Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 460, Issue 5, pp 863–873 | Cite as

Changes in contractile properties of skinned single rat soleus and diaphragm fibres after chronic hypoxia

  • Hans Degens
  • Alessandra Bosutti
  • Sally F. Gilliver
  • Mark Slevin
  • Arno van Heijst
  • Rob C. I. Wüst
Muscle physiology

Abstract

Hypoxia may be one of the factors underlying muscle dysfunction during ageing and chronic lung and heart failure. Here we tested the hypothesis that chronic hypoxia per se affects contractile properties of single fibres of the soleus and diaphragm muscle. To do this, the force–velocity relationship, rate of force redevelopment and calcium sensitivity of single skinned fibres from normoxic rats and rats exposed to 4 weeks of hypobaric hypoxia (410 mmHg) were investigated. The reduction in maximal force (P 0) after hypoxia (p = 0.031) was more pronounced in type IIa than type I fibres and was mainly attributable to a reduction in fibre cross-sectional area (p = 0.044). In type IIa fibres this was aggravated by a reduction in specific tension (p = 0.001). The maximal velocity of shortening (V max) and shape of the force velocity relation (a/P 0), however, did not differ between normoxic and hypoxic muscle fibres and the reduction in maximal power of hypoxic fibres (p = 0.012) was mainly due to a reduction in P 0. In conclusion, chronic hypoxia causes muscle fibre dysfunction which is not only due to a loss of muscle mass, but also to a diminished force generating capacity of the remaining contractile material. These effects are similar in the soleus and diaphragm muscle, but more pronounced in type IIa than I fibres.

Keywords

Specific tension force–velocity Skeletal muscle power 

Notes

Acknowledgements

The authors appreciate the help from Remco Haasdijk and Jos Evers for the care of the animals in the hypoxic chamber and assistance with surgery.

References

  1. 1.
    Anderson EJ, Neufer PD (2006) Type II skeletal myofibers possess unique properties that potentiate mitochondrial H(2)O(2) generation. Am J Physiol Cell Physiol 290:C844–C851CrossRefPubMedGoogle Scholar
  2. 2.
    Barclay CJ (2005) Modelling diffusive O(2) supply to isolated preparations of mammalian skeletal and cardiac muscle. J Muscle Res Cell Motil 26:225–235CrossRefPubMedGoogle Scholar
  3. 3.
    Borbely A, Toth A, Edes I, Virag L, Papp JG, Varro A, Paulus WJ, van der Velden J, Stienen GJ, Papp Z (2005) Peroxynitrite-induced alpha-actinin nitration and contractile alterations in isolated human myocardial cells. Cardiovasc Res 67:225–233CrossRefPubMedGoogle Scholar
  4. 4.
    Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1996) force–velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol 495(Pt 2):573–586PubMedGoogle Scholar
  5. 5.
    Brenner B (1983) Technique for stabilizing the striation pattern in maximally calcium-activated skinned rabbit psoas fibers. Biophys J 41:99–102CrossRefPubMedGoogle Scholar
  6. 6.
    Brenner B, Eisenberg E (1986) Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution Proc. Natl Acad Sci U S A 83:3542–3546CrossRefGoogle Scholar
  7. 7.
    Calbet JA, Radegran G, Boushel R, Saltin B (2009) On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. J Physiol 587:477–490CrossRefPubMedGoogle Scholar
  8. 8.
    de Paula Brotto M, van Leyen SA, Brotto LS, Jin JP, Nosek CM, Nosek TM (2001) Hypoxia/fatigue-induced degradation of troponin I and troponin C: new insights into physiologic muscle fatigue. Pflugers Arch 442:738–744CrossRefPubMedGoogle Scholar
  9. 9.
    Deboeck G, Moraine JJ, Naeije R (2005) Respiratory muscle strength may explain hypoxia-induced decrease in vital capacity. Med Sci Sports Exerc 37:754–758CrossRefPubMedGoogle Scholar
  10. 10.
    Degens H, Yu F, Li X, Larsson L (1998) Effects of age and gender on shortening velocity and myosin isoforms in single rat muscle fibres. Acta Physiol Scand 163:33–40CrossRefPubMedGoogle Scholar
  11. 11.
    Degens H, Soop M, Hook P, Ljungqvist O, Larsson L (1999) Post-operative effects on insulin resistance and specific tension of single human skeletal muscle fibres. Clin Sci (Lond) 97:449–455CrossRefGoogle Scholar
  12. 12.
    Degens H, Sanchez Horneros JM, Hopman MT (2006) Acute hypoxia limits endurance but does not affect muscle contractile properties. Muscle Nerve 33:532–537CrossRefPubMedGoogle Scholar
  13. 13.
    Degens H, Larsson L (2007) Application of skinned single muscle fibres to determine myofilament function in ageing and disease. J Musculoskelet Neuronal Interact 7:56–61PubMedGoogle Scholar
  14. 14.
    Di Giulio C, Petruccelli G, Bianchi G, Cacchio M, Verratti V (2009) Does hypoxia cause sarcopenia? Prevention of hypoxia could reduce sarcopenia. J Biol Regul Homeost Agents 23:55–58PubMedGoogle Scholar
  15. 15.
    Dousset E, Steinberg JG, Balon N, Jammes Y (2001) Effects of acute hypoxemia on force and surface EMG during sustained handgrip. Muscle Nerve 24:364–371CrossRefPubMedGoogle Scholar
  16. 16.
    Earley S, Walker BR (2003) Increased nitric oxide production following chronic hypoxia contributes to attenuated systemic vasoconstriction. Am J Physiol Heart Circ Physiol 284:H1655–H1661PubMedGoogle Scholar
  17. 17.
    Edman KA (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol 291:143–159PubMedGoogle Scholar
  18. 18.
    Fasano V, Paolucci E, Pomidori L, Cogo A (2007) High-altitude exposure reduces inspiratory muscle strength. Int J Sports Med 28:426–430CrossRefPubMedGoogle Scholar
  19. 19.
    Ferretti G, Hauser H, di Prampero PE (1990) Maximal muscular power before and after exposure to chronic hypoxia. Int J Sports Med 11(Suppl 1):S31–S34CrossRefPubMedGoogle Scholar
  20. 20.
    Fitzsimons DP, Patel JR, Campbell KS, Moss RL (2001) Cooperative mechanisms in the activation dependence of the rate of force development in rabbit skinned skeletal muscle fibers. J Gen Physiol 117:133–148CrossRefPubMedGoogle Scholar
  21. 21.
    Frontera WR, Larsson L (1997) Contractile studies of single human skeletal muscle fibers: a comparison of different muscles, permeabilization procedures, and storage techniques. Muscle Nerve 20:948–952CrossRefPubMedGoogle Scholar
  22. 22.
    Fulco CS, Lewis SF, Frykman PN, Boushel R, Smith S, Harman EA, Cymerman A, Pandolf KB (1996) Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia. J Appl Physiol 81:1891–1900PubMedGoogle Scholar
  23. 23.
    Gilliver SF, Degens H, Rittweger J, Sargeant AJ, Jones DA (2009) Variation in the determinants of power of chemically skinned human muscle fibres. Exp Physiol 94:1070–1078CrossRefPubMedGoogle Scholar
  24. 24.
    Godt RE, Nosek TM (1989) Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. J Physiol 412:155–180PubMedGoogle Scholar
  25. 25.
    Gosker HR, Wouters EF, van der Vusse GJ, Schols AM (2000) Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr 71:1033–1047PubMedGoogle Scholar
  26. 26.
    Heunks LM, Cody MJ, Geiger PC, Dekhuijzen PN, Sieck GC (2001) Nitric oxide impairs Ca2+ activation and slows cross-bridge cycling kinetics in skeletal muscle. J Appl Physiol 91:2233–2239PubMedGoogle Scholar
  27. 27.
    Heunks LM, Machiels HA, de Abreu R, Zhu XP, van der Heijden HF, Dekhuijzen PN (2001) Free radicals in hypoxic rat diaphragm contractility: no role for xanthine oxidase. Am J Physiol Lung Cell Mol Physiol 281:L1402–L1412PubMedGoogle Scholar
  28. 28.
    Hill A (1938) The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society Series B 126:136–195CrossRefGoogle Scholar
  29. 29.
    Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, Cerretelli P (1990) Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med 11(Suppl 1):S3–S9CrossRefPubMedGoogle Scholar
  30. 30.
    Itoh K, Moritani T, Ishida K, Hirofuji C, Taguchi S, Itoh M (1990) Hypoxia-induced fibre type transformation in rat hindlimb muscles. Histochemical and electro-mechanical changes. Eur J Appl Physiol Occup Physiol 60:331–336CrossRefPubMedGoogle Scholar
  31. 31.
    Kolbeck RC, She ZW, Callahan LA, Nosek TM (1997) Increased superoxide production during fatigue in the perfused rat diaphragm. Am J Respir Crit Care Med 156:140–145PubMedGoogle Scholar
  32. 32.
    Larsson L, Moss RL (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 472:595–614PubMedGoogle Scholar
  33. 33.
    Lindsay DC, Lovegrove CA, Dunn MJ, Bennett JG, Pepper JR, Yacoub MH, Poole-Wilson PA (1996) Histological abnormalities of muscle from limb, thorax and diaphragm in chronic heart failure. Eur Heart J 17:1239–1250PubMedGoogle Scholar
  34. 34.
    Machiels HA, van der Heijden HF, Heunks LM, Dekhuijzen PN (2001) The effect of hypoxia on shortening contractions in rat diaphragm muscle. Acta Physiol Scand 173:313–321CrossRefPubMedGoogle Scholar
  35. 35.
    Mohanraj P, Merola AJ, Wright VP, Clanton TL (1998) Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions. J Appl Physiol 84:1960–1966PubMedGoogle Scholar
  36. 36.
    Ottenheijm CA, Heunks LM, Sieck GC, Zhan WZ, Jansen SM, Degens H, de Boo T, Dekhuijzen PN (2005) Diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 172:200–205CrossRefPubMedGoogle Scholar
  37. 37.
    Ottenheijm CA, Heunks LM, Geraedts MC, Dekhuijzen PN (2006) Hypoxia-induced skeletal muscle fiber dysfunction: role for reactive nitrogen species. Am J Physiol Lung Cell Mol Physiol 290:L127–L135CrossRefPubMedGoogle Scholar
  38. 38.
    Ottenheijm CA, Heunks LM, Dekhuijzen RP (2008) Diaphragm adaptations in patients with COPD. Respir Res 9:12CrossRefPubMedGoogle Scholar
  39. 39.
    Panisello P, Torrella JR, Esteva S, Pages T, Viscor G (2008) Capillary supply, fibre types and fibre morphometry in rat tibialis anterior and diaphragm muscles after intermittent exposure to hypobaric hypoxia. Eur J Appl Physiol 103:203–213CrossRefPubMedGoogle Scholar
  40. 40.
    Perrey S, Rupp T (2009) Altitude-induced changes in muscle contractile properties. High Alt Med Biol 10:175–182CrossRefPubMedGoogle Scholar
  41. 41.
    Raguso CA, Guinot SL, Janssens JP, Kayser B, Pichard C (2004) Chronic hypoxia: common traits between chronic obstructive pulmonary disease and altitude. Curr Opin Clin Nutr Metab Care 7:411–417CrossRefPubMedGoogle Scholar
  42. 42.
    Salmons S (2009) Adaptive change in electrically stimulated muscle: a framework for the design of clinical protocols. Muscle Nerve 40:918–935CrossRefPubMedGoogle Scholar
  43. 43.
    Shah AM, Mebazaa A, Yang ZK, Cuda G, Lankford EB, Pepper CB, Sollott SJ, Sellers JR, Robotham JL, Lakatta EG (1997) Inhibition of myocardial crossbridge cycling by hypoxic endothelial cells: a potential mechanism for matching oxygen supply and demand? Circ Res 80:688–698PubMedGoogle Scholar
  44. 44.
    Shiota S, Okada T, Naitoh H, Ochi R, Fukuchi Y (2004) Hypoxia and hypercapnia affect contractile and histological properties of rat diaphragm and hind limb muscles. Pathophysiology 11:23–30CrossRefPubMedGoogle Scholar
  45. 45.
    Smith D, Green H, Thomson J, Sharratt M (1989) Capillary and size interrelationships in developing rat diaphragm, EDL, and soleus muscle fiber types. Am J Physiol 256:C50–C58PubMedGoogle Scholar
  46. 46.
    Snyder GK, Farrelly C, Coelho JR (1992) Adaptations in skeletal muscle capillarity following changes in oxygen supply and changes in oxygen demands. Eur J Appl Physiol Occup Physiol 65:158–163CrossRefPubMedGoogle Scholar
  47. 47.
    Twisk JW (2006) Applied multilevel analysis: a practical guide. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. 48.
    Vianna LG, Koulouris N, Moxham J (1993) Lack of effect of acute hypoxia and hypercapnia on muscle relaxation rate in man. Rev Esp Fisiol 49:7–15PubMedGoogle Scholar
  49. 49.
    Vizek M, Bonora M (2001) Ventilation, EELV and diaphragmatic activity in rats during chronic normobaric hypoxia. Respir Physiol 128:147–159CrossRefPubMedGoogle Scholar
  50. 50.
    West JB (2000) Human limits for hypoxia. The physiological challenge of climbing Mt. Everest. Ann N Y Acad Sci 899:15–27CrossRefPubMedGoogle Scholar
  51. 51.
    Widrick JJ, Trappe SW, Blaser CA, Costill DL, Fitts RH (1996) Isometric force and maximal shortening velocity of single muscle fibers from elite master runners. Am J Physiol 271:C666–C675PubMedGoogle Scholar
  52. 52.
    Woledge RC, Curtin NA, Homsher E (1985) Energetic aspects of muscle contraction. Monogr Physiol Soc 41:1–357PubMedGoogle Scholar
  53. 53.
    Wright VP, Klawitter PF, Iscru DF, Merola AJ, Clanton TL (2005) Superoxide scavengers augment contractile but not energetic responses to hypoxia in rat diaphragm. J Appl Physiol 98:1753–1760CrossRefPubMedGoogle Scholar
  54. 54.
    Wüst RC, Degens H (2007) Factors contributing to muscle wasting and dysfunction in COPD patients. Int J Chron Obstruct Pulmon Dis 2:289–300PubMedGoogle Scholar
  55. 55.
    Wüst RC, Jaspers RT, van Heijst AF, Hopman MT, Hoofd LJ, van der Laarse WJ, Degens H (2009) Region-specific adaptations in determinants of rat skeletal muscle oxygenation to chronic hypoxia. Am J Physiol Heart Circ Physiol 297:H364–H374CrossRefPubMedGoogle Scholar
  56. 56.
    Zattara-Hartmann MC, Badier M, Guillot C, Tomei C, Jammes Y (1995) Maximal force and endurance to fatigue of respiratory and skeletal muscles in chronic hypoxemic patients: the effects of oxygen breathing. Muscle Nerve 18:495–502CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang SJ, Bruton JD, Katz A, Westerblad H (2006) Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle. J Physiol 572:551–559CrossRefPubMedGoogle Scholar
  58. 58.
    Zhu X, Heunks LM, Machiels HA, Ennen L, Dekhuijzen PN (2003) Effects of modulation of nitric oxide on rat diaphragm isotonic contractility during hypoxia. J Appl Physiol 94:612–620PubMedGoogle Scholar
  59. 59.
    Zhu X, Heunks LM, Versteeg EM, van der Heijden HF, Ennen L, van Kuppevelt TH, Vina J, Dekhuijzen PN (2005) Hypoxia-induced dysfunction of rat diaphragm: role of peroxynitrite. Am J Physiol Lung Cell Mol Physiol 288:L16–L26CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hans Degens
    • 1
  • Alessandra Bosutti
    • 2
  • Sally F. Gilliver
    • 1
  • Mark Slevin
    • 2
  • Arno van Heijst
    • 3
  • Rob C. I. Wüst
    • 1
    • 4
  1. 1.Institute for Biomedical Research into Human Movement and HealthManchester Metropolitan UniversityManchesterUnited Kingdom
  2. 2.School of Biological SciencesManchester Metropolitan UniversityManchesterUK
  3. 3.Radboud University Nijmegen Medical CentreNijmegenThe Netherlands
  4. 4.Institute of Membrane and Systems BiologyUniversity of LeedsLeedsUK

Personalised recommendations