Canonical TRP channels and mechanotransduction: from physiology to disease states

  • Amanda Patel
  • Reza Sharif-Naeini
  • Joost R. H. Folgering
  • Delphine Bichet
  • Fabrice Duprat
  • Eric Honoré
Invited Review

Abstract

Mechano-gated ion channels play a key physiological role in cardiac, arterial, and skeletal myocytes. For instance, opening of the non-selective stretch-activated cation channels in smooth muscle cells is involved in the pressure-dependent myogenic constriction of resistance arteries. These channels are also implicated in major pathologies, including cardiac hypertrophy or Duchenne muscular dystrophy. Seminal work in prokaryotes and invertebrates highlighted the role of transient receptor potential (TRP) channels in mechanosensory transduction. In mammals, recent findings have shown that the canonical TRPC1 and TRPC6 channels are key players in muscle mechanotransduction. In the present review, we will focus on the functional properties of TRPC1 and TRPC6 channels, on their mechano-gating, regulation by interacting cytoskeletal and scaffolding proteins, physiological role and implication in associated diseases.

Keywords

Cation channel Mechano-electrical transduction Mechanoreceptor Mechanosensitive channel Transient receptor potential 

Abbreviations

SACs

Stretch-activated cation channels

MscL

Bacterial mechano-sensitive large conductance channel

TRP

Transient receptor potential channels

TRPC

Canonical TRP channel

FSGS

Familial focal segmental glomerulosclerosis

DMD

Duchenne muscular dystrophy

SOCs

Store-operated ion channels

ER

Endoplasmic reticulum

STIM1

Stromal interacting molecule 1

Orai proteins

The pore-forming components of CRAC channels

RNA

Ribonucleic acid

ROCs

Receptor-operated channels

DAG

Diacylglycerol

GsMTx-4

Grammostola spatulata toxin inhibiting SACs

AT1R

Angiotensin II type 1 receptor

Ang II

Angiotensin II

G protein

GTP-binding protein

PLC

Phospholipase C

GPCR

G protein-coupled receptor

TMD

Transmembrane domain

M5R

Muscarinic type 5 receptor

H1R

Histamine type 1 receptor

ETAR

Endothelin receptor

V1AR

Vasopressin type 1 receptor

A7R5

Rat vascular smooth muscle cell line

HETE

Hydroxyeicosatetraenoic acid

MR

Myogenic response

VSMCs

Vascular smooth muscle cells

MEF

Mechanoelectric feedback

TREK channels

Mechano-gated K2P channels

OAG

1-oleoyl-2-acetyl-sn-glycerol

MHC

Myosin heavy chain

NFAT

Nuclear factor of activated T cells

TAC

Transverse aortic constriction

ATG

Angiotensinogen

CAV

Caveolins

eNOS

Endothelial nitric-oxide synthase

FlnA

Filamin A

Notes

Acknowledgements

We are grateful to the ANR 2005 cardiovasculaire-obésité-diabète, to the ANR 2008 du gène à la physiopathologie, to the Association for information and research on genetic kidney disease France, to the Fondation del Duca, to the Human Frontier Science Program Organization-long term fellowship, to the Fondation de la recherche médicale, to the Fondation de France, to the Fondation de recherche sur l’hypertension artérielle, to the Fédération pour la recherche sur le cerveau, to Société Générale AM, to the Université of Nice Sophia Antipolis and to the CNRS for financial support. We are grateful to Dr. Sophie Demolombe for critical reading of this manuscript.

References

  1. 1.
    Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202CrossRefPubMedGoogle Scholar
  2. 2.
    Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654CrossRefPubMedGoogle Scholar
  3. 3.
    Sukharev S, Corey DP (2004) Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE 219(1–24):4Google Scholar
  4. 4.
    Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8(510–21):5Google Scholar
  5. 5.
    Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:44–52CrossRefPubMedGoogle Scholar
  6. 6.
    Lumpkin EA, Caterina MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445:858–865CrossRefPubMedGoogle Scholar
  7. 7.
    Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701PubMedGoogle Scholar
  8. 8.
    Hamill OP (2006) Twenty odd years of stretch-sensitive channels. Pflugers Arch 453:333–351CrossRefPubMedGoogle Scholar
  9. 9.
    Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268CrossRefPubMedGoogle Scholar
  10. 10.
    Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234CrossRefPubMedGoogle Scholar
  11. 11.
    Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269PubMedGoogle Scholar
  12. 12.
    Sidi S, Friedrich RW, Nicolson T (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99CrossRefPubMedGoogle Scholar
  13. 13.
    Kindt KS, Viswanath V, Macpherson L, Quast K, Hu H, Patapoutian A, Schafer WR (2007) Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat Neurosci 10:568–577CrossRefPubMedGoogle Scholar
  14. 14.
    Kim J, Chung YD, Park DY, Choi S, Shin DW, Soh H, Lee HW, Son W, Yim J, Park CS, Kernan MJ, Kim C (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84CrossRefPubMedGoogle Scholar
  15. 15.
    O'Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch 451:193–203CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou XL, Batiza AF, Loukin SH, Palmer CP, Kung C, Saimi Y (2003) The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc Natl Acad Sci USA 100:7105–7110CrossRefPubMedGoogle Scholar
  17. 17.
    Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185CrossRefPubMedGoogle Scholar
  18. 18.
    Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591CrossRefPubMedGoogle Scholar
  19. 19.
    Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524CrossRefPubMedGoogle Scholar
  20. 20.
    Pedersen SA, Nilius B (2007) Transient receptor potential channels in mechanosensing and cell volume regulation. Meth Enzymol 428:183–207CrossRefPubMedGoogle Scholar
  21. 21.
    Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647CrossRefPubMedGoogle Scholar
  22. 22.
    Welsh DG, Morielli AD, Nelson MT, Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90:248–250CrossRefPubMedGoogle Scholar
  23. 23.
    Mederos Y, Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103CrossRefGoogle Scholar
  24. 24.
    Ward ML, Williams IA, Chu Y, Cooper PJ, Ju YK, Allen DG (2008) Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy. Prog Biophys Mol Biol 97:232–249CrossRefPubMedGoogle Scholar
  25. 25.
    Dyachenko V, Husse B, Rueckschloss U, Isenberg G (2009) Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 45:38–54CrossRefPubMedGoogle Scholar
  26. 26.
    Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744CrossRefPubMedGoogle Scholar
  27. 27.
    Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804CrossRefPubMedGoogle Scholar
  28. 28.
    Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116:3114–3126CrossRefPubMedGoogle Scholar
  29. 29.
    Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–33496CrossRefPubMedGoogle Scholar
  30. 30.
    Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J 20:1660–1670CrossRefPubMedGoogle Scholar
  31. 31.
    Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:5305–5316CrossRefPubMedGoogle Scholar
  32. 32.
    Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105:1023–1030CrossRefPubMedGoogle Scholar
  33. 33.
    Beech DJ (2005) TRPC1: store-operated channel and more. Pflugers Arch 451:53–60CrossRefPubMedGoogle Scholar
  34. 34.
    Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium 42:213–223CrossRefPubMedGoogle Scholar
  35. 35.
    Dietrich A, Gudermann T (2007) Trpc6. Handb Exp Pharmacol 179:125–141CrossRefPubMedGoogle Scholar
  36. 36.
    Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263CrossRefPubMedGoogle Scholar
  37. 37.
    Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A, Hagmann H, Reinhardt C, Koos F, Kunzelmann K, Shirokova E, Krautwurst D, Harteneck C, Simons M, Pavenstadt H, Kerjaschki D, Thiele C, Walz G, Chalfie M, Benzing T (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci USA 103:17079–17086CrossRefPubMedGoogle Scholar
  38. 38.
    Bode F, Sachs F, Franz MR (2001) Tarantula peptide inhibits atrial fibrillation. Nature 409:35–36CrossRefPubMedGoogle Scholar
  39. 39.
    Suchyna TM, Tape SE, Koeppe RE 2nd, Andersen OS, Sachs F, Gottlieb PA (2004) Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430:235–240CrossRefPubMedGoogle Scholar
  40. 40.
    Inoue R, Jensen LJ, Jian Z, Shi J, Hai L, Lurie AI, Henriksen FH, Salmonsson M, Morita H, Kawarabayashi Y, Mori M, Mori Y, Ito Y (2009) Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/{omega}-hydroxylase/20-HETE pathways. Circ Res 104:1399–1409CrossRefPubMedGoogle Scholar
  41. 41.
    Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honore E (2007) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455:529–540Google Scholar
  42. 42.
    Park KS, Kim Y, Lee YH, Earm YE, Ho WK (2003) Mechanosensitive cation channels in arterial smooth muscle cells are activated by diacylglycerol and inhibited by phospholipase C inhibitor. Circ Res 93:557–564CrossRefPubMedGoogle Scholar
  43. 43.
    Yasuda N, Miura S, Akazawa H, Tanaka T, Qin Y, Kiya Y, Imaizumi S, Fujino M, Ito K, Zou Y, Fukuhara S, Kunimoto S, Fukuzaki K, Sato T, Ge J, Mochizuki N, Nakaya H, Saku K, Komuro I (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9:179–186CrossRefPubMedGoogle Scholar
  44. 44.
    Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506CrossRefPubMedGoogle Scholar
  45. 45.
    Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423PubMedGoogle Scholar
  46. 46.
    Hill MA, Davis MJ, Meininger GA, Potocnik SJ, Murphy TV (2006) Arteriolar myogenic signalling mechanisms: implications for local vascular function. Clin Hemorheol Microcirc 34:67–79PubMedGoogle Scholar
  47. 47.
    Takenaka T, Suzuki H, Okada H, Hayashi K, Ozawa Y, Saruta T (1998) Biophysical signals underlying myogenic responses in rat interlobular artery. Hypertension 32:1060–1065PubMedGoogle Scholar
  48. 48.
    Takenaka T, Suzuki H, Okada H, Hayashi K, Kanno Y, Saruta T (1998) Mechanosensitive cation channels mediate afferent arteriolar myogenic constriction in the isolated rat kidney. J Physiol 511:245–253CrossRefPubMedGoogle Scholar
  49. 49.
    Dietrich A, Kalwa H, Storch U, Mederos YSM, Salanova B, Pinkenburg O, Dubrovska G, Essin K, Gollasch M, Birnbaumer L, Gudermann T (2007) Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 455:465–477CrossRefPubMedGoogle Scholar
  50. 50.
    Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol Cell Biol 25:6980–6989CrossRefPubMedGoogle Scholar
  51. 51.
    Link MS, Estes NA 3rd (2007) Mechanically induced ventricular fibrillation (commotio cordis). Heart Rhythm 4:529–532CrossRefPubMedGoogle Scholar
  52. 52.
    Kohl P, Ravens U (2003) Cardiac mechano-electric feedback: past, present, and prospect. Prog Biophys Mol Biol 82:3–9CrossRefPubMedGoogle Scholar
  53. 53.
    Kohl P, Bollensdorff C, Garny A (2006) Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp Physiol 91:307–321CrossRefPubMedGoogle Scholar
  54. 54.
    Ravens U (2003) Mechano-electric feedback and arrhythmias. Prog Biophys Mol Biol 82:255–266CrossRefPubMedGoogle Scholar
  55. 55.
    Sachs F (2005) Stretch-activated channels in the heart. In: Kohl P, Sachs F, Franz M (eds) Cardiac mechano-electric feedback and arrhythmias, from pipette to patient. Elsevier, Philadelphia, pp 2–10Google Scholar
  56. 56.
    Patel A, Honoré E (2005) Cardiac mechano-gated K + channels. In: Kohl P, Sachs F, Franz M (eds) Cardiac mechano-electric feedback and arrhythmias, from pipette to patient. Elsevier, Philadelphia, pp 11–20Google Scholar
  57. 57.
    Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I, Kamkin A (2003) Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes. Prog Biophys Mol Biol 82:43–56CrossRefPubMedGoogle Scholar
  58. 58.
    Olson EN, Schneider MD (2003) Sizing up the heart: development redux in disease. Genes Dev 17:1937–1956CrossRefPubMedGoogle Scholar
  59. 59.
    Dorn GW 2nd, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537PubMedGoogle Scholar
  60. 60.
    Ahmad F, Seidman JG, Seidman CE (2005) The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet 6:185–216CrossRefPubMedGoogle Scholar
  61. 61.
    Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci USA 107:7000–7005CrossRefPubMedGoogle Scholar
  62. 62.
    Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci USA 106:5400–5405CrossRefPubMedGoogle Scholar
  63. 63.
    Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sumimoto H, Mori Y, Makino N (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 294:205–215CrossRefPubMedGoogle Scholar
  64. 64.
    Ohba T, Watanabe H, Murakami M, Takahashi Y, Iino K, Kuromitsu S, Mori Y, Ono K, Iijima T, Ito H (2007) Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 42:498–507CrossRefPubMedGoogle Scholar
  65. 65.
    Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 132:1–77CrossRefPubMedGoogle Scholar
  66. 66.
    Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740PubMedGoogle Scholar
  67. 67.
    Vandebrouck C, Duport G, Cognard C, Raymond G (2001) Cationic channels in normal and dystrophic human myotubes. Neuromuscul Disord 11:72–79CrossRefPubMedGoogle Scholar
  68. 68.
    Franco A Jr, Lansman JB (1990) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344:670–673CrossRefPubMedGoogle Scholar
  69. 69.
    Sharif Naeini R, Folgering J, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honoré E (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139:587–596CrossRefPubMedGoogle Scholar
  70. 70.
    Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928CrossRefPubMedGoogle Scholar
  71. 71.
    Bonilla E, Samitt CE, Miranda AF, Hays AP, Salviati G, DiMauro S, Kunkel LM, Hoffman EP, Rowland LP (1988) Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface. Cell 54:447–452CrossRefPubMedGoogle Scholar
  72. 72.
    Vandebrouck A, Sabourin J, Rivet J, Balghi H, Sebille S, Kitzis A, Raymond G, Cognard C, Bourmeyster N, Constantin B (2007) Regulation of capacitative calcium entries by alpha1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of alpha1-syntrophin. FASEB J 21:608–617CrossRefPubMedGoogle Scholar
  73. 73.
    Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, Seth M, Yamaguchi N, Meissner G, Shah R, Worley PF, Williams RS, Rosenberg PB (2008) Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28:2637–2647CrossRefPubMedGoogle Scholar
  74. 74.
    Formigli L, Sassoli C, Squecco R, Bini F, Martinesi M, Chellini F, Luciani G, Sbrana F, Zecchi-Orlandini S, Francini F, Meacci E (2009) Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation. J Cell Sci 122:1322–1333CrossRefPubMedGoogle Scholar
  75. 75.
    Allen DG, Whitehead NP, Yeung EW (2005) Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 567:723–735CrossRefPubMedGoogle Scholar
  76. 76.
    Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG (2005) Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol 562:367–380CrossRefPubMedGoogle Scholar
  77. 77.
    Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278:27208–27215CrossRefPubMedGoogle Scholar
  78. 78.
    Gervasio OL, Whitehead NP, Yeung EW, Phillips WD, Allen DG (2008) TRPC1 binds to caveolin-3 and is regulated by Src kinase - role in Duchenne muscular dystrophy. J Cell Sci 121:2246–2255CrossRefPubMedGoogle Scholar
  79. 79.
    Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194CrossRefPubMedGoogle Scholar
  80. 80.
    Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116:1284–1291CrossRefPubMedGoogle Scholar
  81. 81.
    Sedding DG, Hermsen J, Seay U, Eickelberg O, Kummer W, Schwencke C, Strasser RH, Tillmanns H, Braun-Dullaeus RC (2005) Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 96:635–642CrossRefPubMedGoogle Scholar
  82. 82.
    Adebiyi A, Zhao G, Cheranov SY, Ahmed A, Jaggar JH (2007) Caveolin-1 abolishment attenuates the myogenic response in murine cerebral arteries. Am J Physiol Heart Circ Physiol 292:H1584–H1592CrossRefPubMedGoogle Scholar
  83. 83.
    Bichet D, Peters D, Patel A, Delmas P, Honoré E (2006) The cardiovascular polycystins: insights from autosomal dominant polycystic kidney disease and transgenic animal models. Trends Cardiovasc Med 16:292–298CrossRefPubMedGoogle Scholar
  84. 84.
    Delmas P (2004) Polycystins: from mechanosensation to gene regulation. Cell 118:145–148CrossRefPubMedGoogle Scholar
  85. 85.
    Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honoré E, Delmas P (2006) The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 7:787–793CrossRefPubMedGoogle Scholar
  86. 86.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137CrossRefPubMedGoogle Scholar
  87. 87.
    Aboualaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869CrossRefPubMedGoogle Scholar
  88. 88.
    Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171CrossRefPubMedGoogle Scholar
  89. 89.
    McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73CrossRefPubMedGoogle Scholar
  90. 90.
    Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943CrossRefPubMedGoogle Scholar
  91. 91.
    Karcher C, Fischer A, Schweickert A, Bitzer E, Horie S, Witzgall R, Blum M (2005) Lack of a laterality phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia. Differentiation 73:425–432CrossRefPubMedGoogle Scholar
  92. 92.
    Praetorius HA, Spring KR (2003) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12:517–520CrossRefPubMedGoogle Scholar
  93. 93.
    Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337CrossRefPubMedGoogle Scholar
  94. 94.
    Zhou J (2009) Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 71:83–113CrossRefPubMedGoogle Scholar
  95. 95.
    Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145CrossRefPubMedGoogle Scholar
  96. 96.
    Bai C, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P (2008) Formation of a novel receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9:472–479CrossRefPubMedGoogle Scholar
  97. 97.
    Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939CrossRefPubMedGoogle Scholar
  98. 98.
    Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Delmas P, Patel A, Honore E (2010) Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. J Mol Cell Cardiol 48:83–89CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Amanda Patel
    • 1
  • Reza Sharif-Naeini
    • 1
  • Joost R. H. Folgering
    • 1
  • Delphine Bichet
    • 1
  • Fabrice Duprat
    • 1
  • Eric Honoré
    • 1
  1. 1.IPMC-CNRSUniversité de Nice Sophia AntipolisValbonneFrance

Personalised recommendations