Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses

Invited Review

Abstract

It is becoming increasingly evident that electrical signaling via gap junctions plays a central role in the physiological control of vascular tone via two related mechanisms (1) the endothelium-derived hyperpolarizing factor (EDHF) phenomenon, in which radial transmission of hyperpolarization from the endothelium to subjacent smooth muscle promotes relaxation, and (2) responses that propagate longitudinally, in which electrical signaling within the intimal and medial layers of the arteriolar wall orchestrates mechanical behavior over biologically large distances. In the EDHF phenomenon, the transmitted endothelial hyperpolarization is initiated by the activation of Ca2+-activated K+ channels channels by InsP3-induced Ca2+ release from the endoplasmic reticulum and/or store-operated Ca2+ entry triggered by the depletion of such stores. Pharmacological inhibitors of direct cell-cell coupling may thus attenuate EDHF-type smooth muscle hyperpolarizations and relaxations, confirming the participation of electrotonic signaling via myoendothelial and homocellular smooth muscle gap junctions. In contrast to isolated vessels, surprisingly little experimental evidence argues in favor of myoendothelial coupling acting as the EDHF mechanism in arterioles in vivo. However, it now seems established that the endothelium plays the leading role in the spatial propagation of arteriolar responses and that these involve poorly understood regenerative mechanisms. The present review will focus on the complex interactions between the diverse cellular signaling mechanisms that contribute to these phenomena.

Keywords

Gap junction Connexin EDHF 

Notes

Acknowledgements

The authors own work referred to in this article was supported by the Deutsche Forschungsgemeinschaft (to CdW) and the British Heart Foundation and the Medical Research Council (to TMG).

References

  1. 1.
    Alcolea S, Jarry-Guichard T, de Bakker J, Gonzalez D, Lamers W et al (2004) Replacement of connexin40 by connexin45 in the mouse: impact on cardiac electrical conduction. Circ Res 94:100–109PubMedCrossRefGoogle Scholar
  2. 2.
    Bartlett IS, Segal SS (2000) Resolution of smooth muscle and endothelial pathways for conduction along hamster cheek pouch arterioles. Am J Physiol Heart Circ Physiol 278:H604–H612PubMedGoogle Scholar
  3. 3.
    Bearden SE, Payne GW, Chisty A, Segal SS (2004) Arteriolar network architecture and vasomotor function with ageing in mouse gluteus maximus muscle. J Physiol 561:535–545PubMedCrossRefGoogle Scholar
  4. 4.
    Berman RS, Martin PEM, Evans WH, Griffith TM (2002) Relative contributions of NO and gap junctional communication to endothelium-dependent relaxations of rabbit resistance arteries vary with vessel size. Microvasc Res 63:115–128PubMedCrossRefGoogle Scholar
  5. 5.
    Billaud M, Marthan R, Savineau JP, Guibert C (2009) Vascular smooth muscle modulates endothelial control of vasoreactivity via reactive oxygen species production through myoendothelial communications. PLoS One 4:e6432–e6432PubMedCrossRefGoogle Scholar
  6. 6.
    Bolon ML, Kidder GM, Simon AM, Tyml K (2007) Lipopolysaccharide reduces electrical coupling in microvascular endothelial cells by targeting connexin40 in a tyrosine-, ERK1/2-, PKA-, and PKC-dependent manner. J Cell Physiol 211:159–166PubMedCrossRefGoogle Scholar
  7. 7.
    Bolon ML, Ouellette Y, Li F, Tyml K (2005) Abrupt reoxygenation following hypoxia reduces electrical coupling between endothelial cells of wild-type but not connexin40 null mice in oxidant- and PKA-dependent manner. FASEB J 19:1725–1727PubMedGoogle Scholar
  8. 8.
    Bolton TB, Lang RJ, Takewaki T (1984) Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea pig anterior mesenteric artery. J Physiol 351:549–572PubMedGoogle Scholar
  9. 9.
    Bolz SS, de Wit C, Pohl U (1999) Endothelium-derived hyperpolarizing factor but not NO reduces smooth muscle Ca2+ during acetylcholine-induced dilation of microvessels. Br J Pharmacol 128:124–134PubMedCrossRefGoogle Scholar
  10. 10.
    Bond CT, Sprengel R, Bissonnette JM, Kaufmann WA, Pribnow D et al (2000) Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science 289:1942–1946PubMedCrossRefGoogle Scholar
  11. 11.
    Bradley KK, Jaggar JH, Bonev AD, Heppner TJ, Flynn ER et al (1999) Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. J Physiol 515:639–651PubMedCrossRefGoogle Scholar
  12. 12.
    Brähler S, Kaistha A, Schmidt VJ, Wölfle SE, Busch C et al (2009) Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation 119:2323–2332PubMedCrossRefGoogle Scholar
  13. 13.
    Brakemeier S, Eichler I, Knorr A, Fassheber T, Köhler R et al (2003) Modulation of Ca2+-activated K+ channel in renal artery endothelium in situ by nitric oxide and reactive oxygen species. Kidney Int 64:199–207PubMedCrossRefGoogle Scholar
  14. 14.
    Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC et al (2000) Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 407:870–876PubMedCrossRefGoogle Scholar
  15. 15.
    Budel S, Bartlett IS, Segal SS (2003) Homocellular conduction along endothelium and smooth muscle of arterioles in hamster cheek pouch: unmasking an NO wave. Circ Res 93:61–68PubMedCrossRefGoogle Scholar
  16. 16.
    Budel S, Schuster A, Stergiopoulos N, Meister JJ, Beny JL (2001) Role of smooth muscle cells on endothelial cell cytosolic free calcium in porcine coronary arteries. Am J Physiol Heart Circ Physiol 281:H1156–H1162PubMedGoogle Scholar
  17. 17.
    Bukauskas FF, Jordan K, Bukauskiene A, Bennett MV, Lampe PD et al (2000) Clustering of connexin 43-enhanced green fluorescent protein gap junction channels and functional coupling in living cells. Proc Natl Acad Sci USA 97:2556–2561PubMedCrossRefGoogle Scholar
  18. 18.
    Bultynck G, Szlufcik K, Kasri NN, Assefa Z, Callewaert G et al (2004) Thimerosal stimulates Ca2+ flux through inositol 1, 4, 5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction. Biochem J 381:87–96PubMedCrossRefGoogle Scholar
  19. 19.
    Burghardt RC, Barhoumi R, Sewall TC, Bowen JA (1995) Cyclic AMP induces rapid increases in gap junction permeability and changes in the cellular distribution of connexin43. J Membr Biol 148:243–253PubMedGoogle Scholar
  20. 20.
    Burnham MP, Johnson IT, Weston AH (2006) Impaired small-conductance Ca2+-activated K+ channel-dependent EDHF responses in Type II diabetic ZDF rats. Br J Pharmacol 148:434–441PubMedCrossRefGoogle Scholar
  21. 21.
    Campbell WB, Gebremedhin D, Pratt PF, Harder DR (1996) Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 78:415–423PubMedGoogle Scholar
  22. 22.
    Chataigneau T, Feletou M, Duhault J, Vanhoutte PM (1998) Epoxyeicosatrienoic acids, potassium channel blockers and endothelium-dependent hyperpolarization in the guinea-pig carotid artery. Br J Pharmacol 123:574–580PubMedCrossRefGoogle Scholar
  23. 23.
    Chaytor AT, Bakker LM, Edwards DH, Griffith TM (2005) Connexin-mimetic peptides dissociate electrotonic EDHF-type signalling via myoendothelial and smooth muscle gap junctions in the rabbit iliac artery. Br J Pharmacol 144:108–114PubMedCrossRefGoogle Scholar
  24. 24.
    Chaytor AT, Edwards DH, Bakker LM, Griffith TM (2003) Distinct hyperpolarizing and relaxant roles for gap junctions and endothelium-derived H2O2 in NO-independent relaxations of rabbit arteries. Proc Natl Acad Sci USA 100:15212–15217PubMedCrossRefGoogle Scholar
  25. 25.
    Chaytor AT, Evans WH, Griffith TM (1997) Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J Physiol 503:99–110PubMedCrossRefGoogle Scholar
  26. 26.
    Chaytor AT, Evans WH, Griffith TM (1998) Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries. J Physiol 508:561–573PubMedCrossRefGoogle Scholar
  27. 27.
    Chaytor AT, Marsh WL, Hutcheson IR, Griffith TM (2000) Comparison of glycyrrhetinic acid isoforms and carbenoxolone as inhibitors of EDHF-type relaxations mediated via gap junctions. Endothelium 7:265–278PubMedGoogle Scholar
  28. 28.
    Chaytor AT, Martin PE, Edwards DH, Griffith TM (2001) Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery. Am J Physiol Heart Circ Physiol 280:H2441–H2450PubMedGoogle Scholar
  29. 29.
    Chaytor AT, Martin PE, Evans WH, Randall MD, Griffith TM (1999) The endothelial component of cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap junctional communication. J Physiol 520:539–550PubMedCrossRefGoogle Scholar
  30. 30.
    Crane GJ, Gallagher N, Dora KA, Garland CJ (2003) Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-dependent hyperpolarization in rat mesenteric artery. J Physiol 553:183–189PubMedCrossRefGoogle Scholar
  31. 31.
    Crane GJ, Neild TO, Segal SS (2004) Contribution of active membrane processes to conducted hyperpolarization in arterioles of hamster cheek pouch. Microcirculation 11:425–433PubMedCrossRefGoogle Scholar
  32. 32.
    de Wit C (2004) Connexins pave the way for vascular communication. News Physiol Sci 19:148–153PubMedGoogle Scholar
  33. 33.
    de Wit C (2010) Different pathways with distinct properties conduct dilations in the microcirculation in vivo. Cardiovasc Res 85:604–613PubMedCrossRefGoogle Scholar
  34. 34.
    de Wit C, Boettcher M, Schmidt VJ (2008) Signaling across myoendothelial gap junctions—fact or fiction? Cell Commun Adhes 15:231–245PubMedCrossRefGoogle Scholar
  35. 35.
    de Wit C, Esser N, Lehr HA, Bolz SS, Pohl U (1999) Pentobarbital sensitive EDHF comediates ACh-induced arteriolar dilation in the hamster microcirculation. Am J Physiol 276:H1527–H1534PubMedGoogle Scholar
  36. 36.
    de Wit C, Roos F, Bolz SS, Kirchhoff S, Krüger O et al (2000) Impaired conduction of vasodilation along arterioles in connexin40 deficient mice. Circ Res 86:649–655PubMedGoogle Scholar
  37. 37.
    de Wit C, Roos F, Bolz SS, Pohl U (2003) Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genomics 13:169–177PubMedGoogle Scholar
  38. 38.
    de Wit C, Wölfle SE, Höpfl B (2006) Connexin-dependent communication within the vascular wall: contribution to the control of arteriolar diameter. Adv Cardiol 42:268–283PubMedCrossRefGoogle Scholar
  39. 39.
    Diep HK, Vigmond EJ, Segal SS, Welsh DG (2005) Defining electrical communication in skeletal muscle resistance arteries: a computational approach. J Physiol 568:267–281PubMedCrossRefGoogle Scholar
  40. 40.
    Domeier TL, Segal SS (2007) Electromechanical and pharmacomechanical signalling pathways for conducted vasodilatation along endothelium of hamster feed arteries. J Physiol 579:175–186PubMedCrossRefGoogle Scholar
  41. 41.
    Dong H, Jiang Y, Cole WC, Triggle CR (2000) Comparison of the pharmacological properties of EDHF-mediated vasorelaxation in guinea-pig cerebral and mesenteric resistance vessels. Br J Pharmacol 130:1983–1991PubMedCrossRefGoogle Scholar
  42. 42.
    Dora KA, Doyle MP, Duling BR (1997) Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. Proc Natl Acad Sci USA 94:6529–6534PubMedCrossRefGoogle Scholar
  43. 43.
    Dora KA, Martin PE, Chaytor AT, Evans WH, Garland CJ et al (1999) Role of heterocellular gap junctional communication in endothelium-dependent smooth muscle hyperpolarization: Inhibition by a connexin-mimetic peptide. Biochem Biophys Res Commun 254:27–31PubMedCrossRefGoogle Scholar
  44. 44.
    Dora KA, Xia J, Duling BR (2003) Endothelial cell signaling during conducted vasomotor responses. Am J Physiol Heart Circ Physiol 285:H119–H126PubMedGoogle Scholar
  45. 45.
    Doughty JM, Boyle JP, Langton PD (2000) Potassium does not mimic EDHF in rat mesenteric arteries. Br J Pharmacol 130:1174–1182PubMedCrossRefGoogle Scholar
  46. 46.
    Doughty JM, Plane F, Langton PD (1999) Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium. Am J Physiol 276:H1107–H1112PubMedGoogle Scholar
  47. 47.
    Duling BR, Berne RM (1970) Propagated vasodilation in the microcirculation of the hamster cheek pouch. Circ Res 26:163–170PubMedGoogle Scholar
  48. 48.
    Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97:1270–1279PubMedCrossRefGoogle Scholar
  49. 49.
    Eckert R (2006) Gap-junctional single-channel permeability for fluorescent tracers in mammalian cell cultures. Biophys J 91:565–579PubMedCrossRefGoogle Scholar
  50. 50.
    Eckman DM, Hopkins N, McBride C, Keef KD (1998) Endothelium-dependent relaxation and hyperpolarization in guinea-pig coronary artery: role of epoxyeicosatrienoic acid. Br J Pharmacol 124:181–189PubMedCrossRefGoogle Scholar
  51. 51.
    Edwards DH, Chaytor AT, Bakker LM, Griffith TM (2007) Modulation of gap-junction-dependent arterial relaxation by ascorbic acid. J Vasc Res 44:410–422PubMedCrossRefGoogle Scholar
  52. 52.
    Edwards DH, Li Y, Griffith TM (2008) Hydrogen peroxide potentiates the EDHF phenomenon by promoting endothelial Ca2+ mobilization. Arterioscler Thromb Vasc Biol 28:1774–1781PubMedCrossRefGoogle Scholar
  53. 53.
    Edwards G, Feletou M, Gardener MJ, Thollon C, Vanhoutte PM et al (1999) Role of gap junctions in the responses to EDHF in rat and guinea-pig small arteries. Br J Pharmacol 128:1788–1794PubMedCrossRefGoogle Scholar
  54. 54.
    Edwards G, Thollon C, Gardener MJ, Feletou M, Vilaine J et al (2000) Role of gap junctions and EETs in endothelium-dependent hyperpolarization of porcine coronary artery. Br J Pharmacol 129:1145–1154PubMedCrossRefGoogle Scholar
  55. 55.
    Emerson GG, Neild TO, Segal SS (2002) Conduction of hyperpolarization along hamster feed arteries: augmentation by acetylcholine. Am J Physiol Heart Circ Physiol 283:H102–H109PubMedGoogle Scholar
  56. 56.
    Emerson GG, Segal SS (2000) Endothelial cell pathway for conduction of hyperpolarization and vasodilation along hamster feed artery. Circ Res 86:94–100PubMedGoogle Scholar
  57. 57.
    Emerson GG, Segal SS (2000) Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries—role in vasomotor control. Circ Res 87:474–479PubMedGoogle Scholar
  58. 58.
    Fang X, Weintraub NL, Stoll LL, Spector AA (1999) Epoxyeicosatrienoic acids increase intracellular calcium concentration in vascular smooth muscle cells. Hypertension 34:1242–1246PubMedGoogle Scholar
  59. 59.
    Feletou M, Vanhoutte PM (2009) EDHF: an update. Clin Sci (Lond) 117:139–155CrossRefGoogle Scholar
  60. 60.
    Fernandez-Rodriguez S, Edwards DH, Newton B, Griffith TM (2009) Attenuated store-operated Ca2+ entry underpins the dual inhibition of nitric oxide and EDHF-type relaxations by iodinated contrast media. Cardiovasc Res 84:470–478PubMedCrossRefGoogle Scholar
  61. 61.
    Figueroa XF, Duling BR (2008) Dissection of two Cx37-independent conducted vasodilator mechanisms by deletion of Cx40: electrotonic versus regenerative conduction. Am J Physiol Heart Circ Physiol 295:H2001–H2007PubMedCrossRefGoogle Scholar
  62. 62.
    Figueroa XF, Paul DL, Simon AM, Goodenough DA, Day KH et al (2003) Central role of connexin40 in the propagation of electrically activated vasodilation in mouse cremasteric arterioles in vivo. Circ Res 92:793–800PubMedCrossRefGoogle Scholar
  63. 63.
    Fleming I, Rueben A, Popp R, Fisslthaler B, Schrodt S et al (2007) Epoxyeicosatrienoic acids regulate TRP channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arterioscler Thromb Vasc Biol 27:2612–2618PubMedCrossRefGoogle Scholar
  64. 64.
    Fujimoto S, Ikegami Y, Isaka M, Kato T, Nishimura K et al (1999) K+ channel blockers and cytochrome P450 inhibitors on acetylcholine-induced, endothelium-dependent relaxation in rabbit mesenteric artery. Eur J Pharmacol 384:7–15PubMedCrossRefGoogle Scholar
  65. 65.
    Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A (1997) Evidence against a role of cytochrome P450-derived arachidonic acid metabolites in endothelium-dependent hyperpolarization by acetylcholine in rat isolated mesenteric artery. Br J Pharmacol 120:439–446PubMedCrossRefGoogle Scholar
  66. 66.
    Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A (1997) Sources of Ca2+ in relation to generation of acetylcholine-induced endothelium-dependent hyperpolarization in rat mesenteric artery. Br J Pharmacol 120:1328–1334PubMedCrossRefGoogle Scholar
  67. 67.
    Fuloria M, Smith TK, Aschner JL (2002) Role of 5, 6-epoxyeicosatrienoic acid in the regulation of newborn piglet pulmonary vascular tone. Am J Physiol Lung Cell Mol Physiol 283:L383–L389PubMedGoogle Scholar
  68. 68.
    Garry A, Edwards DH, Fallis IF, Jenkins RL, Griffith TM (2009) Ascorbic acid and tetrahydrobiopterin potentiate the EDHF phenomenon by generating hydrogen peroxide. Cardiovasc Res 84:218–226PubMedCrossRefGoogle Scholar
  69. 69.
    Gauthier KM, Edwards EM, Falck JR, Reddy DS, Campbell WB (2005) 14, 15-epoxyeicosatrienoic acid represents a transferable endothelium-dependent relaxing factor in bovine coronary arteries. Hypertension 45:666–671PubMedCrossRefGoogle Scholar
  70. 70.
    Gauthier KM, Liu C, Popovic A, Albarwani S, Rusch NJ (2002) Freshly isolated bovine coronary endothelial cells do not express the BKCa channel gene. J Physiol 545:829–836PubMedCrossRefGoogle Scholar
  71. 71.
    Ghisdal P, Morel N (2001) Cellular target of voltage and calcium-dependent K+ channel blockers involved in EDHF-mediated responses in rat superior mesenteric artery. Br J Pharmacol 134:1021–1028PubMedCrossRefGoogle Scholar
  72. 72.
    Graier WF, Simecek S, Sturek M (1995) Cytochrome p450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells. J Physiol 482:259–274PubMedGoogle Scholar
  73. 73.
    Grgic I, Kaistha BP, Hoyer J, Köhler R (2009) Endothelial Ca2+-activated K+ channels in normal and impaired EDHF-dilator responses–relevance to cardiovascular pathologies and drug discovery. Br J Pharmacol 157:509–526PubMedCrossRefGoogle Scholar
  74. 74.
    Griffith TM (1996) Temporal chaos in the microcirculation. Cardiovasc Res 31:342–358PubMedGoogle Scholar
  75. 75.
    Griffith TM (2004) Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? Br J Pharmacol 141:881–903PubMedCrossRefGoogle Scholar
  76. 76.
    Griffith TM, Chaytor AT, Bakker LM, Edwards DH (2005) 5-Methyltetrahydrofolate and tetrahydrobiopterin can modulate electrotonically mediated endothelium-dependent vascular relaxation. Proc Natl Acad Sci USA 102:7008–7013PubMedCrossRefGoogle Scholar
  77. 77.
    Griffith TM, Chaytor AT, Taylor HJ, Giddings BD, Edwards DH (2002) cAMP facilitates EDHF-type relaxations in conduit arteries by enhancing electrotonic conduction via gap junctions. Proc Natl Acad Sci USA 99:6392–6397PubMedCrossRefGoogle Scholar
  78. 78.
    Griffith TM, Parthimos D, Edwards DH (2006) Non-linear analysis and modelling of the cellular mechanisms that regulate arterial vasomotion. Proc Inst Mech Eng C 220:367–381CrossRefGoogle Scholar
  79. 79.
    Haddock RE, Grayson TH, Brackenbury TD, Meaney KR, Neylon CB et al (2006) Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am J Physiol Heart Circ Physiol 291:H2047–H2056PubMedCrossRefGoogle Scholar
  80. 80.
    Hakim CH, Jackson WF, Segal SS (2008) Connexin isoform expression in smooth muscle cells and endothelial cells of hamster cheek pouch arterioles and retractor feed arteries. Microcirculation 15:503–514PubMedCrossRefGoogle Scholar
  81. 81.
    Haug SJ, Segal SS (2005) Sympathetic neural inhibition of conducted vasodilatation along hamster feed arteries: complementary effects of α1- and α2-adrenoreceptor activation. J Physiol 563:541–555PubMedCrossRefGoogle Scholar
  82. 82.
    Haug SJ, Welsh DG, Segal SS (2003) Sympathetic nerves inhibit conducted vasodilatation along feed arteries during passive stretch of hamster skeletal muscle. J Physiol 552:273–282PubMedCrossRefGoogle Scholar
  83. 83.
    Hecker M, Bara AT, Bauersachs J, Busse R (1994) Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol 481:407–414PubMedGoogle Scholar
  84. 84.
    Hercule HC, Schunck WH, Gross V, Seringer J, Leung FP et al (2009) Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol 29:54–60PubMedCrossRefGoogle Scholar
  85. 85.
    Hilgers RHP, Todd JJ, Webb RC (2006) Regional heterogeneity in acetylcholine-induced relaxation in rat vascular bed: role of calcium-activated K+ channels. Am J Physiol Heart Circ Physiol 291:H216–H222PubMedCrossRefGoogle Scholar
  86. 86.
    Hoebel BG, Steyrer E, Graier WF (1998) Origin and function of epoxyeicosatrienoic acids in vascular endothelial cells: more than just endothelium-derived hyperpolarizing factor? Clin Exp Pharmacol Physiol 25:826–830PubMedCrossRefGoogle Scholar
  87. 87.
    Hoepfl B, Rodenwaldt B, Pohl U, de Wit C (2002) EDHF, but not NO or prostaglandins, is critical to evoke a conducted dilation upon ACh in hamster arterioles. Am J Physiol Heart Circ Physiol 283:H996–H1004PubMedGoogle Scholar
  88. 88.
    Hong T, Hill CE (1998) Restricted expression of the gap junctional protein connexin 43 in the arterial system of the rat. J Anat 192:583–593PubMedCrossRefGoogle Scholar
  89. 89.
    Hutcheson IR, Chaytor AT, Evans WH, Griffith TM (1999) Nitric oxide independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication—role of gap junctions and phospholipase A2. Circ Res 84:53–63PubMedGoogle Scholar
  90. 90.
    Hwa JJ, Ghibaudi L, Williams P, Chatterjee M (1994) Comparison of acetylcholine-dependent relaxation in large and small arteries of rat mesenteric vascular bed. Am J Physiol 266:H952–H958PubMedGoogle Scholar
  91. 91.
    Isakson BE, Duling BR (2005) Heterocellular contact at the myoendothelial junction influences gap junction organization. Circ Res 97:44–51PubMedCrossRefGoogle Scholar
  92. 92.
    Isakson BE, Kronke G, Kadl A, Leitinger N, Duling BR (2006) Oxidized phospholipids alter vascular connexin expression, phosphorylation, and heterocellular communication. Arterioscler Thromb Vasc Biol 26:2216–2221PubMedCrossRefGoogle Scholar
  93. 93.
    Isakson BE, Ramos SI, Duling BR (2007) Ca2+ and inositol 1, 4, 5-trisphosphate-mediated signaling across the myoendothelial junction. Circ Res 100:246–254PubMedCrossRefGoogle Scholar
  94. 94.
    Jantzi MC, Brett SE, Jackson WF, Corteling R, Vigmond EJ et al (2006) Inward rectifying potassium channels facilitate cell-to-cell communication in hamster retractor muscle feed arteries. Am J Physiol Heart Circ Physiol 291:H1319–H1328PubMedCrossRefGoogle Scholar
  95. 95.
    Just A, Kurtz L, de Wit C, Wagner C, Kurtz A et al (2009) Connexin 40 mediates the tubuloglomerular feedback contribution to renal blood flow autoregulation. J Am Soc Nephrol 20:1577–1585PubMedCrossRefGoogle Scholar
  96. 96.
    Kagota S, Yamaguchi Y, Nakamura K, Kunitomo M (1999) Characterization of nitric oxide- and prostaglandin-independent relaxation in response to acetylcholine in rabbit renal artery. Clin Exp Pharmacol Physiol 26:790–796PubMedCrossRefGoogle Scholar
  97. 97.
    Kamata K, Umeda F, Kasuya Y (1996) Possible existence of novel endothelium-derived relaxing factor in the endothelium of rat mesenteric arterial bed. J Cardiovasc Pharmacol 27:601–606PubMedCrossRefGoogle Scholar
  98. 98.
    Kamouchi M, Droogmans G, Nilius B (1999) Membrane potential as a modulator of the free intracellular Ca2+ concentration in agonist-activated endothelial cells. Gen Physiol Biophys 18:199–208PubMedGoogle Scholar
  99. 99.
    Kanaporis G, Mese G, Valiuniene L, White TW, Brink PR et al (2008) Gap junction channels exhibit connexin-specific permeability to cyclic nucleotides. J Gen Physiol 131:293–305PubMedCrossRefGoogle Scholar
  100. 100.
    Kansui Y, Garland CJ, Dora KA (2008) Enhanced spontaneous Ca2+ events in endothelial cells reflect signalling through myoendothelial gap junctions in pressurized mesenteric arteries. Cell Calcium 44:135–146PubMedCrossRefGoogle Scholar
  101. 101.
    Keseru B, Barbosa-Sicard E, Schermuly RT, Tanaka H, Hammock BD et al (2010) Hypoxia-induced pulmonary hypertension: comparison of soluble epoxide hydrolase deletion vs. inhibition. Cardiovasc Res 85:232–240PubMedCrossRefGoogle Scholar
  102. 102.
    Koeppen M, Feil R, Siegl D, Feil S, Hofmann F et al (2004) cGMP-dependent protein kinase mediates NO- but not acetylcholine-induced dilations in resistance vessels in vivo. Hypertension 44:952–955PubMedCrossRefGoogle Scholar
  103. 103.
    Kristek F, Gerova M (1992) Myoendothelial relations in the conduit coronary artery of the dog and rabbit. J Vasc Res 29:29–32PubMedGoogle Scholar
  104. 104.
    Krüger O, Plum A, Kim JS, Winterhager E, Maxeiner S et al (2000) Defective vascular development in connexin 45-deficient mice. Development 127:4179–4193PubMedGoogle Scholar
  105. 105.
    Kumai M, Nishii K, Nakamura K, Takeda N, Suzuki M et al (2000) Loss of connexin45 causes a cushion defect in early cardiogenesis. Development 127:3501–3512PubMedGoogle Scholar
  106. 106.
    Kurjiaka DT (2004) The conduction of dilation along an arteriole is diminished in the cremaster muscle of hypertensive hamsters. J Vasc Res 41:517–524PubMedCrossRefGoogle Scholar
  107. 107.
    Kurjiaka DT, Bender SB, Nye DD, Wiehler WB, Welsh DG (2005) Hypertension attenuates cell-to-cell communication in hamster retractor muscle feed arteries. Am J Physiol Heart Circ Physiol 288:H861–H870PubMedCrossRefGoogle Scholar
  108. 108.
    Kurtz L, Janssen-Bienhold U, Kurtz A, Wagner C (2009) Connexin expression in renin-producing cells. J Am Soc Nephrol 20:506–512PubMedCrossRefGoogle Scholar
  109. 109.
    Kwan HY, Shen B, Ma X, Kwok YC, Huang Y et al (2009) TRPC1 associates with BKCa channel to form a signal complex in vascular smooth muscle cells. Circ Res 104:670–678PubMedCrossRefGoogle Scholar
  110. 110.
    Lang NN, Luksha L, Newby DE, Kublickiene K (2007) Connexin 43 mediates endothelium-derived hyperpolarizing factor-induced vasodilatation in subcutaneous resistance arteries from healthy pregnant women. Am J Physiol Heart Circ Physiol 292:H1026–H1032PubMedCrossRefGoogle Scholar
  111. 111.
    Ledoux J, Werner ME, Brayden JE, Nelson MT (2006) Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 21:69–78Google Scholar
  112. 112.
    Leuranguer V, Gluais P, Vanhoutte PM, Verbeuren TJ, Feletou M (2008) Openers of calcium-activated potassium channels and endothelium-dependent hyperpolarizations in the guinea pig carotid artery. Naunyn Schmiedebergs Arch Pharmacol 377:101–109PubMedCrossRefGoogle Scholar
  113. 113.
    Li X, Simard JM (1999) Multiple connexins form gap junction channels in rat basilar artery smooth muscle cells. Circ Res 84:1277–1284PubMedGoogle Scholar
  114. 114.
    Looft-Wilson RC, Haug SJ, Neufer PD, Segal SS (2004) Independence of connexin expression and vasomotor conduction from sympathetic innervation in hamster feed arteries. Microcirculation 11:397–408PubMedCrossRefGoogle Scholar
  115. 115.
    Looft-Wilson RC, Payne GW, Segal SS (2004) Connexin expression and conducted vasodilation along arteriolar endothelium in mouse skeletal muscle. J Appl Physiol 97:1152–1158PubMedCrossRefGoogle Scholar
  116. 116.
    Lückhoff A, Busse R (1990) Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflugers Arch 416:305–311PubMedCrossRefGoogle Scholar
  117. 117.
    Marchenko SM, Sage SO (1993) Electrical properties of resting and acetylcholine-stimulated endothelium in intact rat aorta. J Physiol 462:735–751PubMedGoogle Scholar
  118. 118.
    Marchetti J, Praddaude F, Rajerison R, Ader JL, Alhenc-Gelas F (2001) Bradykinin attenuates the [Ca2+]i response to angiotensin II of renal juxtamedullary efferent arterioles via an EDHF. Br J Pharmacol 132:749–759PubMedCrossRefGoogle Scholar
  119. 119.
    Marrelli SP (2001) Mechanisms of endothelial P2Y1- and P2Y2-mediated vasodilatation involve differential [Ca2+]i responses. Am J Physiol Heart Circ Physiol 281:H1759–H1766PubMedGoogle Scholar
  120. 120.
    Martin PEM, Wall C, Griffith TM (2005) Effects of connexin-mimetic peptides on gap junction functionality and connexin expression in cultured vascular cells. Br J Pharmacol 144:617–627PubMedCrossRefGoogle Scholar
  121. 121.
    Matchkov VV, Rahman A, Bakker LM, Griffith TM, Nilsson H et al (2006) Analysis of effects of connexin-mimetic peptides in rat mesenteric small arteries. Am J Physiol Heart Circ Physiol 291:H357–H367PubMedCrossRefGoogle Scholar
  122. 122.
    Mather S, Dora KA, Sandow SL, Winter P, Garland CJ (2005) Rapid endothelial cell-selective loading of connexin 40 antibody blocks endothelium-derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ Res 97:399–407PubMedCrossRefGoogle Scholar
  123. 123.
    Matoba T, Shimokawa H, Kubota H, Morikawa K, Fujiki T et al (2002) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. Biochem Biophys Res Commun 290:909–913PubMedCrossRefGoogle Scholar
  124. 124.
    Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y et al (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530PubMedCrossRefGoogle Scholar
  125. 125.
    Matsumoto T, Kobayashi T, Kamata K (2003) Alterations in EDHF-type relaxation and phosphodiesterase activity in mesenteric arteries from diabetic rats. Am J Physiol Heart Circ Physiol 285:H283–H291PubMedGoogle Scholar
  126. 126.
    Matsumoto T, Kobayashi T, Kamata K (2006) Mechanisms underlying the impaired EDHF-type relaxation response in mesenteric arteries from Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Eur J Pharmacol 538:132–140PubMedCrossRefGoogle Scholar
  127. 127.
    Matsumoto T, Wakabayashi K, Kobayashi T, Kamata K (2004) Diabetes-related changes in cAMP-dependent protein kinase activity and decrease in relaxation response in rat mesenteric artery. Am J Physiol Heart Circ Physiol 287:H1064–H1071PubMedCrossRefGoogle Scholar
  128. 128.
    Matsumoto T, Wakabayashi K, Kobayashi T, Kamata K (2005) Functional changes in adenylyl cyclases and associated decreases in relaxation responses in mesenteric arteries from diabetic rats. Am J Physiol Heart Circ Physiol 289:H2234–H2243PubMedCrossRefGoogle Scholar
  129. 129.
    McSherry IN, Spitaler MM, Takano H, Dora KA (2005) Endothelial cell Ca2+ increases are independent of membrane potential in pressurized rat mesenteric arteries. Cell Calcium 38:23–33PubMedCrossRefGoogle Scholar
  130. 130.
    Mehrke G, Daut J (1990) The electrical response of cultured guinea-pig coronary endothelial cells to endothelium-dependent vasodilators. J Physiol 430:251–272PubMedGoogle Scholar
  131. 131.
    Murai T, Muraki K, Imaizumi Y, Watanabe M (1999) Levcromakalim causes indirect endothelial hyperpolarization via a myo-endothelial pathway. Br J Pharmacol 128:1491–1496PubMedCrossRefGoogle Scholar
  132. 132.
    Murphy ME, Brayden JE (1995) Apamin-sensitive K+ channels mediate an endothelium-dependent hyperpolarization in rabbit mesenteric arteries. J Physiol 489:723–734PubMedGoogle Scholar
  133. 133.
    Murthy KS, Makhlouf GM (1998) Regulation of adenylyl cyclase type V/VI in smooth muscle: interplay of inhibitory G protein and Ca2+ influx. Mol Pharmacol 54:122–128PubMedGoogle Scholar
  134. 134.
    Nelli S, Craig J, Martin W (2009) Oxidation by trace Cu2+ ions underlies the ability of ascorbate to induce vascular dysfunction in the rat perfused mesentery. Eur J Pharmacol 614:84–90PubMedCrossRefGoogle Scholar
  135. 135.
    Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459PubMedGoogle Scholar
  136. 136.
    Ohashi M, Satoh K, Itoh T (1999) Acetylcholine-induced membrane potential changes in endothelial cells of rabbit aortic valve. Br J Pharmacol 126:19–26PubMedCrossRefGoogle Scholar
  137. 137.
    Ohnishi Y, Hirano K, Nishimura J, Furue M, Kanaide H (2001) Inhibitory effects of brefeldin A, a membrane transport blocker, on the bradykinin-induced hyperpolarization-mediated relaxation in the porcine coronary artery. Br J Pharmacol 134:168–178PubMedCrossRefGoogle Scholar
  138. 138.
    Oltman CL, Weintraub NL, VanRollins M, Dellsperger KC (1998) Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circ Res 83:932–939PubMedGoogle Scholar
  139. 139.
    Park WS, Han J, Earm YE (2008) Physiological role of inward rectifier K+ channels in vascular smooth muscle cells. Pflugers Arch 457:137–147PubMedCrossRefGoogle Scholar
  140. 140.
    Parthimos D, Edwards DH, Griffith TM (1996) Comparison of chaotic and sinusoidal vasomotion in the regulation of microvascular flow. Cardiovasc Res 31:388–399PubMedGoogle Scholar
  141. 141.
    Payne GW, Madri JA, Sessa WC, Segal SS (2004) Histamine inhibits conducted vasodilation through endothelium-derived NO production in arterioles of mouse skeletal muscle. FASEB J 18:280–286PubMedCrossRefGoogle Scholar
  142. 142.
    Peng H, Matchkov V, Ivarsen A, Aalkjaer C, Nilsson H (2001) Hypothesis for the initiation of vasomotion. Circ Res 88:810–815PubMedCrossRefGoogle Scholar
  143. 143.
    Perkins GA, Goodenough DA, Sosinsky GE (1998) Formation of the gap junction intercellular channel requires a 30 degree rotation for interdigitating two apposing connexons. J Mol Biol 277:171–177PubMedCrossRefGoogle Scholar
  144. 144.
    Popp R, Brandes RP, Ott G, Busse R, Fleming I (2002) Dynamic modulation of interendothelial gap junctional communication by 11, 12-epoxyeicosatrienoic acid. Circ Res 90:800–806PubMedCrossRefGoogle Scholar
  145. 145.
    Pradhan RK, Chakravarthy VS, Prabhakar A (2007) Effect of chaotic vasomotion in skeletal muscle on tissue oxygenation. Microvasc Res 74:51–64PubMedCrossRefGoogle Scholar
  146. 146.
    Rapacon M, Mieyal P, McGiff JC, Fulton D, Quilley J (1996) Contribution of calcium-activated potassium channels to the vasodilator effect of bradykinin in the isolated, perfused kidney of the rat. Br J Pharmacol 118:1504–1508PubMedGoogle Scholar
  147. 147.
    Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D et al (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834PubMedCrossRefGoogle Scholar
  148. 148.
    Rivers RJ, Hein TW, Zhang C, Kuo L (2001) Activation of barium-sensitive inward rectifier potassium channels mediates remote dilation of coronary arterioles. Circulation 104:1749–1753PubMedCrossRefGoogle Scholar
  149. 149.
    Rodenwaldt B, Pohl U, de Wit C (2007) Endogenous and exogenous NO attenuates conduction of vasoconstrictions along arterioles in the microcirculation. Am J Physiol Heart Circ Physiol 292:H2341–H2348PubMedCrossRefGoogle Scholar
  150. 150.
    Rouach N, Calvo CF, Duquennoy H, Glowinski J, Giaume C (2004) Hydrogen peroxide increases gap junctional communication and induces astrocyte toxicity: regulation by brain macrophages. Glia 45:28–38PubMedCrossRefGoogle Scholar
  151. 151.
    Rucker M, Strobel O, Vollmar B, Roesken F, Menger MD (2000) Vasomotion in critically perfused muscle protects adjacent tissues from capillary perfusion failure. Am J Physiol Heart Circ Physiol 279:H550–H558PubMedGoogle Scholar
  152. 152.
    Rusko J, Tanzi F, van Breemen C, Adams DJ (1992) Calcium-activated potassium channels in native endothelial cells from rabbit aorta—conductance, Ca2+ sensitivity and block. J Physiol 455:601–621PubMedGoogle Scholar
  153. 153.
    Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MVL (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711:215–224PubMedCrossRefGoogle Scholar
  154. 154.
    Sakurai T, Terui N (2006) Effects of sympathetically induced vasomotion on tissue-capillary fluid exchange. Am J Physiol Heart Circ Physiol 291:H1761–H1767PubMedCrossRefGoogle Scholar
  155. 155.
    Saliez J, Bouzin C, Rath G, Ghisdal P, Desjardins F et al (2008) Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117:1065–1074PubMedCrossRefGoogle Scholar
  156. 156.
    Sandow SL, Grayson TH (2009) Limits of isolation and culture: intact vascular endothelium and BKCa. Am J Physiol Heart Circ Physiol 297:H1–H7PubMedCrossRefGoogle Scholar
  157. 157.
    Sandow SL, Gzik DJ, Lee RMKW (2009) Arterial internal elastic lamina holes: relationship to function? J Anat 214:258–266PubMedCrossRefGoogle Scholar
  158. 158.
    Sandow SL, Haddock RE, Hill CE, Chadha PS, Kerr PM et al (2009) What's where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp Pharmacol Physiol 36:67–76PubMedCrossRefGoogle Scholar
  159. 159.
    Sandow SL, Tare M, Coleman HA, Hill CE, Parkington HC (2002) Involvement of myoendothelial gap junctions in the actions of endothelium-derived hyperpolarizing factor. Circ Res 90:1108–1113PubMedCrossRefGoogle Scholar
  160. 160.
    Sausbier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB et al (2005) Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circulation 112:60–68PubMedCrossRefGoogle Scholar
  161. 161.
    Schröder E, Eaton P (2008) Hydrogen peroxide as an endogenous mediator and exogenous tool in cardiovascular research: issues and considerations. Curr Opin Pharmacol 8:153–159PubMedCrossRefGoogle Scholar
  162. 162.
    Schweda F, Kurtz L, de Wit C, Janssen-Bienhold U, Kurtz A et al (2009) Substitution of connexin40 with connexin45 prevents hyperreninemia and attenuates hypertension. Kidney Int 75:482–489PubMedCrossRefGoogle Scholar
  163. 163.
    Segal SS (2005) Regulation of blood flow in the microcirculation. Microcirculation 12:33–45PubMedCrossRefGoogle Scholar
  164. 164.
    Segal SS, Duling BR (1986) Flow control among microvessels coordinated by intercellular conduction. Science 234:868–870PubMedCrossRefGoogle Scholar
  165. 165.
    Segal SS, Welsh DG, Kurjiaka DT (1999) Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle. J Physiol 516:283–291PubMedCrossRefGoogle Scholar
  166. 166.
    Selemidis S, Cocks T (2007) Smooth muscle mediates circumferential conduction of hyperpolarization and relaxation to focal endothelial cell activation in large coronary arteries. Naunyn Schmiedebergs Arch Pharmacol 375:85–94PubMedCrossRefGoogle Scholar
  167. 167.
    Sheng JZ, Braun AP (2007) Small- and intermediate-conductance Ca2+-activated K+ channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells. Am J Physiol Cell Physiol 293:C458–C467PubMedCrossRefGoogle Scholar
  168. 168.
    Shimokawa H, Morikawa K (2005) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J Mol Cell Cardiol 39:725–732PubMedCrossRefGoogle Scholar
  169. 169.
    Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R et al (1996) The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28:703–711PubMedCrossRefGoogle Scholar
  170. 170.
    Si H, Heyken WT, Wölfle SE, Tysiac M, Schubert R et al (2006) Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ Res 99:537–544PubMedCrossRefGoogle Scholar
  171. 171.
    Siegl D, Koeppen M, Wölfle SE, Pohl U, de Wit C (2005) Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo. Circ Res 97:781–788PubMedCrossRefGoogle Scholar
  172. 172.
    Simon AM, McWhorter AR (2002) Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev Biol 251:206–220PubMedCrossRefGoogle Scholar
  173. 173.
    Simon AM, McWhorter AR (2003) Role of connexin37 and connexin40 in vascular development. Cell Commun Adhes 10:379–385PubMedGoogle Scholar
  174. 174.
    Simon AM, McWhorter AR (2003) Decreased intercellular dye-transfer and downregulation of non-ablated connexins in aortic endothelium deficient in connexin37 or connexin40. J Cell Sci 116:2223–2236PubMedCrossRefGoogle Scholar
  175. 175.
    Snyder GD, Krishna UM, Falck JR, Spector AA (2002) Evidence for a membrane site of action for 14, 15-EET on expression of aromatase in vascular smooth muscle. Am J Physiol Heart Circ Physiol 283:H1936–H1942PubMedGoogle Scholar
  176. 176.
    Sokoya EM, Burns AR, Setiawan CT, Coleman HA, Parkington HC et al (2006) Evidence for the involvement of myoendothelial gap junctions in EDHF-mediated relaxation in the rat middle cerebral artery. Am J Physiol Heart Circ Physiol 291:H385–H393PubMedCrossRefGoogle Scholar
  177. 177.
    Solan JL, Lampe PD (2005) Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta 1711:154–163PubMedCrossRefGoogle Scholar
  178. 178.
    Spagnoli LG, Villaschi S, Neri L, Palmieri G (1982) Gap junctions in myo-endothelial bridges of rabbit carotid arteries. Experientia 38:124–125PubMedCrossRefGoogle Scholar
  179. 179.
    Stankevicius E, Lopez-Valverde V, Rivera L, Hughes AD, Mulvany MJ et al (2006) Combination of Ca2+-activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery. Br J Pharmacol 149:560–572PubMedCrossRefGoogle Scholar
  180. 180.
    Takano H, Dora KA, Spitaler MM, Garland CJ (2004) Spreading dilatation in rat mesenteric arteries associated with calcium-independent endothelial cell hyperpolarization. J Physiol 556:887–903PubMedCrossRefGoogle Scholar
  181. 181.
    Tallini YN, Brekke JF, Shui B, Doran R, Hwang SM et al (2007) Propagated endothelial Ca2+ waves and arteriolar dilation in vivo: measurements in Cx40BAC GCaMP2 transgenic mice. Circ Res 101:1300–1309PubMedCrossRefGoogle Scholar
  182. 182.
    Taylor HJ, Chaytor AT, Edwards DH, Griffith TM (2001) Gap junction-dependent increases in smooth muscle cAMP underpin the EDHF phenomenon in rabbit arteries. Biochem Biophys Res Commun 283:583–589PubMedCrossRefGoogle Scholar
  183. 183.
    Taylor HJ, Chaytor AT, Evans WH, Griffith TM (1998) Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18-α glycyrrhetinic acid. Br J Pharmacol 125:1–3PubMedCrossRefGoogle Scholar
  184. 184.
    Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE et al (2003) Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ Res 93:124–131PubMedCrossRefGoogle Scholar
  185. 185.
    Tomioka H, Hattori Y, Fukao M, Sato A, Liu M et al (1999) Relaxation in different-sized rat blood vessels mediated by endothelium-derived hyperpolarizing factor: importance of processes mediating precontractions. J Vasc Res 36:311–320PubMedCrossRefGoogle Scholar
  186. 186.
    Tomioka H, Hattori Y, Fukao M, Watanabe H, Akaishi Y et al (2001) Role of endothelial Ni2+-sensitive Ca2+ entry pathway in regulation of EDHF in porcine coronary artery. Am J Physiol Heart Circ Physiol 280:H730–H737PubMedGoogle Scholar
  187. 187.
    Uhrenholt TR, Domeier TL, Segal SS (2007) Propagation of calcium waves along endothelium of hamster feed arteries. Am J Physiol Heart Circ Physiol 292:H1634–H1640PubMedCrossRefGoogle Scholar
  188. 188.
    Ujiie H, Chaytor AT, Bakker LM, Griffith TM (2003) Essential role of gap junctions in NO- and prostanoid-independent relaxations evoked by acetylcholine in rabbit intracerebral arteries. Stroke 34:544–550PubMedCrossRefGoogle Scholar
  189. 189.
    Upham BL, Kang KS, Cho HY, Trosko JE (1997) Hydrogen peroxide inhibits gap junctional intercellular communication in glutathione sufficient but not glutathione deficient cells. Carcinogenesis 18:37–42PubMedCrossRefGoogle Scholar
  190. 190.
    van Rijen HV, van Veen TA, Hermans MM, Jongsma HJ (2000) Human connexin40 gap junction channels are modulated by cAMP. Cardiovasc Res 45:941–951PubMedCrossRefGoogle Scholar
  191. 191.
    Vanheel B, Van de Voorde J (1997) Evidence against the involvement of cytochrome P450 metabolites in endothelium-dependent hyperpolarization of the rat main mesenteric artery. J Physiol 501:331–341PubMedCrossRefGoogle Scholar
  192. 192.
    Verselis V, White RL, Spray DC, Bennett MV (1986) Gap junctional conductance and permeability are linearly related. Science 234:461–464PubMedCrossRefGoogle Scholar
  193. 193.
    Wagner C, Kurtz L, Schweda F, Simon AM, Kurtz A (2009) Connexin 37 is dispensable for the control of the renin system and for positioning of renin-producing cells in the kidney. Pflugers Arch 459:151–158PubMedCrossRefGoogle Scholar
  194. 194.
    Watson EL, Jacobson KL, Singh JC, Idzerda R, Ott SM et al (2000) The type 8 adenylyl cyclase is critical for Ca2+ stimulation of cAMP accumulation in mouse parotid acini. J Biol Chem 275:14691–14699PubMedCrossRefGoogle Scholar
  195. 195.
    Wellman GC, Nelson MT (2003) Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium 34:211–229PubMedCrossRefGoogle Scholar
  196. 196.
    Welsh DG, Segal SS (1998) Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. Am J Physiol 274:H178–H186PubMedGoogle Scholar
  197. 197.
    Welsh DG, Segal SS (2000) Role of EDHF in conduction of vasodilation along hamster cheek pouch arterioles in vivo. Am J Physiol Heart Circ Physiol 278:H1832–H1839PubMedGoogle Scholar
  198. 198.
    Wentlandt K, Samoilova M, Carlen PL, El Beheiry H (2006) General anesthetics inhibit gap junction communication in cultured organotypic hippocampal slices. Anesth Analg 102:1692–1698PubMedCrossRefGoogle Scholar
  199. 199.
    Wölfle SE, de Wit C (2005) Intact endothelium-dependent dilation and conducted responses in resistance vessels of hypercholesterolemic mice in vivo. J Vasc Res 42:475–482PubMedCrossRefGoogle Scholar
  200. 200.
    Wölfle SE, Schmidt VJ, Hoepfl B, Gebert A, Alcolea S et al (2007) Connexin45 cannot replace the function of connexin40 in conducting endothelium-dependent dilations along arterioles. Circ Res 101:1292–1299PubMedCrossRefGoogle Scholar
  201. 201.
    Wölfle SE, Schmidt VJ, Hoyer J, Köhler R, de Wit C (2009) Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo. Cardiovasc Res 82:476–483PubMedGoogle Scholar
  202. 202.
    Xu X, Rials SJ, Wu Y, Marinchak RA, Kowey PR (1999) The properties of the inward rectifier potassium currents in rabbit coronary arterial smooth muscle cells. Pflugers Arch 438:187–194PubMedCrossRefGoogle Scholar
  203. 203.
    Ya J, Erdtsieck-Ernste EB, de Boer PA, van Kempen MJ, Jongsma H et al (1998) Heart defects in connexin43-deficient mice. Circ Res 82:360–366PubMedGoogle Scholar
  204. 204.
    Yamamoto Y, Fukuta H, Nakahira Y, Suzuki H (1998) Blockade by 18β-glycyrrhetinic acid of intercellular electrical coupling in guinea-pig arterioles. J Physiol 511:501–508PubMedCrossRefGoogle Scholar
  205. 205.
    Yamamoto Y, Klemm MF, Edwards FR, Suzuki H (2001) Intercellular electrical communication among smooth muscle and endothelial cells in guinea-pig mesenteric arterioles. J Physiol 535:181–195PubMedCrossRefGoogle Scholar
  206. 206.
    Yashiro Y, Duling BR (2000) Integrated Ca2+ signaling between smooth muscle and endothelium of resistance vessels. Circ Res 87:1048–1054PubMedGoogle Scholar
  207. 207.
    Yeh HI, Rothery S, Dupont E, Coppen SR, Severs NJ (1998) Individual gap junction plaques contain multiple connexins in arterial endothelium. Circ Res 83:1248–1263PubMedGoogle Scholar
  208. 208.
    Young EJ, Hill MA, Wiehler WB, Triggle CR, Reid JJ (2008) Reduced EDHF responses and connexin activity in mesenteric arteries from the insulin-resistant obese Zucker rat. Diabetologia 51:872–881PubMedCrossRefGoogle Scholar
  209. 209.
    Zygmunt PM, Edwards G, Weston AH, Davis SC, Högestätt ED (1996) Effects of cytochrome P450 inhibitors on EDHF-mediated relaxation in the rat hepatic artery. Br J Pharmacol 118:1147–1152PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für PhysiologieUniversität zu LübeckLübeckGermany
  2. 2.Wales Heart Research Institute, School of MedicineCardiff UniversityCardiffUK

Personalised recommendations