Mutations affecting GABAergic signaling in seizures and epilepsy

Invited Review

Abstract

The causes of epilepsies and epileptic seizures are multifactorial. Genetic predisposition may contribute in certain types of epilepsies and seizures, whether idiopathic or symptomatic of genetic origin. Although these are not very common, they have offered a unique opportunity to investigate the molecular mechanisms underlying epileptogenesis and ictogenesis. Among the implicated gene mutations, a number of GABAA receptor subunit mutations have been recently identified that contribute to several idiopathic epilepsies, febrile seizures, and rarely to certain types of symptomatic epilepsies, like the severe myoclonic epilepsy of infancy. Deletion of GABAA receptor genes has also been linked to Angelman syndrome. Furthermore, mutations of proteins controlling chloride homeostasis, which indirectly defines the functional consequences of GABAA signaling, have been identified. These include the chloride channel 2 (CLCN2) and the potassium chloride cotransporter KCC3. The pathogenic role of CLCN2 mutations has not been clearly demonstrated and may represent either susceptibility genes or, in certain cases, innocuous polymorphisms. KCC3 mutations have been associated with hereditary motor and sensory polyneuropathy with corpus callosum agenesis (Andermann syndrome) that often manifests with epileptic seizures. This review summarizes the recent progress in the genetic linkages of epilepsies and seizures to the above genes and discusses potential pathogenic mechanisms that contribute to the age, sex, and conditional expression of these seizures in carriers of these mutations.

Keywords

GABA receptor Epilepsy Mutation Seizure Chloride Thalamus 

References

  1. 1.
    Galanopoulou AS (2008) GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol 6(1):1–20PubMedCrossRefGoogle Scholar
  2. 2.
    Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res 160:59–87PubMedCrossRefGoogle Scholar
  3. 3.
    Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60(3):243–260PubMedCrossRefGoogle Scholar
  4. 4.
    Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3(9):728–739PubMedCrossRefGoogle Scholar
  5. 5.
    Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397(6716):251–255PubMedCrossRefGoogle Scholar
  6. 6.
    Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles RRivera C (2007) Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci 27(37):9866–9873PubMedCrossRefGoogle Scholar
  7. 7.
    Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61(6):820–838PubMedCrossRefGoogle Scholar
  8. 8.
    Li H, Khirug S, Cai C, Ludwig A, Blaesse P, Kolikova J, Afzalov R, Coleman SK, Lauri S, Airaksinen MS, Keinanen K, Khiroug L, Saarma M, Kaila K, Rivera C (2007) KCC2 interacts with the dendritic cytoskeleton to promote spine development. Neuron 56(6):1019–1033PubMedCrossRefGoogle Scholar
  9. 9.
    Cancedda L, Fiumelli H, Chen K, Poo MM (2007) Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J Neurosci 27(19):5224–5235PubMedCrossRefGoogle Scholar
  10. 10.
    Hubner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K–Cl cotransport already in early synaptic inhibition. Neuron 30(2):515–524PubMedCrossRefGoogle Scholar
  11. 11.
    Villemure JF, Adam L, Bevan NJ, Gearing K, Chenier SBouvier M (2005) Subcellular distribution of GABA(B) receptor homo- and hetero-dimers. Biochem J 388(Pt 1):47–55PubMedGoogle Scholar
  12. 12.
    Balasubramanian S, Teissere JA, Raju DVHall RA (2004) Hetero-oligomerization between GABAA and GABAB receptors regulates GABAB receptor trafficking. J Biol Chem 279(18):18840–18850PubMedCrossRefGoogle Scholar
  13. 13.
    Gassmann M, Shaban H, Vigot R, Sansig G, Haller C, Barbieri S, Humeau Y, Schuler V, Muller M, Kinzel B, Klebs K, Schmutz M, Froestl W, Heid J, Kelly PH, Gentry C, Jaton AL, Van der Putten H, Mombereau C, Lecourtier L, Mosbacher J, Cryan JF, Fritschy JM, Luthi A, Kaupmann K, Bettler B (2004) Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. J Neurosci 24(27):6086–6097PubMedCrossRefGoogle Scholar
  14. 14.
    Bettler B, Tiao JY (2006) Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 110(3):533–543PubMedCrossRefGoogle Scholar
  15. 15.
    Feucht M, Fuchs K, Pichlbauer E, Hornik K, Scharfetter J, Goessler R, Fureder T, Cvetkovic N, Sieghart W, Kasper S, Aschauer H (1999) Possible association between childhood absence epilepsy and the gene encoding GABRB3. Biol Psychiatry 46(7):997–1002PubMedCrossRefGoogle Scholar
  16. 16.
    Maljevic S, Krampfl K, Cobilanschi J, Tilgen N, Beyer S, Weber YG, Schlesinger F, Ursu D, Melzer W, Cossette P, Bufler J, Lerche H, Heils A (2006) A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol 59(6):983–987PubMedCrossRefGoogle Scholar
  17. 17.
    Kang JQ, Shen W, Macdonald RL (2009) Two molecular pathways (NMD and ERAD) contribute to a genetic epilepsy associated with the GABA(A) receptor GABRA1 PTC mutation, 975delC, S326fs328X. J Neurosci 29(9):2833–2844PubMedCrossRefGoogle Scholar
  18. 18.
    Dibbens LM, Harkin LA, Richards M, Hodgson BL, Clarke AL, Petrou S, Scheffer IE, Berkovic SF, Mulley JC (2009) The role of neuronal GABA(A) receptor subunit mutations in idiopathic generalized epilepsies. Neurosci Lett 453(3):162–165PubMedCrossRefGoogle Scholar
  19. 19.
    Urak L, Feucht M, Fathi N, Hornik K, Fuchs K (2006) A GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity. Hum Mol Genet 15(16):2533–2541PubMedCrossRefGoogle Scholar
  20. 20.
    Tanaka M, Olsen RW, Medina MT, Schwartz E, Alonso ME, Duron RM, Castro-Ortega R, Martinez-Juarez IE, Pascual-Castroviejo I, Machado-Salas J, Silva R, Bailey JN, Bai D, Ochoa A, Jara-Prado A, Pineda G, Macdonald RL, Delgado-Escueta AV (2008) Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet 82(6):1249–1261PubMedCrossRefGoogle Scholar
  21. 21.
    Shinnar S, Glauser TA (2002) Febrile seizures. J Child Neurol 17(Suppl 1):S44–S52PubMedCrossRefGoogle Scholar
  22. 22.
    Johnson EW, Dubovsky J, Rich SS, O’Donovan CA, Orr HT, Anderson VE, Gil-Nagel A, Ahmann P, Dokken CG, Schneider DT, Weber JL (1998) Evidence for a novel gene for familial febrile convulsions, FEB2, linked to chromosome 19p in an extended family from the Midwest. Hum Mol Genet 7(1):63–67PubMedCrossRefGoogle Scholar
  23. 23.
    Scheffer IE, Berkovic SF (1997) Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain 120(Pt 3):479–490PubMedCrossRefGoogle Scholar
  24. 24.
    Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchal RG, Williams DA, Sutherland GR, Mulley JC, Scheffer IE, Berkovic SF (2001) Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 28(1):49–52PubMedCrossRefGoogle Scholar
  25. 25.
    Tan HO, Reid CA, Single FN, Davies PJ, Chiu C, Murphy S, Clarke AL, Dibbens L, Krestel H, Mulley JC, Jones MV, Seeburg PH, Sakmann B, Berkovic SF, Sprengel R, Petrou S (2007) Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy. Proc Natl Acad Sci USA 104(44):17536–17541PubMedCrossRefGoogle Scholar
  26. 26.
    Bianchi MT, Song L, Zhang H, Macdonald RL (2002) Two different mechanisms of disinhibition produced by GABAA receptor mutations linked to epilepsy in humans. J Neurosci 22(13):5321–5327PubMedGoogle Scholar
  27. 27.
    Sancar F, Czajkowski C (2004) A GABAA receptor mutation linked to human epilepsy (gamma2R43Q) impairs cell surface expression of alphabetagamma receptors. J Biol Chem 279(45):47034–47039PubMedCrossRefGoogle Scholar
  28. 28.
    Eugene E, Depienne C, Baulac S, Baulac M, Fritschy JM, Le Guern E, Miles R, Poncer JC (2007) GABA(A) receptor gamma 2 subunit mutations linked to human epileptic syndromes differentially affect phasic and tonic inhibition. J Neurosci 27(51):14108–14116PubMedCrossRefGoogle Scholar
  29. 29.
    Hales TG, Tang H, Bollan KA, Johnson SJ, King DP, McDonald NA, Cheng A, Connolly CN (2005) The epilepsy mutation, gamma2(R43Q) disrupts a highly conserved inter-subunit contact site, perturbing the biogenesis of GABAA receptors. Mol Cell Neurosci 29(1):120–127PubMedCrossRefGoogle Scholar
  30. 30.
    Kang JQ, Macdonald RL (2004) The GABAA receptor gamma2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of alpha1beta2gamma2S receptors in the endoplasmic reticulum. J Neurosci 24(40):8672–8677PubMedCrossRefGoogle Scholar
  31. 31.
    Fedi M, Berkovic SF, Macdonell RA, Curatolo JM, Marini C, Reutens DC (2008) Intracortical hyperexcitability in humans with a GABAA receptor mutation. Cereb Cortex 18(3):664–669PubMedCrossRefGoogle Scholar
  32. 32.
    Goldschen-Ohm MP, Wagner DA, Petrou S, Jones MV (2009) An epilepsy-related region in the GABAA receptor mediates long-distance effects on GABA and benzodiazepine binding sites. Mol PharmacolGoogle Scholar
  33. 33.
    Bowser DN, Wagner DA, Czajkowski C, Cromer BA, Parker MW, Wallace RH, Harkin LA, Mulley JC, Marini C, Berkovic SF, Williams DA, Jones MV, Petrou S (2002) Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation [gamma 2(R43Q)] found in human epilepsy. Proc Natl Acad Sci USA 99(23):15170–15175PubMedCrossRefGoogle Scholar
  34. 34.
    Fedi M, Berkovic SF, Marini C, Mulligan R, Tochon-Danguy H, Reutens DC (2006) A GABAA receptor mutation causing generalized epilepsy reduces benzodiazepine receptor binding. Neuroimage 32(3):995–1000PubMedCrossRefGoogle Scholar
  35. 35.
    Chiu C, Reid CA, Tan HO, Davies PJ, Single FN, Koukoulas I, Berkovic SF, Tan SS, Sprengel R, Jones MV, Petrou S (2008) Developmental impact of a familial GABAA receptor epilepsy mutation. Ann Neurol 64(3):284–293PubMedCrossRefGoogle Scholar
  36. 36.
    Raol YH, Lund IV, Bandyopadhyay S, Zhang G, Roberts DS, Wolfe JH, Russek SJ, Brooks-Kayal AR (2006) Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci 26(44):11342–11346PubMedCrossRefGoogle Scholar
  37. 37.
    Kananura C, Haug K, Sander T, Runge U, Gu W, Hallmann K, Rebstock J, Heils A, Steinlein OK (2002) A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol 59(7):1137–1141PubMedCrossRefGoogle Scholar
  38. 38.
    Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud’homme JF, Baulac M, Brice A, Bruzzone R, LeGuern E (2001) First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 28(1):46–48PubMedCrossRefGoogle Scholar
  39. 39.
    Ramakrishnan L, Hess GP (2004) On the mechanism of a mutated and abnormally functioning gamma-aminobutyric acid (A) receptor linked to epilepsy. Biochemistry 43(23):7534–7540PubMedCrossRefGoogle Scholar
  40. 40.
    Hales TG, Deeb TZ, Tang H, Bollan KA, King DP, Johnson SJ, Connolly CN (2006) An asymmetric contribution to gamma-aminobutyric type A receptor function of a conserved lysine within TM2-3 of alpha1, beta2, and gamma2 subunits. J Biol Chem 281(25):17034–17043PubMedCrossRefGoogle Scholar
  41. 41.
    Krivoshein AV, Hess GP (2006) On the mechanism of alleviation by phenobarbital of the malfunction of an epilepsy-linked GABA(A) receptor. Biochemistry 45(38):11632–11641PubMedCrossRefGoogle Scholar
  42. 42.
    Harkin LA, Bowser DN, Dibbens LM, Singh R, Phillips F, Wallace RH, Richards MC, Williams DA, Mulley JC, Berkovic SF, Scheffer IE, Petrou S (2002) Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 70(2):530–536PubMedCrossRefGoogle Scholar
  43. 43.
    Sun H, Zhang Y, Liang J, Liu X, Ma X, Wu H, Xu K, Qin J, Qi Y, Wu X (2008) Gene symbol: GABRG2. Disease: generalized epilepsy with febrile seizures plus. Hum Genet 124(3):298Google Scholar
  44. 44.
    Audenaert D, Schwartz E, Claeys KG, Claes L, Deprez L, Suls A, Van Dyck T, Lagae L, Van Broeckhoven C, Macdonald RL, De Jonghe P (2006) A novel GABRG2 mutation associated with febrile seizures. Neurology 67(4):687–690PubMedCrossRefGoogle Scholar
  45. 45.
    Nusser Z, Mody I (2002) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87(5):2624–2628PubMedGoogle Scholar
  46. 46.
    Dibbens LM, Feng HJ, Richards MC, Harkin LA, Hodgson BL, Scott D, Jenkins M, Petrou S, Sutherland GR, Scheffer IE, Berkovic SF, Macdonald RL, Mulley JC (2004) GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet 13(13):1315–1319PubMedCrossRefGoogle Scholar
  47. 47.
    Feng HJ, Kang JQ, Song L, Dibbens L, Mulley J, Macdonald RL (2006) Delta subunit susceptibility variants E177A and R220H associated with complex epilepsy alter channel gating and surface expression of alpha4beta2delta GABAA receptors. J Neurosci 26(5):1499–1506PubMedCrossRefGoogle Scholar
  48. 48.
    Dravet C (1978) Les epilepsies graves de l’ enfant. Vie Med 8:543–548Google Scholar
  49. 49.
    Hirose S (2006) A new paradigm of channelopathy in epilepsy syndromes: intracellular trafficking abnormality of channel molecules. Epilepsy Res 70(Suppl 1):S206–S217PubMedCrossRefGoogle Scholar
  50. 50.
    Panayiotopoulos CP (2007) Idiopathic generalized epilepsies. In: Panayiotopoulos CP (ed) A clinical guide to epileptic syndromes and their treatment. Springer-Verlag London Ltd, London, pp 319–362Google Scholar
  51. 51.
    Williams DB, Akabas MH (1999) Gamma-aminobutyric acid increases the water accessibility of M3 membrane-spanning segment residues in gamma-aminobutyric acid type A receptors. Biophys J 77(5):2563–2574PubMedCrossRefGoogle Scholar
  52. 52.
    Williams DB, Akabas MH (2000) Benzodiazepines induce a conformational change in the region of the gamma-aminobutyric acid type A receptor alpha(1)-subunit M3 membrane-spanning segment. Mol Pharmacol 58(5):1129–1136PubMedGoogle Scholar
  53. 53.
    Williams DB, Akabas MH (2002) Structural evidence that propofol stabilizes different GABA(A) receptor states at potentiating and activating concentrations. J Neurosci 22(17):7417–7424PubMedGoogle Scholar
  54. 54.
    Krampfl K, Maljevic S, Cossette P, Ziegler E, Rouleau GA, Lerche H, Bufler J (2005) Molecular analysis of the A322D mutation in the GABA receptor alpha-subunit causing juvenile myoclonic epilepsy. Eur J NeuroSci 22(1):10–20PubMedCrossRefGoogle Scholar
  55. 55.
    Fisher JL (2004) A mutation in the GABAA receptor alpha 1 subunit linked to human epilepsy affects channel gating properties. Neuropharmacology 46(5):629–637PubMedCrossRefGoogle Scholar
  56. 56.
    Cossette P, Liu L, Brisebois K, Dong H, Lortie A, Vanasse M, Saint-Hilaire JM, Carmant L, Verner A, Lu WY, Wang YT, Rouleau GA (2002) Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 31(2):184–189PubMedCrossRefGoogle Scholar
  57. 57.
    Macdonald RL, Gallagher MJ, Feng HJ, Kang J (2004) GABA(A) receptor epilepsy mutations. Biochem Pharmacol 68(8):1497–1506PubMedCrossRefGoogle Scholar
  58. 58.
    Robb SA, Pohl KR, Baraitser M, Wilson J, Brett EM (1989) The ‘happy puppet’ syndrome of Angelman: review of the clinical features. Arch Dis Child 64(1):83–86PubMedCrossRefGoogle Scholar
  59. 59.
    Dan B, Boyd SG (2003) Angelman syndrome reviewed from a neurophysiological perspective. The UBE3A-GABRB3 hypothesis. Neuropediatrics 34(4):169–176PubMedCrossRefGoogle Scholar
  60. 60.
    Wagstaff J, Knoll JH, Fleming J, Kirkness EF, Martin-Gallardo A, Greenberg F, Graham JM Jr, Menninger J, Ward D, Venter JC et al (1991) Localization of the gene encoding the GABAA receptor beta 3 subunit to the Angelman/Prader–Willi region of human chromosome 15. Am J Hum Genet 49(2):330–337PubMedGoogle Scholar
  61. 61.
    Knoll JH, Cheng SD, Lalande M (1994) Allele specificity of DNA replication timing in the Angelman/Prader–Willi syndrome imprinted chromosomal region. Nat Genet 6(1):41–46PubMedCrossRefGoogle Scholar
  62. 62.
    Hogart A, Nagarajan RP, Patzel KA, Yasui DH, Lasalle JM (2007) 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Hum Mol Genet 16(6):691–703PubMedCrossRefGoogle Scholar
  63. 63.
    Minassian BA, DeLorey TM, Olsen RW, Philippart M, Bronstein Y, Zhang Q, Guerrini R, Van Ness P, Livet MO, Delgado-Escueta AV (1998) Angelman syndrome: correlations between epilepsy phenotypes and genotypes. Ann Neurol 43(4):485–493PubMedCrossRefGoogle Scholar
  64. 64.
    Homanics GE, DeLorey TM, Firestone LL, Quinlan JJ, Handforth A, Harrison NL, Krasowski MD, Rick CE, Korpi ER, Makela R, Brilliant MH, Hagiwara N, Ferguson C, Snyder K, Olsen RW (1997) Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci USA 94(8):4143–4148PubMedCrossRefGoogle Scholar
  65. 65.
    Quinlan JJ, Homanics GE, Homanics LL (1998) Anesthesia sensitivity in mice that lack the beta3 subunit of the gamma-aminobutyric acid type A receptor. Anesthesiology 88(3):775–780PubMedCrossRefGoogle Scholar
  66. 66.
    Liljelund P, Handforth A, Homanics GE, Olsen RW (2005) GABAA receptor beta3 subunit gene-deficient heterozygous mice show parent-of-origin and gender-related differences in beta3 subunit levels, EEG, and behavior. Brain Res Dev Brain Res 157(2):150–161PubMedCrossRefGoogle Scholar
  67. 67.
    Gibbs JW 3rd, Schroder GBCoulter DA (1996) GABAA receptor function in developing rat thalamic reticular neurons: whole cell recordings of GABA-mediated currents and modulation by clonazepam. J Neurophysiol 76(4):2568–2579PubMedGoogle Scholar
  68. 68.
    Tan HO, Reid CA, Chiu C, Jones MV, Petrou S (2008) Increased thalamic inhibition in the absence seizure prone DBA/2J mouse. Epilepsia 49(5):921–925PubMedCrossRefGoogle Scholar
  69. 69.
    Huguenard JR, Prince DA (1994) Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. J Neurophysiol 71(6):2576–2581PubMedGoogle Scholar
  70. 70.
    Li H, Huguenard JR, Fisher RS (2007) Gender and age differences in expression of GABAA receptor subunits in rat somatosensory thalamus and cortex in an absence epilepsy model. Neurobiol Dis 25(3):623–630PubMedCrossRefGoogle Scholar
  71. 71.
    Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12(11):4151–4172PubMedGoogle Scholar
  72. 72.
    Sperber EF, Veliskova J, Germano IM, Friedman LK, Moshe SL (1999) Age-dependent vulnerability to seizures. Adv Neurol 79:161–169PubMedGoogle Scholar
  73. 73.
    Veliskova J, Moshe SL (2006) Update on the role of substantia nigra pars reticulata in the regulation of seizures. Epilepsy Curr 6(3):83–87PubMedCrossRefGoogle Scholar
  74. 74.
    Moshe SL, Brown LL, Kubova H, Veliskova J, Zukin RS, Sperber EF (1994) Maturation and segregation of brain networks that modify seizures. Brain Res 665(1):141–146PubMedCrossRefGoogle Scholar
  75. 75.
    Janz D (1997) The idiopathic generalized epilepsies of adolescence with childhood and juvenile age of onset. Epilepsia 38(1):4–11PubMedCrossRefGoogle Scholar
  76. 76.
    Galanopoulou AS (2008) Sexually dimorphic expression of KCC2 and GABA function. Epilepsy Res 80(2–3):99–113PubMedCrossRefGoogle Scholar
  77. 77.
    Nett ST, Jorge-Rivera JC, Myers M, Clark AS, Henderson LP (1999) Properties and sex-specific differences of GABAA receptors in neurons expressing gamma1 subunit mRNA in the preoptic area of the rat. J Neurophysiol 81(1):192–203PubMedGoogle Scholar
  78. 78.
    Chudomel O, Herman H, Nair K, Moshe SL, Galanopoulou AS (2009) Age-and gender-related differences in GABAA receptor-mediated postsynaptic currents in GABAergic neurons of the substantia nigra reticulata in the rat. Neuroscience 163(1):155–167PubMedCrossRefGoogle Scholar
  79. 79.
    Juptner M, Hiemke C (1990) Sex differences in GABAA receptor binding in rat brain measured by an improved in vitro binding assay. Exp Brain Res 81(2):297–302PubMedCrossRefGoogle Scholar
  80. 80.
    Canonaco M, Tavolaro R, Facciolo RM, Carelli A, Cagnin MCristaldi M (1996) Sexual dimorphism of GABAA receptor levels in subcortical brain regions of a woodland rodent (Apodemus sylvaticus). Brain Res Bull 40(3):187–194PubMedCrossRefGoogle Scholar
  81. 81.
    Persad V, Cortez MA, Snead OC 3rd (2002) A chronic model of atypical absence seizures: studies of developmental and gender sensitivity. Epilepsy Res 48(1–2):111–119PubMedCrossRefGoogle Scholar
  82. 82.
    Magenis RE, Toth-Fejel S, Allen LJ, Black M, Brown MG, Budden S, Cohen R, Friedman JM, Kalousek D, Zonana J et al (1990) Comparison of the 15q deletions in Prader–Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences. Am J Med Genet 35(3):333–349PubMedCrossRefGoogle Scholar
  83. 83.
    Driscoll DJ, Waters MF, Williams CA, Zori RT, Glenn CC, Avidano KM, Nicholls RD (1992) A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader–Willi syndromes. Genomics 13(4):917–924PubMedCrossRefGoogle Scholar
  84. 84.
    Segovia S, del Cerro MC, Ortega E, Perez-Laso C, Rodriguez-Zafra C, Izquierdo MA, Guillamon A (1996) Role of GABAA receptors in the organization of brain and behavioural sex differences. NeuroReport 7(15–17):2553–2557PubMedCrossRefGoogle Scholar
  85. 85.
    Wang DD, Kriegstein AR (2009) Defining the role of GABA in cortical development. J Physiol 587(Pt 9):1873–1879PubMedGoogle Scholar
  86. 86.
    Wang DD, Kriegstein AR (2008) GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation. J Neurosci 28(21):5547–5558PubMedCrossRefGoogle Scholar
  87. 87.
    Wang DD, Kriegstein AR, Ben-Ari Y (2008) GABA regulates stem cell proliferation before nervous system formation. Epilepsy Curr 8(5):137–139PubMedCrossRefGoogle Scholar
  88. 88.
    Chudotvorova I, Ivanov A, Rama S, Hubner CA, Pellegrino C, Ben-Ari Y, Medina I (2005) Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses. J Physiol 566(Pt 3):671–679PubMedCrossRefGoogle Scholar
  89. 89.
    Kang JQ, Shen W, Macdonald RL (2006) Why does fever trigger febrile seizures? GABAA receptor gamma2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J Neurosci 26(9):2590–2597PubMedCrossRefGoogle Scholar
  90. 90.
    Sankar R, Auvin S, Mazarati A, Shin D (2007) Inflammation contributes to seizure-induced hippocampal injury in the neonatal rat brain. Acta Neurol Scand Suppl 186:16–20PubMedCrossRefGoogle Scholar
  91. 91.
    Auvin S, Shin D, Mazarati A, Nakagawa J, Miyamoto J, Sankar R (2007) Inflammation exacerbates seizure-induced injury in the immature brain. Epilepsia 48(Suppl 5):27–34PubMedCrossRefGoogle Scholar
  92. 92.
    Heida JG, Teskey GC, Pittman QJ (2005) Febrile convulsions induced by the combination of lipopolysaccharide and low-dose kainic acid enhance seizure susceptibility, not epileptogenesis, in rats. Epilepsia 46(12):1898–1905PubMedCrossRefGoogle Scholar
  93. 93.
    Thiemann A, Grunder S, Pusch M, Jentsch TJ (1992) A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356(6364):57–60PubMedCrossRefGoogle Scholar
  94. 94.
    Staley K (1994) The role of an inwardly rectifying chloride conductance in postsynaptic inhibition. J Neurophysiol 72(1):273–284PubMedGoogle Scholar
  95. 95.
    Mladinic M, Becchetti A, Didelon F, Bradbury A, Cherubini E (1999) Low expression of the ClC-2 chloride channel during postnatal development: a mechanism for the paradoxical depolarizing action of GABA and glycine in the hippocampus. Proc Biol Sci 266(1425):1207–1213PubMedCrossRefGoogle Scholar
  96. 96.
    Staley K, Smith R, Schaack J, Wilcox C, Jentsch TJ (1996) Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 17(3):543–551PubMedCrossRefGoogle Scholar
  97. 97.
    Haug K, Warnstedt M, Alekov AK, Sander T, Ramirez A, Poser B, Maljevic S, Hebeisen S, Kubisch C, Rebstock J, Horvath S, Hallmann K, Dullinger JS, Rau B, Haverkamp F, Beyenburg S, Schulz H, Janz D, Giese B, Muller-Newen G, Propping P, Elger CE, Fahlke CLerche H (2009) Retraction: mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet 41(9):1043PubMedCrossRefGoogle Scholar
  98. 98.
    D’Agostino D, Bertelli M, Gallo S, Cecchin S, Albiero E, Garofalo PG, Gambardella A, St Hilaire JM, Kwiecinski H, Andermann E, Pandolfo M (2004) Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy. Neurology 63(8):1500–1502PubMedGoogle Scholar
  99. 99.
    Blanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hubner CA, Jentsch TJ (2007) Leukoencephalopathy upon disruption of the chloride channel ClC-2. J Neurosci 27(24):6581–6589PubMedCrossRefGoogle Scholar
  100. 100.
    Niemeyer MI, Yusef YR, Cornejo I, Flores CA, Sepulveda FV, Cid LP (2004) Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol Genomics 19(1):74–83PubMedCrossRefGoogle Scholar
  101. 101.
    Haug K, Warnstedt M, Alekov AK, Sander T, Ramirez A, Poser B, Maljevic S, Hebeisen S, Kubisch C, Rebstock J, Horvath S, Hallmann K, Dullinger JS, Rau B, Haverkamp F, Beyenburg S, Schulz H, Janz D, Giese B, Muller-Newen G, Propping P, Elger CE, Fahlke C, Lerche H, Heils A (2003) Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet 33(4):527–532PubMedCrossRefGoogle Scholar
  102. 102.
    Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113(2):274–284PubMedGoogle Scholar
  103. 103.
    Race JE, Makhlouf FN, Logue PJ, Wilson FH, Dunham PB, Holtzman EJ (1999) Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. Am J Physiol 277(6 Pt 1):C1210–C1219PubMedGoogle Scholar
  104. 104.
    Uyanik G, Elcioglu N, Penzien J, Gross C, Yilmaz Y, Olmez A, Demir E, Wahl D, Scheglmann K, Winner B, Bogdahn U, Topaloglu H, Hehr U, Winkler J (2006) Novel truncating and missense mutations of the KCC3 gene associated with Andermann syndrome. Neurology 66(7):1044–1048PubMedCrossRefGoogle Scholar
  105. 105.
    Andermann E, Andermann F, Joubert M, Melancon D, Karpati G, Carpenter S (1975) Three familial midline malformation syndromes of the central nervous system: agenesis of the corpus callosum and anterior horn-cell disease; agenesis of cerebellar vermis; and atrophy of the cerebellar vermis. Birth Defects Orig Artic Ser 11(2):269–293PubMedGoogle Scholar
  106. 106.
    Meyer J, Johannssen K, Freitag CM, Schraut K, Teuber I, Hahner A, Mainhardt C, Mossner R, Volz HP, Wienker TF, McKeane D, Stephan DA, Rouleau G, Reif A, Lesch KP (2005) Rare variants of the gene encoding the potassium chloride co-transporter 3 are associated with bipolar disorder. Int J Neuropsychopharmacol 8(4):495–504PubMedCrossRefGoogle Scholar
  107. 107.
    Cao A, Cianchetti C, Signorini E, Loi M, Sanna G, De Virgiliis S (1977) Agenesis of the corpus callosum, infantile spasms, spastic quadriplegia, microcephaly and severe mental retardation in three siblings. Clin Genet 12(5):290–296PubMedGoogle Scholar
  108. 108.
    Shapira Y, Cohen T (1973) Agenesis of the corpus callosum in two sisters. J Med Genet 10(3):266–269PubMedCrossRefGoogle Scholar
  109. 109.
    Boettger T, Rust MB, Maier H, Seidenbecher T, Schweizer M, Keating DJ, Faulhaber J, Ehmke H, Pfeffer C, Scheel O, Lemcke B, Horst J, Leuwer R, Pape HC, Volkl H, Hubner CA, Jentsch TJ (2003) Loss of K–Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold. EMBO J 22(20):5422–5434PubMedCrossRefGoogle Scholar
  110. 110.
    Mathieu J, Bedard F, Prevost C, Langevin P (1990) Motor and sensory neuropathies with or without agenesis of the corpus callosum: a radiological study of 64 cases. Can J Neurol Sci 17(2):103–108PubMedGoogle Scholar
  111. 111.
    Dupre N, Howard HC, Mathieu J, Karpati G, Vanasse M, Bouchard JP, Carpenter S, Rouleau GA (2003) Hereditary motor and sensory neuropathy with agenesis of the corpus callosum. Ann Neurol 54(1):9–18PubMedCrossRefGoogle Scholar
  112. 112.
    Howard HC, Mount DB, Rochefort D, Byun N, Dupre N, Lu J, Fan X, Song L, Riviere JB, Prevost C, Horst J, Simonati A, Lemcke B, Welch R, England R, Zhan FQ, Mercado A, Siesser WB, George AL Jr, McDonald MP, Bouchard JP, Mathieu J, Delpire E, Rouleau GA (2002) The K–Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nat Genet 32(3):384–392PubMedCrossRefGoogle Scholar
  113. 113.
    Salin-Cantegrel A, Riviere JB, Dupre N, Charron FM, Shekarabi M, Karemera L, Gaspar C, Horst J, Tekin M, Deda G, Krause A, Lippert MM, Willemsen MA, Jarrar R, Lapointe JY, Rouleau GA (2007) Distal truncation of KCC3 in non-French Canadian HMSN/ACC families. Neurology 69(13):1350–1355PubMedCrossRefGoogle Scholar
  114. 114.
    Rudnik-Schoneborn S, Hehr U, von Kalle T, Bornemann A, Winkler J, Zerres K (2009) Andermann syndrome can be a phenocopy of hereditary motor and sensory neuropathy—report of a discordant sibship with a compound heterozygous mutation of the KCC3 gene. Neuropediatrics 40(3):129–133PubMedCrossRefGoogle Scholar
  115. 115.
    Steinlein OK, Neubauer BA, Sander T, Song L, Stoodt J, Mount DB (2001) Mutation analysis of the potassium chloride cotransporter KCC3 (SLC12A6) in rolandic and idiopathic generalized epilepsy. Epilepsy Res 44(2–3):191–195PubMedCrossRefGoogle Scholar
  116. 116.
    Salin-Cantegrel A, Shekarabi M, Holbert S, Dion P, Rochefort D, Laganiere J, Dacal S, Hince P, Karemera L, Gaspar C, Lapointe JY, Rouleau GA (2008) HMSN/ACC truncation mutations disrupt brain-type creatine kinase-dependant activation of K+/Cl– co-transporter 3. Hum Mol Genet 17(17):2703–2711PubMedCrossRefGoogle Scholar
  117. 117.
    Rinehart J, Maksimova YD, Tanis JE, Stone KL, Hodson CA, Zhang J, Risinger M, Pan W, Wu D, Colangelo CM, Forbush B, Joiner CH, Gulcicek EE, Gallagher PG, Lifton RP (2009) Sites of regulated phosphorylation that control K–Cl cotransporter activity. Cell 138(3):525–536PubMedCrossRefGoogle Scholar
  118. 118.
    Byun N, Delpire E (2007) Axonal and periaxonal swelling precede peripheral neurodegeneration in KCC3 knockout mice. Neurobiol Dis 28(1):39–51PubMedCrossRefGoogle Scholar
  119. 119.
    Schwartzkroin PA, Baraban SC, Hochman DW (1998) Osmolarity, ionic flux, and changes in brain excitability. Epilepsy Res 32(1–2):275–285PubMedCrossRefGoogle Scholar
  120. 120.
    Kang JQ, Macdonald RL (2009) Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends Mol Med 15(9):430–438PubMedCrossRefGoogle Scholar
  121. 121.
    Kang JQ, Shen W, Macdonald RL (2009) The GABRG2 mutation, Q351X, associated with generalized epilepsy with febrile seizures plus, has both loss of function and dominant-negative suppression. J Neurosci 29(9):2845–2856PubMedCrossRefGoogle Scholar
  122. 122.
    Onat FY, Aker RG, Gurbanova AA, Ates N, van Luijtelaar G (2007) The effect of generalized absence seizures on the progression of kindling in the rat. Epilepsia 48(Suppl 5):150–156PubMedCrossRefGoogle Scholar
  123. 123.
    Hsu FC, Zhang GJ, Raol YS, Valentino RJ, Coulter DA, Brooks-Kayal AR (2003) Repeated neonatal handling with maternal separation permanently alters hippocampal GABAA receptors and behavioral stress responses. Proc Natl Acad Sci USA 100(21):12213–12218PubMedCrossRefGoogle Scholar
  124. 124.
    Glasscock E, Qian J, Yoo JW, Noebels JL (2007) Masking epilepsy by combining two epilepsy genes. Nat Neurosci 10(12):1554–1558PubMedCrossRefGoogle Scholar
  125. 125.
    Inoue K, Khajavi M, Ohyama T, Hirabayashi S, Wilson J, Reggin JD, Mancias P, Butler IJ, Wilkinson MF, Wegner M, Lupski JR (2004) Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 36(4):361–369PubMedCrossRefGoogle Scholar
  126. 126.
    Marini C, Harkin LA, Wallace RH, Mulley JC, Scheffer IE, Berkovic SF (2003) Childhood absence epilepsy and febrile seizures: a family with a GABA(A) receptor mutation. Brain 126(Pt 1):230–240PubMedCrossRefGoogle Scholar
  127. 127.
    Sun H, Zhang Y, Liang J, Liu X, Ma X, Wu H, Xu K, Qin J, Qi Y, Wu X (2008) SCN1A, SCN1B, and GABRG2 gene mutation analysis in Chinese families with generalized epilepsy with febrile seizures plus. J Hum Genet 53(8):769–774PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Saul R. Korey Department of Neurology and Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxUSA

Personalised recommendations