Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 460, Issue 5, pp 825–837 | Cite as

Obesity and aging: determinants of endothelial cell dysfunction and atherosclerosis

  • Matthias Barton
Invited Review

Abstract

Endothelial cells are both the source and target of factors contributing to atherosclerosis. After the discovery of the endothelium-derived relaxing factor (EDRF) by Robert F. Furchgott in 1980 it soon became clear that endothelial cells also release vasoactive factors distinct from nitric oxide (NO) namely, endothelium-derived contracting factors (EDCF) as well as hyperpolarizing factors (EDHF). Vasoactive factors derived from endothelial cells include NO/EDRF, reactive oxygen species, endothelins and angiotensins which have either EDRF or EDCF functions, cyclooxygenase-derived EDCFs and EDRFs, and EDHFs. Endothelial factors are formed by enzymes such as NO synthase, cyclooxygenase, converting enyzmes, NADPH oxidases, and epoxigenases, among others, and participate in the regulation of vascular homeostasis under physiological conditions; however, their abnormal regulation due to endothelial cell dysfunction contributes to disease processes such as atherosclerosis, arterial hypertension, and renal disease. Because of recent changes in world demographics and the declining health status of the world’s population, both aging and obesity as independent risk factors for atherosclerosis-related diseases such as coronary artery disease and stroke, will continue to increase in the years to come. Obesity and associated conditions such as arterial hypertension and diabetes are now also some of the primary health concerns among children and adolescents. The similarities of pathomechanisms activated in obesity and aging suggest that obesity—at least in the vasculature—can be considered to have effects consistent with accelerated, “premature” aging. Pathomechanisms as well as the clinical issues of obesity- and aging-associated vascular changes important for atherosclerosis development and prevention are discussed.

Keywords

Aging Vascular Obesity Nitric oxide Endothelin Endothelial cell Vascular smooth muscle cell 

Notes

Acknowledgment

This work was supported by the Swiss National Science Foundation (grants Nr. 3200-108258 and K33KO-122504).

References

  1. 1.
    Abello N, Kerstjens HA, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8:3222–3238PubMedCrossRefGoogle Scholar
  2. 2.
    Aviv H, Khan MY, Skurnick J, Okuda K, Kimura M, Gardner J, Priolo L, Aviv A (2001) Age dependent aneuploidy and telomere length of the human vascular endothelium. Atherosclerosis 159:281–287PubMedCrossRefGoogle Scholar
  3. 3.
    Baker JL, Olsen LW, Sorensen TI (2007) Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med 357:2329–2337PubMedCrossRefGoogle Scholar
  4. 4.
    Barton M (2005) Ageing as a determinant of renal and vascular disease: role of endothelial factors. Nephrol Dial Transplant 20:485–490PubMedCrossRefGoogle Scholar
  5. 5.
    Barton M (2005) Aging and biomedicine 2005: where should we go from here? Cardiovasc Res 66:187–189PubMedCrossRefGoogle Scholar
  6. 6.
    Barton M (2008) Reversal of proteinuric renal disease and the emerging role of endothelin. Nat Clin Pract Nephrol 4:490–501PubMedCrossRefGoogle Scholar
  7. 7.
    Barton M, Furrer J (2003) Cardiovascular consequences of the obesity pandemic: need for action. Expert Opin Investig Drugs 12:1757–1759PubMedCrossRefGoogle Scholar
  8. 8.
    Barton M, Haudenschild C (2001) Endothelium and atherogenesis: endothelial therapy revisited. J Cardiovasc Pharmacol 38(Suppl 2):S23–S25PubMedGoogle Scholar
  9. 9.
    Barton M (2005). Management and prevention of obesity-associated hypertension. Ren Angiotens Syst Cardiovase Med 1:11–14Google Scholar
  10. 10.
    Barton M, Meyer MR (2009) Postmenopausal hypertension: mechanisms and therapy. Hypertension 54:11–18PubMedCrossRefGoogle Scholar
  11. 11.
    Barton M, Yanagisawa M (2008) Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol 86:485–498PubMedCrossRefGoogle Scholar
  12. 12.
    Luscher T, Barton M (2000) Endothelin and endothelin antagonists: Therapeutic considerations for a new class of cardiovascular drugs. Circulation 102:2434–2440Google Scholar
  13. 13.
    Barton M, Cosentino F, Brandes RP, Moreau P, Shaw S, Lüscher TF (1997) Anatomic heterogeneity of vascular aging: role of nitric oxide and endothelin. Hypertension 30:817–824PubMedGoogle Scholar
  14. 14.
    Barton M, Carmona R, Morawietz H, d’Uscio LV, Goettsch W, Hillen H, Haudenschild CC, Krieger JE, Munter K, Lattmann T, Luscher TF, Shaw S (2000) Obesity is associated with tissue-specific activation of renal angiotensin-converting enzyme in vivo: evidence for a regulatory role of endothelin. Hypertension 35:329–336PubMedGoogle Scholar
  15. 15.
    Barton M, Carmona R, Ortmann J, Krieger JE, Traupe T (2003) Obesity-associated activation of angiotensin and endothelin in the cardiovascular system. Int J Biochem Cell Biol 35:826–837PubMedCrossRefGoogle Scholar
  16. 16.
    Barton M, Traupe T, Haudenschild CC (2003) Endothelin, hypercholesterolemia and atherosclerosis. Coron Artery Dis 14:477–490PubMedCrossRefGoogle Scholar
  17. 17.
    Barton M, Minotti R, Haas E (2007) Inflammation and atherosclerosis. Circ Res 101:750–751PubMedCrossRefGoogle Scholar
  18. 18.
    Bender SB, Herrick EK, Lott ND, Klabunde RE (2007) Diet-induced obesity and diabetes reduce coronary responses to nitric oxide due to reduced bioavailability in isolated mouse hearts. Diab Obes Metab 9:688–696CrossRefGoogle Scholar
  19. 19.
    Bhattacharya I, Damjanovic M, Gut A, Hager S, Perez-Dominguez A, Minotti R, Haas E, Barton M (2008) Childhood obesity induced by a high-fat diet causes premature vascular aging involving endothelium-dependent mechanisms. Hypertension 52:e89Google Scholar
  20. 20.
    Bhattacharya I, Mundy AL, Widmer CC, Kretz M, Barton M (2008) Regional heterogeneity of functional changes in conduit arteries after high-fat diet. Obesity (Silver Spring) 16:743–748CrossRefGoogle Scholar
  21. 21.
    Bibbins-Domingo K, Coxson P, Pletcher MJ, Lightwood J, Goldman L (2007) Adolescent overweight and future adult coronary heart disease. N Engl J Med 357:2371–2379PubMedCrossRefGoogle Scholar
  22. 22.
    Bourgoin F, Bachelard H, Badeau M, Melancon S, Pitre M, Lariviere R, Nadeau A (2008) Endothelial and vascular dysfunctions and insulin resistance in rats fed a high-fat, high-sucrose diet. Am J Physiol Heart Circ Physiol 295:H1044–H1055PubMedCrossRefGoogle Scholar
  23. 23.
    Brandes RP, Fleming I, Busse R (2005) Endothelial aging. Cardiovasc Res 66:286–294PubMedCrossRefGoogle Scholar
  24. 24.
    Brandes RP, Weissmann N, Schroder K (2010) NADPH oxidases in cardiovascular disease. Free Radic Biol Med (in press)Google Scholar
  25. 25.
    Bray GA, Popkin BM (1998) Dietary fat intake does affect obesity! Am J Clin Nutr 68:1157–1173PubMedGoogle Scholar
  26. 26.
    Brodsky SV, Gealekman O, Chen J, Zhang F, Togashi N, Crabtree M, Gross SS, Nasjletti A, Goligorsky MS (2004) Prevention and reversal of premature endothelial cell senescence and vasculopathy in obesity-induced diabetes by ebselen. Circ Res 94:377–384PubMedCrossRefGoogle Scholar
  27. 27.
    Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23:374–380PubMedCrossRefGoogle Scholar
  28. 28.
    Campbell WB, Fleming I (2010) Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch 459:881–895PubMedCrossRefGoogle Scholar
  29. 29.
    Cardillo C, Campia U, Iantorno M, Panza JA (2004) Enhanced vascular activity of endogenous endothelin-1 in obese hypertensive patients. Hypertension 43:36–40PubMedCrossRefGoogle Scholar
  30. 30.
    Chen L, Caballero B, Mitchell DC, Loria C, Lin PH, Champagne CM, Elmer PJ, Ard JD, Batch BC, Anderson CA, Appel LJ (2010) Reducing consumption of sugar-sweetened beverages is associated with reduced blood pressure: a prospective study among United States adults. Circulation 121:2398–2406PubMedCrossRefGoogle Scholar
  31. 31.
    Chou TC, Yen MH, Li CY, Ding YA (1998) Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension 31:643–648PubMedGoogle Scholar
  32. 32.
    Colditz GA (1999) Economic costs of obesity and inactivity. Med Sci Sports Exerc 31:S663–S667PubMedCrossRefGoogle Scholar
  33. 33.
    Collins S, Martin TL, Surwit RS, Robidoux J (2004) Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav 81:243–248PubMedCrossRefGoogle Scholar
  34. 34.
    Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204PubMedCrossRefGoogle Scholar
  35. 35.
    Cox LS (2009) Live fast, die young: new lessons in mammalian longevity. Rejuvenation Res 12:283–288PubMedCrossRefGoogle Scholar
  36. 36.
    Csiszar A, Labinskyy N, Orosz Z, Xiangmin Z, Buffenstein R, Ungvari Z (2007) Vascular aging in the longest-living rodent, the naked mole rat. Am J Physiol Heart Circ Physiol 293:H919–H927PubMedCrossRefGoogle Scholar
  37. 37.
    Damjanovic M, Barton M (2008) Fat intake and cardiovascular response. Curr Hypertens Rep 10:25–31PubMedCrossRefGoogle Scholar
  38. 38.
    De Mey JG, Vanhoutte PM (1982) Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res 51:439–447PubMedGoogle Scholar
  39. 39.
    Donato AJ, Gano LB, Eskurza I, Silver AE, Gates PE, Jablonski K, Seals DR (2009) Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol 297:H425–H432PubMedCrossRefGoogle Scholar
  40. 40.
    Dusting GJ, Moncada S, Vane JR (1977) Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins 13:3–15PubMedCrossRefGoogle Scholar
  41. 41.
    Dzau VJ (1993) Vascular renin-angiotensin system and vascular protection. J Cardiovasc Pharmacol 22(Suppl 5):S1–S9PubMedCrossRefGoogle Scholar
  42. 42.
    Erusalimsky JD, Kurz DJ (2006) Endothelial cell senescence. Handb Exp Pharmacol 176:213–248PubMedCrossRefGoogle Scholar
  43. 43.
    Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, Dehghani F, Brandes RP, Busse R (2001) Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 88:44–51PubMedCrossRefGoogle Scholar
  44. 44.
    Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714PubMedCrossRefGoogle Scholar
  45. 45.
    Förstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23:1121–1131PubMedGoogle Scholar
  46. 46.
    Furchgott RF (1993) Introduction to EDRF research. J Cardiovasc Pharmacol 22:S1–S2PubMedGoogle Scholar
  47. 47.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376PubMedCrossRefGoogle Scholar
  48. 48.
    Galili O, Versari D, Sattler KJ, Olson ML, Mannheim D, McConnell JP, Chade AR, Lerman LO, Lerman A (2007) Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am J Physiol Heart Circ Physiol 292:H904–H911PubMedCrossRefGoogle Scholar
  49. 49.
    Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777PubMedCrossRefGoogle Scholar
  50. 50.
    Gaubert ML, Sigaudo-Roussel D, Tartas M, Berrut G, Saumet JL, Fromy B (2007) Endothelium-derived hyperpolarizing factor as an in vivo back-up mechanism in the cutaneous microcirculation in old mice. J Physiol 585:617–626PubMedCrossRefGoogle Scholar
  51. 51.
    Gillespie MN, Owasoyo JO, McMurtry IF, O'Brien RF (1986) Sustained coronary vasoconstriction provoked by a peptidergic substance released from endothelial cells in culture. J Pharmacol Exp Ther 236:339–343PubMedGoogle Scholar
  52. 52.
    Global population at a glance: 2002 and beyond. The US Census Bureau, US Department of Commerce Economic and Statistics Administration http://www.census.gov/. Accessed 13 March 2010
  53. 53.
    Goel A, Su B, Flavahan S, Lowenstein CJ, Berkowitz DE, Flavahan NA (2010) Increased endothelial exocytosis and generation of endothelin-1 contributes to constriction of aged arteries. Circ Res (in press)Google Scholar
  54. 54.
    Goettsch W, Lattmann T, Amann K, Szibor M, Morawietz H, Munter K, Muller SP, Shaw S, Barton M (2001) Increased expression of endothelin-1 and inducible nitric oxide synthase isoform II in aging arteries in vivo: implications for atherosclerosis. Biochem Biophys Res Commun 280:908–913PubMedCrossRefGoogle Scholar
  55. 55.
    Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501PubMedGoogle Scholar
  56. 56.
    Gryglewski RJ, Palmer RM, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456PubMedCrossRefGoogle Scholar
  57. 57.
    Haudenschild CC, Prescott MF, Chobanian AV (1981) Aortic endothelial and subendothelial cells in experimental hypertension and aging. Hypertension 3:I148–I153PubMedGoogle Scholar
  58. 58.
    Hickey KA, Rubanyi G, Paul RJ, Highsmith RF (1985) Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am J Physiol 248:C550–C556PubMedGoogle Scholar
  59. 59.
    Hill-Kapturczak N, Kapturczak MH, Block ER, Patel JM, Malinski T, Madsen KM, Tisher CC (1999) Angiotensin II-stimulated nitric oxide release from porcine pulmonary endothelium is mediated by angiotensin IV. J Am Soc Nephrol 10:481–491PubMedGoogle Scholar
  60. 60.
    Hirata Y, Emori T, Eguchi S, Kanno K, Imai T, Ohta K, Marumo F (1993) Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J Clin Invest 91:1367–1373PubMedCrossRefGoogle Scholar
  61. 61.
    Hoff JA, Chomka EV, Krainik AJ, Daviglus M, Rich S, Kondos GT (2001) Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol 87:1335–1339PubMedCrossRefGoogle Scholar
  62. 62.
    Hoffmann J, Haendeler J, Aicher A, Rossig L, Vasa M, Zeiher AM, Dimmeler S (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89:709–715PubMedCrossRefGoogle Scholar
  63. 63.
    Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269PubMedCrossRefGoogle Scholar
  64. 64.
    Ishibashi J, Seale P (2010) Medicine. Beige can be slimming. Science 328:1113–1114PubMedCrossRefGoogle Scholar
  65. 65.
    Jacobson A, Yan C, Gao Q, Rincon-Skinner T, Rivera A, Edwards J, Huang A, Kaley G, Sun D (2007) Aging enhances pressure-induced arterial superoxide formation. Am J Physiol Heart Circ Physiol 293:H1344–H1350PubMedCrossRefGoogle Scholar
  66. 66.
    Jensen-Urstad K, Bouvier F, Jensen-Urstad M (1999) Preserved vascular reactivity in elderly male athletes. Scand J Med Sci Sports 9:88–91PubMedCrossRefGoogle Scholar
  67. 67.
    Jolliffe D (2004) Extent of overweight among US children and adolescents from 1971 to 2000. Int J Obes Relat Metab Disord 28:4–9PubMedCrossRefGoogle Scholar
  68. 68.
    Keay AJ, Oliver MF, Boyd GS (1955) Progeria and atherosclerosis. Arch Dis Child 30:410–414PubMedCrossRefGoogle Scholar
  69. 69.
    Kim JH, Bugaj LJ, Oh YJ, Bivalacqua TJ, Ryoo S, Soucy KG, Santhanam L, Webb A, Camara A, Sikka G, Nyhan D, Shoukas AA, Ilies M, Christianson DW, Champion HC, Berkowitz DE (2009) Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J Appl Physiol 107:1249–1257PubMedCrossRefGoogle Scholar
  70. 70.
    Kisanuki YY, Emoto N, Ohuchi T, Widyantoro B, Yagi K, Nakayama K, Kedzierski RM, Hammer RE, Yanagisawa H, Williams SC, Richardson JA, Suzuki T, Yanagisawa M (2010) Low blood pressure in endothelial cell-specific endothelin 1 knockout mice. Hypertension 56(1):121–128PubMedCrossRefGoogle Scholar
  71. 71.
    Kretz M, Mundy AL, Widmer CC, Barton M (2006) Early aging and anatomic heterogeneity determine cyclooxygenase-mediated vasoconstriction to angiotensin II in mice. J Cardiovasc Pharmacol 48:30–33PubMedCrossRefGoogle Scholar
  72. 72.
    Lakatta EG (1989) Arterial pressure and aging. Int J Cardiol 25(Suppl 1):S81–S89PubMedCrossRefGoogle Scholar
  73. 73.
    Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209PubMedGoogle Scholar
  74. 74.
    Larsen BT, Gutterman DD, Sato A, Toyama K, Campbell WB, Zeldin DC, Manthati VL, Falck JR, Miura H (2008) Hydrogen peroxide inhibits cytochrome p450 epoxygenases: interaction between two endothelium-derived hyperpolarizing factors. Circ Res 102:59–67PubMedCrossRefGoogle Scholar
  75. 75.
    Lattmann T, Shaw S, Munter K, Vetter W, Barton M (2005) Anatomically distinct activation of endothelin-3 and the l-arginine/nitric oxide pathway in the kidney with advanced aging. Biochem Biophys Res Commun 327:234–241PubMedCrossRefGoogle Scholar
  76. 76.
    Laufs U, Wassmann S, Czech T, Munzel T, Eisenhauer M, Bohm M, Nickenig G (2005) Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol 25:809–814PubMedCrossRefGoogle Scholar
  77. 77.
    Ludwig DS (2007) Childhood obesity—the shape of things to come. N Engl J Med 357:2325–2327PubMedCrossRefGoogle Scholar
  78. 78.
    Luscher TF, Barton M (1997) Biology of the endothelium. Clin Cardiol 20:II-3–10Google Scholar
  79. 79.
    Malik VS, Popkin BM, Bray GA, Despres JP, Hu FB (2010) Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121:1356–1364PubMedCrossRefGoogle Scholar
  80. 80.
    Mann JF, Green D, Jamerson K, Ruilope LM, Kuranoff SJ, Littke T, Viberti G (2010) Avosentan for overt diabetic nephropathy. J Am Soc Nephrol 21:527–535PubMedCrossRefGoogle Scholar
  81. 81.
    Manson JE, Greenland P, LaCroix AZ, Stefanick ML, Mouton CP, Oberman A, Perri MG, Sheps DS, Pettinger MB, Siscovick DS (2002) Walking compared with vigorous exercise for the prevention of cardiovascular events in women. New Engl J Med 347:716–724PubMedCrossRefGoogle Scholar
  82. 82.
    Martins MA, Catta-Preta M, Mandarim-de-Lacerda CA, Aguila MB, Brunini TC, Mendes-Ribeiro AC (2010) High fat diets modulate nitric oxide biosynthesis and antioxidant defence in red blood cells from C57BL/6 mice. Arch Biochem Biophys 499(1–2):56–61PubMedCrossRefGoogle Scholar
  83. 83.
    McCann SM, Mastronardi C, de Laurentiis A, Rettori V (2005) The nitric oxide theory of aging revisited. Ann NY Acad Sci 1057:64–84PubMedCrossRefGoogle Scholar
  84. 84.
    McClintock D, Gordon LB, Djabali K (2006) Hutchinson-Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody. Proc Natl Acad Sci USA 103:2154–2159PubMedCrossRefGoogle Scholar
  85. 85.
    McEniery CM, Yasmin HIR, Qasem A, Wilkinson IB, Cockcroft JR (2005) Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 46:1753–1760PubMedCrossRefGoogle Scholar
  86. 86.
    McEniery CM, Spratt M, Munnery M, Yarnell J, Lowe GD, Rumley A, Gallacher J, Ben-Shlomo Y, Cockcroft JR, Wilkinson IB (2010) An analysis of prospective risk factors for aortic stiffness in men. 20-year follow-up from the Caerphilly prospective study. Hypertension 56(1):36–43PubMedCrossRefGoogle Scholar
  87. 87.
    McGill HC Jr, McMahan CA, Herderick EE, Zieske AW, Malcom GT, Tracy RE, Strong JP (2002) Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation 105:2712–2718PubMedCrossRefGoogle Scholar
  88. 88.
    McLellan F (2002) Obesity rising to alarming levels around the world. Lancet 359:1412PubMedCrossRefGoogle Scholar
  89. 89.
    Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, Brooks BP, Gerber LH, Turner ML, Domingo DL, Hart TC, Graf J, Reynolds JC, Gropman A, Yanovski JA, Gerhard-Herman M, Collins FS, Nabel EG, Cannon RO 3rd, Gahl WA, Introne WJ (2008) Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 358:592–604PubMedCrossRefGoogle Scholar
  90. 90.
    Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665PubMedCrossRefGoogle Scholar
  91. 91.
    Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL (2003) A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423:298–301PubMedCrossRefGoogle Scholar
  92. 92.
    Mundy AL, Haas E, Bhattacharya I, Widmer CC, Kretz M, Baumann K, Barton M (2007) Endothelin stimulates vascular hydroxyl radical formation: effect of obesity. Am J Physiol Regul Integr Comp Physiol 293:R2218–R2224PubMedGoogle Scholar
  93. 93.
    Mundy AL, Haas E, Bhattacharya I, Widmer CC, Kretz M, Hofmann-Lehmann R, Minotti R, Barton M (2007) Fat intake modifies vascular responsiveness and receptor expression of vasoconstrictors: implications for diet-induced obesity. Cardiovasc Res 73:368–375PubMedCrossRefGoogle Scholar
  94. 94.
    Musci G, Persichini T, Casadei M, Mazzone V, Venturini G, Polticelli F, Colasanti M (2006) Nitrosative/oxidative modifications and ageing. Mech Ageing Dev 127:544–551PubMedCrossRefGoogle Scholar
  95. 95.
    Muzumdar R, Allison DB, Huffman DM, Ma X, Atzmon G, Einstein FH, Fishman S, Poduval AD, McVei T, Keith WW, Barzilai N (2008) Visceral adipose tissue modulates mammalian longevity. Aging Cell 7:438–440PubMedCrossRefGoogle Scholar
  96. 96.
    Nakamura T, Saito Y, Ohyama Y, Masuda H, Sumino H, Kuro-o M, Nabeshima Y, Nagai R, Kurabayashi M (2002) Production of nitric oxide, but not prostacyclin, is reduced in klotho mice. Jpn J Pharmacol 89:149–156PubMedCrossRefGoogle Scholar
  97. 97.
    Napoli C, Glass CK, Witztum JL, Deutsch R, D'Armiento FP, Palinski W (1999) Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet 354:1234–1241PubMedCrossRefGoogle Scholar
  98. 98.
    Nilius B, Serban DN, Vanhoutte PM, Robert F (2010) Furchgott and his heritage: endothelial vasomotor control. Pflugers Arch 459:785–786PubMedCrossRefGoogle Scholar
  99. 99.
    O'Brien RF, Robbins RJ, McMurtry IF (1987) Endothelial cells in culture produce a vasoconstrictor substance. J Cell Physiol 132:263–270PubMedCrossRefGoogle Scholar
  100. 100.
    Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, Hayflick L, Butler RN, Allison DB, Ludwig DS (2005) A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 352:1138–1145PubMedCrossRefGoogle Scholar
  101. 101.
    Ortmann J, Amann K, Brandes RP, Kretzler M, Munter K, Parekh N, Traupe T, Lange M, Lattmann T, Barton M (2004) Role of podocytes for reversal of glomerulosclerosis and proteinuria in the aging kidney after endothelin inhibition. Hypertension 44:974–981PubMedCrossRefGoogle Scholar
  102. 102.
    Patel JM, Martens JR, Li YD, Gelband CH, Raizada MK, Block ER (1998) Angiotensin IV receptor-mediated activation of lung endothelial NOS is associated with vasorelaxation. Am J Physiol 275:L1061–L1068PubMedGoogle Scholar
  103. 103.
    Ragnauth CD, Warren DT, Liu Y, McNair R, Tajsic T, Figg N, Shroff R, Skepper J, Shanahan CM (2010) Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation 121:2200–2210PubMedCrossRefGoogle Scholar
  104. 104.
    Rask-Madsen C, King GL (2007) Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab 3:46–56PubMedCrossRefGoogle Scholar
  105. 105.
    Rider OJ, Tayal U, Francis JM, Ali MK, Robinson MR, Byrne JP, Clarke K, Neubauer S (2010) The effect of obesity and weight loss on aortic pulse wave velocity as assessed by magnetic resonance imaging. Obesity (Silver Spring) (in press)Google Scholar
  106. 106.
    Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM (1999) Age-dependent impairment of angiogenesis. Circulation 99:111–120PubMedGoogle Scholar
  107. 107.
    Rizzo NO, Maloney E, Pham M, Luttrell I, Wessells H, Tateya S, Daum G, Handa P, Schwartz MW, Kim F (2010) Reduced NO-cGMP signaling contributes to vascular inflammation and insulin resistance induced by high-fat feeding. Arterioscler Thromb Vasc Biol 30:758–765PubMedCrossRefGoogle Scholar
  108. 108.
    Rosman NP, Anselm I, Bhadelia RA (2001) Progressive intracranial vascular disease with strokes and seizures in a boy with progeria. J Child Neurol 16:212–215PubMedGoogle Scholar
  109. 109.
    Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126PubMedCrossRefGoogle Scholar
  110. 110.
    Ross R, Glomset JA (1973) Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180:1332–1339PubMedCrossRefGoogle Scholar
  111. 111.
    Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 250:H822–H827PubMedGoogle Scholar
  112. 112.
    Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM (2007) Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 49:185–192PubMedCrossRefGoogle Scholar
  113. 113.
    Santhanam L, Christianson DW, Nyhan D, Berkowitz DE (2008) Arginase and vascular aging. J Appl Physiol 105:1632–1642PubMedCrossRefGoogle Scholar
  114. 114.
    Schmermund A, Erbel R, Silber S (2002) Age and gender distribution of coronary artery calcium measured by four-slice computed tomography in 2,030 persons with no symptoms of coronary artery disease. Am J Cardiol 90:168–173PubMedCrossRefGoogle Scholar
  115. 115.
    Serban DN, Nilius B, Vanhoutte PM (2010) The endothelial saga: the past, the present, the future. Pflugers Arch 459:787–792PubMedCrossRefGoogle Scholar
  116. 116.
    Shao JS, Cheng SL, Sadhu J, Towler DA (2010) Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 55:579–592PubMedCrossRefGoogle Scholar
  117. 117.
    Sivitz WI, Wayson SM, Bayless ML, Sinkey CA, Haynes WG (2007) Obesity impairs vascular relaxation in human subjects: hyperglycemia exaggerates adrenergic vasoconstriction arterial dysfunction in obesity and diabetes. J Diab Complications 21:149–157CrossRefGoogle Scholar
  118. 118.
    Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 97:2601–2610PubMedCrossRefGoogle Scholar
  119. 119.
    Stewart ST, Woodward RM, Rosen AB, Cutler DM (2008) The impact of symptoms and impairments on overall health in US national health data. Med Care 46:954–962PubMedCrossRefGoogle Scholar
  120. 120.
    Stewart ST, Cutler DM, Rosen AB (2009) Forecasting the effects of obesity and smoking on U.S. life expectancy. N Engl J Med 361:2252–2260PubMedCrossRefGoogle Scholar
  121. 121.
    Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37:1163–1167PubMedCrossRefGoogle Scholar
  122. 122.
    Taddei S, Vanhoutte PM (1993) Endothelium-dependent contractions to endothelin in the rat aorta are mediated by thromboxane A2. J Cardiovasc Pharmacol 22:S328–S331PubMedCrossRefGoogle Scholar
  123. 123.
    Taddei S, Virdis A, Ghiadoni L, Salvetti G, Bernini G, Magagna A, Salvetti A (2001) Age-related reduction of NO availability and oxidative stress in humans. Hypertension 38:274–279PubMedGoogle Scholar
  124. 124.
    Tang EH, Vanhoutte PM (2008) Gene expression changes of prostanoid synthases in endothelial cells and prostanoid receptors in vascular smooth muscle cells caused by aging and hypertension. Physiol Genomics 32:409–418PubMedGoogle Scholar
  125. 125.
    Tang EH, Ku DD, Tipoe GL, Feletou M, Man RY, Vanhoutte PM (2005) Endothelium-dependent contractions occur in the aorta of wild-type and COX2-/- knockout but not COX1-/- knockout mice. J Cardiovasc Pharmacol 46:761–765PubMedCrossRefGoogle Scholar
  126. 126.
    Toda N (1974) The action of vasodilating drugs on isolated basilar, coronary and mesenteric arteries of the dog. J Pharmacol Exp Ther 191:139–146PubMedGoogle Scholar
  127. 127.
    Traupe T, D'Uscio L, Muenter K, Morawietz H, Vetter W, Barton M (2002) Effects of obesity on endothelium-dependent reactivity during acute nitric oxide synthase inhibition: modulatory role of endothelin. Cli Sci (Lond) 1(Suppl 103):13–15Google Scholar
  128. 128.
    Traupe T, Lang M, Goettsch W, Munter K, Morawietz H, Vetter W, Barton M (2002) Obesity increases prostanoid-mediated vasoconstriction and vascular thromboxane receptor gene expression. J Hypertens 20:2239–2245PubMedCrossRefGoogle Scholar
  129. 129.
    Traupe T, Ortmann J, Munter K, Barton M (2003) Endothelial therapy of atherosclerosis and its risk factors. Curr Vasc Pharmacol 1:111–121PubMedCrossRefGoogle Scholar
  130. 130.
    Tschop M, Heiman ML (2001) Rodent obesity models: an overview. Exp Clin Endocrinol Diab 109:307–319CrossRefGoogle Scholar
  131. 131.
    Tschudi MR, Barton M, Bersinger NA, Moreau P, Cosentino F, Noll G, Malinski T, Luscher TF (1996) Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. J Clin Invest 98:899–905PubMedCrossRefGoogle Scholar
  132. 132.
    Vane JR, Bunting S, Moncada S (1982) Prostacyclin in physiology and pathophysiology. Int Rev Exp Pathol 23:161–207PubMedGoogle Scholar
  133. 133.
    Vanhoutte PM (1974) Inhibition by acetylcholine of adrenergic neurotransmission in vascular smooth muscle. Circ Res 34:317–326PubMedGoogle Scholar
  134. 134.
    Vanhoutte PM, Shimokawa H, Tang EH, Feletou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol (Oxf) 196:193–222CrossRefGoogle Scholar
  135. 135.
    Varga R, Eriksson M, Erdos MR, Olive M, Harten I, Kolodgie F, Capell BC, Cheng J, Faddah D, Perkins S, Avallone H, San H, Qu X, Ganesh S, Gordon LB, Virmani R, Wight TN, Nabel EG, Collins FS (2006) Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 103:3250–3255PubMedCrossRefGoogle Scholar
  136. 136.
    Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, Berriel Diaz M, Rozman J, Hrabe de Angelis M, Nusing RM, Meyer CW, Wahli W, Klingenspor M, Herzig S (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328:1158–1161PubMedCrossRefGoogle Scholar
  137. 137.
    Vinh A, Widdop RE, Drummond GR, Gaspari TA (2008) Chronic angiotensin IV treatment reverses endothelial dysfunction in ApoE-deficient mice. Cardiovasc Res 77:178–187PubMedCrossRefGoogle Scholar
  138. 138.
    Visscher TL, Seidell JC (2001) The public health impact of obesity. Annu Rev Public Health 22:355–375PubMedCrossRefGoogle Scholar
  139. 139.
    Weber MA, Black H, Bakris G, Krum H, Linas S, Weiss R, Linseman JV, Wiens BL, Warren MS, Lindholm LH (2009) A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet 374:1423–1431PubMedCrossRefGoogle Scholar
  140. 140.
    Werner C, Furster T, Widmann T, Poss J, Roggia C, Hanhoun M, Scharhag J, Buchner N, Meyer T, Kindermann W, Haendeler J, Bohm M, Laufs U (2009) Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 120:2438–2447PubMedCrossRefGoogle Scholar
  141. 141.
    Woo KS, Chook P, Yu CW, Sung RY, Qiao M, Leung SS, Lam CW, Metreweli C, Celermajer DS (2004) Overweight in children is associated with arterial endothelial dysfunction and intima-media thickening. Int J Obes Relat Metab Disord 28:852–857PubMedCrossRefGoogle Scholar
  142. 142.
    Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415PubMedCrossRefGoogle Scholar
  143. 143.
    Yang YM, Huang A, Kaley G, Sun D (2009) eNOS uncoupling and endothelial dysfunction in aged vessels. Am J Physiol Heart Circ Physiol 297:H1829–H1836PubMedCrossRefGoogle Scholar
  144. 144.
    Zeiher AM, Drexler H, Saurbier B, Just H (1993) Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 92:652–662PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Molecular Internal MedicineUniversity of ZurichZürichSwitzerland

Personalised recommendations