Pflügers Archiv - European Journal of Physiology

, Volume 460, Issue 6, pp 953–964 | Cite as

Physiological carbon dioxide, bicarbonate, and pH sensing

  • Martin Tresguerres
  • Jochen Buck
  • Lonny R. Levin
Invited Review


In biological systems, carbon dioxide exists in equilibrium with bicarbonate and protons. The individual components of this equilibrium (i.e., CO2, HCO 3 , and H+), which must be sensed to be able to maintain cellular and organismal pH, also function as signals to modulate multiple physiological functions. Yet, the molecular sensors for CO2/HCO 3 /pH remained unknown until recently. Here, we review recent progress in delineating molecular and cellular mechanisms for sensing CO2, HCO 3 , and pH.


Adenylyl cyclase Bicarbonate Carbon dioxide Carbonic anhydrase Channels pH Protons Sensory transduction 



We thank Dr. Carsten Wagner (University of Zurich, Switzerland) for the insightful comments on the manuscript.


  1. 1.
    Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434PubMedGoogle Scholar
  2. 2.
    Casey JR, Grinstein S, Orlowski J (2101) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61CrossRefGoogle Scholar
  3. 3.
    Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K (2003) Proton-sensing G-protein-coupled receptors. Nature 425:93–98CrossRefPubMedGoogle Scholar
  4. 4.
    Wang J-Q, Kon J, Mogi C, Tobo M, Damirin A, Sato K, Komachi M, Malchinkhuu E, Murata N, Kimura T, Kuwabara A, Wakamatsu K, Koizumi H, Uede T, Tsujimoto G, Kurose H, Sato T, Harada A, Misawa N, Tomura H, Okajima F (2004) TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem 279:45626–45633CrossRefPubMedGoogle Scholar
  5. 5.
    Komarova SV, Pereverzev A, Shum JW, Sims SM, Dixon SJ (2005) Convergent signaling by acidosis and receptor activator of NF-κB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. Proc Natl Acad Sci USA 102:2643–2648CrossRefPubMedGoogle Scholar
  6. 6.
    Tomura H, Mogi C, Sato K, Okajima F (2005) Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cell Signal 17:1466–1476CrossRefPubMedGoogle Scholar
  7. 7.
    Tomura H, Wang J-Q, Komachi M, Damirin A, Mogi C, Tobo M, Kon J, Misawa N, Sato K, Okajima F (2005) Prostaglandin I2 production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells. J Biol Chem 280:34458–34464CrossRefPubMedGoogle Scholar
  8. 8.
    Seuwen K, Ludwig M-G, Wolf RM (2006) Receptors for protons or lipid messengers or both? J Recept Signal Transduct Res 26:599–610CrossRefPubMedGoogle Scholar
  9. 9.
    An S, Tsai C, Goetzl EJ (1995) Cloning, sequencing and tissue distribution of two related G protein-coupled receptor candidates expressed prominently in human lung tissue. FEBS Lett 375:121–124CrossRefPubMedGoogle Scholar
  10. 10.
    Yang LV, Radu CG, Roy M, Lee S, McLaughlin J, Teitell MA, Iruela-Arispe ML, Witte ON (2007) Vascular abnormalities in mice deficient for the G protein-coupled receptor GPR4 that functions as a pH sensor. Mol Cell Biol 27:1334–1347CrossRefPubMedGoogle Scholar
  11. 11.
    Choi J-W, Lee SY, Choi Y (1996) Identification of a putative G protein-coupled receptor induced during activation-induced apoptosis of T cells. Cell Immunol 168:78–84CrossRefPubMedGoogle Scholar
  12. 12.
    Ishii S, Kihara Y, Shimizu T (2005) Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein-coupled receptor. J Biol Chem 280:9083–9087CrossRefPubMedGoogle Scholar
  13. 13.
    Radu CG, Nijagal A, McLaughlin J, Wang L, Witte ON (2005) Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc Natl Acad Sci USA 102:1632–1637CrossRefPubMedGoogle Scholar
  14. 14.
    Tosa N, Murakami M, Jia WY, Yokoyama M, Masunaga T, Iwabuchi C, Inobe M, Iwabuchi K, Miyazaki T, Onoe K, Iwata M, Uede T (2003) Critical function of T cell death-associated gene 8 in glucocorticoid-induced thymocyte apoptosis. Int Immunol 15:741–749CrossRefPubMedGoogle Scholar
  15. 15.
    Radu CG, Cheng D, Nijagal A, Riedinger M, McLaughlin J, Yang LV, Johnson J, Witte ON (2006) Normal immune development and glucocorticoid-induced thymocyte apoptosis in mice deficient for the T-cell death-associated gene 8 receptor. Mol Cell Biol 26:668–677CrossRefPubMedGoogle Scholar
  16. 16.
    Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366CrossRefPubMedGoogle Scholar
  17. 17.
    Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38CrossRefPubMedGoogle Scholar
  18. 18.
    Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–5471CrossRefPubMedGoogle Scholar
  19. 19.
    Hebert SC, Desir G, Giebisch G, Wang W (2005) Molecular diversity and regulation of renal potassium channels. Physiol Rev 85:319–371CrossRefPubMedGoogle Scholar
  20. 20.
    Heitzmann D, Warth R (2008) Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 88:1119–1182CrossRefPubMedGoogle Scholar
  21. 21.
    Huang AL, Chen XK, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJP, Zuker CS (2006) The cells and logic for mammalian sour taste detection. Nature 442:934–938CrossRefPubMedGoogle Scholar
  22. 22.
    Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci 103:12569–12574CrossRefPubMedGoogle Scholar
  23. 23.
    Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294CrossRefPubMedGoogle Scholar
  24. 24.
    Delmas P (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflügers Arch Eur J Physiol 451:264–276CrossRefGoogle Scholar
  25. 25.
    Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543CrossRefPubMedGoogle Scholar
  26. 26.
    Tominaga M, Tominaga T (2005) Structure and function of TRPV1. Pflüg Archiv Europ J Physiol 451:143–150CrossRefGoogle Scholar
  27. 27.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824CrossRefPubMedGoogle Scholar
  28. 28.
    Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Ann Rev Neurosci 24:487–517CrossRefPubMedGoogle Scholar
  29. 29.
    Geppetti P, Trevisani M (2004) Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br J Pharmacol 141:1313–1320CrossRefPubMedGoogle Scholar
  30. 30.
    Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJP, Zuker CS (2010) The cells and peripheral representation of sodium taste in mice. Nature 464:297–301CrossRefPubMedGoogle Scholar
  31. 31.
    Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767PubMedGoogle Scholar
  32. 32.
    Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177CrossRefPubMedGoogle Scholar
  33. 33.
    Waldmann R, Lazdunski M (1998) H+-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8:418–424CrossRefPubMedGoogle Scholar
  34. 34.
    Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483CrossRefPubMedGoogle Scholar
  35. 35.
    Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449:316–323CrossRefPubMedGoogle Scholar
  36. 36.
    Gründer S, Chen X (2010) Sructure, function, and pharmacology of acid-sensing ion channels (ASICs): focus on ASIC1a. Int J Physiol Pathophysiol Pharmacol 2:73–94Google Scholar
  37. 37.
    Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–1011CrossRefPubMedGoogle Scholar
  38. 38.
    Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA, Costa V, Price M, Benson C, Welsh MJ, Chapleau MW, Abboud FM (2009) The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64:885–897CrossRefPubMedGoogle Scholar
  39. 39.
    Tan Z-Y, Lu Y, Whiteis CA, Benson CJ, Chapleau MW, Abboud FM (2007) Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ Res 101:1009–1019CrossRefPubMedGoogle Scholar
  40. 40.
    Gründer S, Geissler H-S, Bässler E-L, Ruppersberg JP (2000) A new member of acid-sensing ion channels from pituitary gland. NeuroReport 11:1607–1611CrossRefPubMedGoogle Scholar
  41. 41.
    Jahr H, van Driel M, van Osch GJVM, Weinans H, van Leeuwen JPTM (2005) Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun 337:349–354CrossRefPubMedGoogle Scholar
  42. 42.
    Grifoni SC, Jernigan NL, Hamilton G, Drummond HA (2008) ASIC proteins regulate smooth muscle cell migration. Microvasc Res 75:202–210CrossRefPubMedGoogle Scholar
  43. 43.
    Drummond HA, Jernigan NL, Grifoni SC (2008) Sensing tension: epithelial sodium channel/acid-sensing ion channel proteins in cardiovascular homeostasis. Hypertension 51:1265–1271CrossRefPubMedGoogle Scholar
  44. 44.
    Ziemann AE, Allen JE, Dahdaleh NS, Drebot II, Coryell MW, Wunsch AM, Lynch CM, Faraci FM, Howard Iii MA, Welsh MJ, Wemmie JA (2009) The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 139:1012–1021CrossRefPubMedGoogle Scholar
  45. 45.
    Aronson PS, Nee J, Suhm MA (1982) Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature 299:161–163CrossRefPubMedGoogle Scholar
  46. 46.
    Gluck SL (2004) Acid sensing in renal epithelial cells. J Clin Invest 114:1696–1699PubMedGoogle Scholar
  47. 47.
    Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J (1995) Protein-tyrosine kinase Pyk2 involved in Ca2+-induced regulation of ion-channel and map kinase functions. Nature 376:737–745CrossRefPubMedGoogle Scholar
  48. 48.
    Li SY, Sato S, Yang XJ, Preisig PA, Alpern RJ (2004) Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3. J Clin Invest 114:1782–1789PubMedGoogle Scholar
  49. 49.
    Preisig PA (2007) The acid-activated signaling pathway: starting with Pyk2 and ending with increased NHE3 activity. Kidney Int 72:1324–1329CrossRefPubMedGoogle Scholar
  50. 50.
    Yamaji Y, Tsuganezawa H, Moe OW, Alpern RJ (1997) Intracellular acidosis activates c-Src. Am J Physiol Cell Physiol 272:C886–C893Google Scholar
  51. 51.
    Ambuhl PM, Amemiya M, Danczkay M, Lotscher M, Kaissling B, Moe OW, Preisig PA, Alpern RJ (1996) Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol Renal Physiol 271:F917–F925Google Scholar
  52. 52.
    Yang XJ, Amemiya M, Peng Y, Moe OW, Preisig PA, Alpern RJ (2000) Acid incubation causes exocytic insertion of NHE3 in OKP cells. Am J Physiol Cell Physiol 279:C410–C419PubMedGoogle Scholar
  53. 53.
    Espiritu DJD, Bernardo AA, Robey RB, Arruda JAL (2002) A central role for Pyk2-Src interaction in coupling diverse stimuli to increased epithelial NBC activity. Am J Physiol Renal Physiol 283:F663–F670PubMedGoogle Scholar
  54. 54.
    Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the C-Src protooncogene leads to osteopetrosis in mice. Cell 64:693–702CrossRefPubMedGoogle Scholar
  55. 55.
    Orr AW, Murhpy-Ulrich JE (2004) Regulation of endothelial cell function by FAK and Pyk2. Front Biosci 9:1254–1266CrossRefPubMedGoogle Scholar
  56. 56.
    Kodama H, Fukuda K, Takahashi E, Tahara S, Tomita Y, Ieda M, Kimura K, Owada KM, Vuori K, Ogawa S (2003) Selective involvement of p130Cas/Crk/Pyk2/c-Src in endothelin-1-induced JNK activation. Hypertension 41:1372–1379CrossRefPubMedGoogle Scholar
  57. 57.
    Tsuganezawa H, Sato S, Yamaji Y, Preisig PA, Moe OW, Alpern RJ (2002) Role of c-SRC and ERK in acid-induced activation of NHE3. Kidney Int 62:41–50CrossRefPubMedGoogle Scholar
  58. 58.
    Ramos LS, Zippin JH, Kamenetsky M, Buck J, Levin LR (2008) Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells. J Gen Physiol 132:329–338CrossRefPubMedGoogle Scholar
  59. 59.
    Pastor-Soler N, Beaulieu V, Litvin TN, Da Silva N, Chen Y, Brown D, Buck J, Levin LR, Breton S (2003) Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J Biol Chem 278:49523–49529CrossRefPubMedGoogle Scholar
  60. 60.
    Prost LR, Daley ME, Le Sage V, Bader MW, Le Moual H, Klevit RE, Miller SI (2007) Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell 26:165–174CrossRefPubMedGoogle Scholar
  61. 61.
    Yu X-J, McGourty K, Liu M, Unsworth KE, Holden DW (2010) pH sensing by intracellular Salmonella induces effector translocation. Science 328:1040–1043CrossRefPubMedGoogle Scholar
  62. 62.
    Tews I, Findeisen F, Sinning I, Schultz A, Schultz JE, Linder JU (2005) The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308:1020–1023CrossRefPubMedGoogle Scholar
  63. 63.
    Dittrich D, Keller C, Ehlers S, Schultz JE, Sander P (2006) Characterization of a Mycobacterium tuberculosis mutant deficient in pH-sensing adenylate cyclase Rv1264. Int J Med Microbiol 296:563–566CrossRefPubMedGoogle Scholar
  64. 64.
    Tao M, Lipmann F (1969) Isolation of adenyl cyclase from Escherichia coli. Proc Natl Acad Sci USA 63:86–92CrossRefPubMedGoogle Scholar
  65. 65.
    Botsford JL, Harman JG (1992) Cyclic AMP in prokaryotes. Microbiol Rev 56:100–122PubMedGoogle Scholar
  66. 66.
    Castanie-Cornet M-P, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535PubMedGoogle Scholar
  67. 67.
    Ma Z, Richard H, Foster JW (2003) pH-dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J Bacteriol 185:6852–6859CrossRefPubMedGoogle Scholar
  68. 68.
    Srivastava J, Barber DL, Jacobson MP (2007) Intracellular pH sensors: design principles and functional significance. Physiology 22:30–39CrossRefPubMedGoogle Scholar
  69. 69.
    Brown D, Paunescu TG, Breton S, Marshansky V (2009) Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. J Exp Biol 212:1762–1772CrossRefPubMedGoogle Scholar
  70. 70.
    Hassel B (2000) Carboxylation and anaplerosis in neurons and glia. Mol Neurobiol 22:21–40CrossRefPubMedGoogle Scholar
  71. 71.
    Berkner KL (2008) Vitamin K-dependent carboxylation. Vitam Horm 78:131–156CrossRefPubMedGoogle Scholar
  72. 72.
    Sadowski JA, Esmon CT, Suttie JW (1976) Vitamin K-dependent carboxylase. Requirements of the rat liver microsomal enzyme system. J Biol Chem 251:2770–2776PubMedGoogle Scholar
  73. 73.
    Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628CrossRefPubMedGoogle Scholar
  74. 74.
    Guo D, Zhang JJ, Huang XY (2009) Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry 48:4417–4422CrossRefPubMedGoogle Scholar
  75. 75.
    Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci USA 106:2041–2046CrossRefPubMedGoogle Scholar
  76. 76.
    Tresguerres M, Parks SK, Salazar E, Levin LR, Goss GG, Buck J (2010) Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis. Proc Natl Acad Sci USA 107:442–447CrossRefPubMedGoogle Scholar
  77. 77.
    Tresguerres M, Parks SK, Wood CM, Goss GG (2007) V-H+-ATPase translocation during blood alkalosis in dogfish gills: interaction with carbonic anhydrase and involvement in the postfeeding alkaline tide. Am J Physiol Reg Int Comp Physiol 292:R2012–R2019Google Scholar
  78. 78.
    Acin-Perez R, Salazar E, Brosel S, Yang H, Schon EA, Manfredi G (2009) Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects. EMBO Mol Med 1:392–406CrossRefPubMedGoogle Scholar
  79. 79.
    Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9:265–276CrossRefPubMedGoogle Scholar
  80. 80.
    Farrell J, Ramos L, Tresguerres M, Kamenetsky M, Levin LR, Buck J (2008) Somatic "soluble" adenylyl cyclase isoforms are unaffected in Sacytm1Lex/Sacytm1Lex "knockout" mice. PLoS ONE 3:e3251CrossRefPubMedGoogle Scholar
  81. 81.
    Geng W, Wang Z, Zhang J, Reed BY, Pak CY, Moe OW (2005) Cloning and characterization of the human soluble adenylyl cyclase. Am J Physiol Cell Physiol 288:C1305–C1316CrossRefPubMedGoogle Scholar
  82. 82.
    Sinclair ML, Wang XY, Mattia M, Conti M, Buck J, Wolgemuth DJ, Levin LR (2000) Specific expression of soluble adenylyl cyclase in male germ cells. Mol Reprod Dev 56:6–11CrossRefPubMedGoogle Scholar
  83. 83.
    Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J (2003) Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J 17:82–84PubMedGoogle Scholar
  84. 84.
    Schmid A, Sutto Z, Nlend MC, Horvath G, Schmid N, Buck J, Levin LR, Conner GE, Fregien N, Salathe M (2007) Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. J Gen Physiol 130:99–109CrossRefPubMedGoogle Scholar
  85. 85.
    Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci USA 96:79–84CrossRefPubMedGoogle Scholar
  86. 86.
    Steegborn C, Litvin TN, Hess KC, Capper AB, Taussig R, Buck J, Levin LR, Wu H (2005) A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen. J Biol Chem 280:31754–31759CrossRefPubMedGoogle Scholar
  87. 87.
    Steegborn C, Litvin TN, Levin LR, Buck J, Wu H (2005) Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat Struct Mol Biol 12:32–37CrossRefPubMedGoogle Scholar
  88. 88.
    Linder J (2006) Class III adenylyl cyclases: molecular mechanisms of catalysis and regulation. Cell Mol Life Sci 63:1736–1751CrossRefPubMedGoogle Scholar
  89. 89.
    Linder JU (2008) Structure-function relationships in Escherichia coli adenylate cyclase. Biochem J 415:449–454CrossRefPubMedGoogle Scholar
  90. 90.
    Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 278:15922–15926CrossRefPubMedGoogle Scholar
  91. 91.
    Jaiswal BS, Conti M (2001) Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase. J Biol Chem 276:31698–31708CrossRefPubMedGoogle Scholar
  92. 92.
    Chaloupka JA, Bullock SA, Iourgenko V, Levin LR, Buck J (2006) Autoinhibitory regulation of soluble adenylyl cyclase. Mol Reprod Dev 73:361–368CrossRefPubMedGoogle Scholar
  93. 93.
    Xie F, Garcia MA, Carlson AE, Schuh SM, Babcock DF, Jaiswal BS, Gossen JA, Esposito G, van Duin M, Conti M (2006) Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev Biol 296:353–362CrossRefPubMedGoogle Scholar
  94. 94.
    Esposito G, Jaiswal BS, Xie F, Krajnc-Franken MA, Robben TJ, Strik AM, Kuil C, Philipsen RL, van Duin M, Conti M, Gossen JA (2004) Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc Natl Acad Sci USA 101:2993–2998CrossRefPubMedGoogle Scholar
  95. 95.
    Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, Miyamoto C, Zippin JH, Kopf GS, Suarez SS, Levin LR, Williams CJ, Buck J, Moss SB (2005) The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 9:249–259CrossRefPubMedGoogle Scholar
  96. 96.
    Pastor-Soler NM, Hallows KR, Smolak C, Gong F, Brown D, Breton S (2008) Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells. Am J Physiol Cell Physiol 294:C488–C494CrossRefPubMedGoogle Scholar
  97. 97.
    Paunescu TG, Da Silva N, Russo LM, McKee M, Lu HA, Breton S, Brown D (2008) Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cells. Am J Physiol Renal Physiol 294:F130–F138CrossRefPubMedGoogle Scholar
  98. 98.
    Gong F, Alzamora R, Smolak C, Li H, Naveed S, Neumann D, Hallows KR, Pastor-Soler NM (2010) Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. Am J Physiol-Renal Physiol 298:F1162–F1169CrossRefGoogle Scholar
  99. 99.
    Pastor-Soler N, Pietrement C, Breton S (2005) Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology 20:417–428CrossRefPubMedGoogle Scholar
  100. 100.
    Boron WF (2006) Acid-base transport by the renal proximal tubule. J Am Soc Nephrol 17:2368–2382CrossRefPubMedGoogle Scholar
  101. 101.
    Paunescu TG, Ljubojevic M, Russo LM, Winter C, McLaughlin MM, Wagner CA, Breton S, Brown D (2010) cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. Am J Physiol-Renal Physiol 298:F643–F654CrossRefPubMedGoogle Scholar
  102. 102.
    Tresguerres M, Parks SK, Katoh F, Goss GG (2006) Microtubule-dependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion. J Exp Biol 209:599–609CrossRefPubMedGoogle Scholar
  103. 103.
    Tresguerres M, Katoh F, Fenton H, Jasinska E, Goss GG (2005) Regulation of branchial V-H+-ATPase Na+/K+-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias). J Exp Biol 208:345–354CrossRefPubMedGoogle Scholar
  104. 104.
    Braun T (1975) The effect of divalent cations on bovine spermatozoal adenylate cyclase activity. J Cyclic Nucleotide Res 1:271–281PubMedGoogle Scholar
  105. 105.
    Neer EJ (1978) Multiple forms of adenylate cyclase. Adv Cyclic Nucleotide Res 9:69–83PubMedGoogle Scholar
  106. 106.
    Garbers DL, Tubb DJ, Hyne RV (1982) A requirement of bicarbonate for Ca2+-induced elevations of cyclic AMP in guinea pig spermatozoa. J Biol Chem 257:8980–8984PubMedGoogle Scholar
  107. 107.
    Garty NB, Salomon Y (1987) Stimulation of partially purified adenylate cyclase from bull sperm by bicarbonate. FEBS Lett 218:148–152CrossRefPubMedGoogle Scholar
  108. 108.
    Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y (1985) Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 260:9699–9705PubMedGoogle Scholar
  109. 109.
    Visconti PE, Muschietti JP, Flawia MM, Tezon JG (1990) Bicarbonate dependence of cAMP accumulation induced by phorbol esters in hamster spermatozoa. Biochim Biophys Acta 1054:231–236CrossRefPubMedGoogle Scholar
  110. 110.
    Levine N, Marsh DJ (1971) Micropuncture studies of electrochemical aspects of fluid and electrolyte transport in individual seminiferous tubules, epididymis and vas deferens in rats. J Physiol 213:557–570PubMedGoogle Scholar
  111. 111.
    Demarco IA, Espinosa F, Edwards J, Sosnik J, de la Vega-Beltran JL, Hockensmith JW, Kopf GS, Darszon A, Visconti PE (2003) Involvement of a Na+/HCO3 cotransporter in mouse sperm capacitation. J Biol Chem 278:7001–7009CrossRefPubMedGoogle Scholar
  112. 112.
    Boatman DF, Robbins RS (1991) Bicarbonate: carbon-dioxide regulation of sperm capacitation, hyperactivated motility, and acrosome reactions. Biol Reprod 44:806–813CrossRefPubMedGoogle Scholar
  113. 113.
    Lee MA, Storey BT (1986) Bicarbonate is essential for ferilization of mouse eggs: mouse sperm require it to undergo the acrosome reaction. Biol Reprod 34:349–356CrossRefPubMedGoogle Scholar
  114. 114.
    Visconti PE, Galantino-Homer H, Moore GD, Bailey JL, Ning X, Fornes M, Kopf GS (1998) The molecular basis of sperm capacitation. J Androl 19:242–248PubMedGoogle Scholar
  115. 115.
    Schuh SM, Carlson AE, McKnight GS, Conti M, Hille B, Babcock DF (2006) Signaling pathways for modulation of mouse sperm motility by adenosine and catecholamine agonists. Biol Reprod 74:492–500CrossRefPubMedGoogle Scholar
  116. 116.
    Hallows KR, Wang HM, Edinger RS, Butterworth MB, Oyster NM, Li H, Buck J, Levin LR, Johnson JP, Pastor-Soler NM (2009) Regulation of epithelial Na+ transport by soluble adenylyl cyclase in kidney collecting duct cells. J Biol Chem 284:5774–5783CrossRefPubMedGoogle Scholar
  117. 117.
    Tresguerres M, Levin LR, Buck J, Grosell M (2010) Modulation of NaCl absorption by [HCO3] in the marine teleost intestine is mediated by soluble adenylyl cyclase. Am J Physiol Regul Integr Comp Physiol 299:62–71Google Scholar
  118. 118.
    Wang Y, Lam CS, Wu F, Wang W, Duan Y, Huang P (2005) Regulation of CFTR channels by HCO3sensitive soluble adenylyl cyclase in human airway epithelial cells. Am J Physiol Cell Physiol 289:C1145–C1151CrossRefPubMedGoogle Scholar
  119. 119.
    Baudouin-Legros M, Hamdaoui N, Borot F, Fritsch J, Ollero M, Planelles G, Edelman A (2008) Control of basal CFTR gene expression by bicarbonate-sensitive adenylyl cyclase in human pulmonary cells. Cell Physiol Biochem 21:075–086CrossRefGoogle Scholar
  120. 120.
    Sun XC, Zhai CB, Cui M, Chen Y, Levin LR, Buck J, Bonanno JA (2003) HCO3dependent soluble adenylyl cyclase activates cystic fibrosis transmembrane conductance regulator in corneal endothelium. Am J Physiol Cell Physiol 284:C1114–C1122PubMedGoogle Scholar
  121. 121.
    Geng W, Hill K, Zerwekh JE, Kohler T, Müller R, Moe OW (2009) Inhibition of osteoclast formation and function by bicarbonate: role of soluble adenylyl cyclase. J Cell Physiol 220:332–340CrossRefPubMedGoogle Scholar
  122. 122.
    Chen MH, Chen H, Zhou Z, Ruan YC, Wong HY, Lu YC, Guo JH, Chung YW, Huang PB, Huang HF, Zhou WL, Chan HC (210) Involvement of CFTR in oviductal HCO3 secretion and its effect on soluble adenylate cyclase-dependent early embryo development. Hum Reprod 25:1744–1754CrossRefGoogle Scholar
  123. 123.
    Halm ST, Zhang J, Halm DR (2010) β-adrenergic activation of electrogenic K+ and Cl secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways. Am J Physiol Gastrointest Liver Physiol 299:81–95CrossRefGoogle Scholar
  124. 124.
    Strazzabosco M, Fiorotto R, Melero S, Glaser S, Francis H, Spirli C, Alpini G (2009) Diferentially expressed adenylyl cyclase isoforms mediate secretory functions in cholangiocyte subpopulation. Hepatology 50:244–252CrossRefPubMedGoogle Scholar
  125. 125.
    Fülle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA 92:3571–3575CrossRefPubMedGoogle Scholar
  126. 126.
    Young JM, Waters H, Dong C, Fülle H-J, Liman ER (2007) Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS ONE 2:e884CrossRefPubMedGoogle Scholar
  127. 127.
    Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317:953–957CrossRefPubMedGoogle Scholar
  128. 128.
    Sharabi K, Lecuona E, Helenius IT, Beitel GJ, Sznajder JI, Gruenbaum Y (2009) Sensing, physiological effects and molecular response to elevated CO2 levels in eukaryotes. J Cell Mol Med 13:4304–4318CrossRefPubMedGoogle Scholar
  129. 129.
    de Bruyne M, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552CrossRefPubMedGoogle Scholar
  130. 130.
    Fischler W, Kong P, Marella S, Scott K (2007) The detection of carbonation by the Drosophila gustatory system. Nature 448:1054–1057CrossRefPubMedGoogle Scholar
  131. 131.
    Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445:86–90CrossRefPubMedGoogle Scholar
  132. 132.
    Bretscher AJ, Busch KE, de Bono M (2008) A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc Natl Acad Sci USA 105:8044–8049CrossRefPubMedGoogle Scholar
  133. 133.
    Hallem EA, Sternberg PW (2008) Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci USA 105:8038–8043CrossRefPubMedGoogle Scholar
  134. 134.
    Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, Thomas JH (2000) A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics 155:85–104PubMedGoogle Scholar
  135. 135.
    Hammer A, Hodgson DRW, Cann MJ (2006) Regulation of prokaryotic adenylyl cyclases by CO2. Biochem J 396:215–218CrossRefPubMedGoogle Scholar
  136. 136.
    Zhao J, Hogan EM, Bevensee MO, Boron WF (1995) Out-of-equilibrium CO2/HCO3 solutions and their use in characterizing a new K/HCO3 cotransporter. Nature 374:636–639CrossRefPubMedGoogle Scholar
  137. 137.
    Zhou Y, Bouyer P, Boron WF (2006) Role of a tyrosine kinase in the CO2-induced stimulation of HCO3 reabsorption by rabbit S2 proximal tubules. Am J Physiol Renal Physiol 291:F358–F367CrossRefPubMedGoogle Scholar
  138. 138.
    Zhou Y, Zhao J, Bouyer P, Boron WF (2005) Evidence from renal proximal tubules that HCO3 and solute reabsorption are acutely regulated not by pH but by basolateral HCO3 and CO2. Proc Natl Acad Sci USA 102:3875–3880CrossRefPubMedGoogle Scholar
  139. 139.
    Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJP, Zuker CS (2009) The taste of carbonation. Science 326:443–445CrossRefPubMedGoogle Scholar
  140. 140.
    Putnam RW, Filosa JA, Ritucci NA (2004) Cellular mechanisms involved in CO2 and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 287:C1493–C1526CrossRefPubMedGoogle Scholar
  141. 141.
    Wellner-Kienitz M-C, Shams H, Scheid P (1998) Contribution of Ca2+-activated K+ channels to central chemosensitivity in cultivated neurons of fetal rat medulla. J Neurophysiol 79:2885–2894PubMedGoogle Scholar
  142. 142.
    Pineda J, Aghajanian GK (1997) Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current. Neuroscience 77:723–743CrossRefPubMedGoogle Scholar
  143. 143.
    Filosa JA, Dean JB, Putnam RW (2002) Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J Physiol (Lond) 541:493–509CrossRefGoogle Scholar
  144. 144.
    Trapp S, Aller MI, Wisden W, Gourine AV (2008) A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing. J Neurosci 28:8844–8850CrossRefPubMedGoogle Scholar
  145. 145.
    Nunes AR, Monteiro EC, Johnson SM, Gauda EB (2009) Bicarbonate-regulated soluble adenylyl cyclase (sAC) mRNA expression and activity in peripheral chemoreceptors. Adv Exp Med Biol 648:235–241CrossRefPubMedGoogle Scholar
  146. 146.
    Summers BA, Overholt JL, Prabhakar NR (2002) CO2 and pH independently modulate L-type Ca2+ current in rabbit carotid body glomus cells. J Neurophysiol 88:604–612PubMedGoogle Scholar
  147. 147.
    Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid-body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74:829–898PubMedGoogle Scholar
  148. 148.
    Nurse CA (1990) Carbonic-anhydrase and neuronal enzymes in cultured glomus cells of the carotid-body of the rat. Cell Tissue Res 261:65–71CrossRefPubMedGoogle Scholar
  149. 149.
    Rigual R, Iniguez C, Carreres J, Gonzalez C (1985) Carbonic-anhydrase in the carotid-body and the carotid-sinus nerve. Histochemistry 82:577–580CrossRefPubMedGoogle Scholar
  150. 150.
    Mogensen EG, Janbon G, Chaloupka J, Steegborn C, Fu MS, Moyrand F, Klengel T, Pearson DS, Geeves MA, Buck J, Levin LR, Muhlschlegel FA (2006) Cryptococcus neoformans senses CO2 through the carbonic anhydrase Can2 and the adenylyl cyclase Cac1. Eukaryot Cell 5:103–111CrossRefPubMedGoogle Scholar
  151. 151.
    Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schroppel K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, Levin LR, Buck J, Muhlschlegel FA (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15:2021–2026CrossRefPubMedGoogle Scholar
  152. 152.
    Spicer SS, Ge Z-H, Tashian RE, Hazen-Martin DJ, Schulte BA (1990) Comparative distribution of carbonic anhydrase isozymes III and II in rodent tissues. Am J Anat 187:55–64CrossRefPubMedGoogle Scholar
  153. 153.
    Sutto Z, Conner GE, Salathe M (2004) Regulation of human airway ciliary beat frequency by intracellular pH. J Physiol 560:519–532CrossRefPubMedGoogle Scholar
  154. 154.
    Zippin JH, Farrell J, Huron D, Kamenetsky M, Hess KC, Fischman DA, Levin LR, Buck J (2004) Bicarbonate-responsive "soluble" adenylyl cyclase defines a nuclear cAMP microdomain. J Cell Biol 164:527–534CrossRefPubMedGoogle Scholar
  155. 155.
    Beltran C, Vacquier VD, Moy G, Chen Y, Buck J, Levin LR, Darszon A (2007) Particulate and soluble adenylyl cyclases participate in the sperm acrosome reaction. Biochem Biophys Res Commun 358:1128–1135CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Martin Tresguerres
    • 1
  • Jochen Buck
    • 1
  • Lonny R. Levin
    • 1
  1. 1.Department of Pharmacology, Weill Cornell Medical CollegeCornell UniversityNew YorkUSA

Personalised recommendations