanism. J Physiol 508:119–129CrossRefPubMedGoogle Scholar
  60. 60.
    Schmitz D, Gloveli T, Empson RM, Heinemann U (1999) Potent depression of stimulus evoked field potential responses in the medial entorhinal cortex by serotonin. Br J Pharmacol 128:248–254CrossRefPubMedGoogle Scholar
  61. 61.
    Singer JH, Bellingham MC, Berger AJ (1996) Presynaptic inhibition of glutamatergic synaptic transmission to rat motoneurons by serotonin. J Neurophysiol 76:799–807PubMedGoogle Scholar
  62. 62.
    Tanaka E, North RA (1993) Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 69:1749–1757PubMedGoogle Scholar
  63. 63.
    Törk I (1990) Anatomy of the serotonergic system. Ann NY Acad Sci 600:9–34CrossRefPubMedGoogle Scholar
  64. 64.
    Torres-Escalante JL, Barral JA, Ibarra-Villa MD, Perez-Burgos A, Gongora-Alfaro JL, Pineda JC (2004) 5-HT1A, 5-HT2, and GABAB receptors interact to modulate neurotransmitter release probability in layer 2/3 somatosensory rat cortex as evaluated by the paired pulse protocol. J Neurosci Res 78:268–278CrossRefPubMedGoogle Scholar
  65. 65.
    Umemiya M, Berger AJ (1995) Presynaptic inhibition by serotonin of glycinergic inhibitory synaptic currents in the rat brain stem. J Neurophysiol 73:1192–1201PubMedGoogle Scholar
  66. 66.
    Urbain N, Creamer K, Debonnel G (2006) Electrophysiological diversity of the dorsal raphe cells across the sleep-wake cycle of the rat. J Physiol 573:679–695CrossRefPubMedGoogle Scholar
  67. 67.
    Valdés-Sánchez L, Escámez T, Echevarria D, Ballesta JJ, Tabarés-Seisdedos R, Reiner O, Martinez S, Geijo-Barrientos E (2007) Postnatal alterations of the inhibitory synaptic responses recorded from cortical pyramidal neurons in the Lis1/sLis1 mutant mouse. Mol Cell Neurosci 35:220–229CrossRefPubMedGoogle Scholar
  68. 68.
    Van De Werd HJ, Rajkowska G, Evers P, Uylings HB (2010) Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 214(4):339–353CrossRefGoogle Scholar
  69. 69.
    Waterhouse BD, Mihailoff GA, Baack JC, Woodward DJ (1986) Topographical distribution of dorsal and median raphe neurons projecting to motor, sensorimotor, and visual cortical areas in the rat. J Comp Neurol 249:460–476CrossRefPubMedGoogle Scholar
  70. 70.
    Vogt BA, Gorman AL (1982) Responses of cortical neurons to stimulation of corpus callosum in vitro. J Neurophysiol 48:1257–1273PubMedGoogle Scholar
  71. 71.
    Xu T, Pandey SC (2000) Cellular localization of serotonin(2A) (5HT(2A)) receptors in the rat brain. Brain Res Bull 51:499–505CrossRefPubMedGoogle Scholar
  72. 72.
    Yan Z (2002) Regulation of GABAergic inhibition by serotonin signaling in prefrontal cortex: molecular mechanisms and functional implications. Mol Neurobiol 26:203–216CrossRefPubMedGoogle Scholar
  73. 73.
    Zhang Z-W (2003) Serotonin induces tonic firing in layer V pyramidal neurons of rat prefrontal cortex during postnatal development. J Neurosci 23:3373–3384PubMedGoogle Scholar
  74. 74.
    Zhou FM, Hablitz JJ (1999) Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J Neurophysiol 82:2989–2999PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • José A. Troca-Marín
    • 1
  • Emilio Geijo-Barrientos
    • 1
  1. 1.Instituto de NeurocienciasUniversidad Miguel Hernández—CSICSan JuanSpain

Personalised recommendations