Advertisement

Glutamate receptors, neurotoxicity and neurodegeneration

  • Anthony Lau
  • Michael Tymianski
Invited Review

Abstract

Glutamate excitotoxicity is a hypothesis that states excessive glutamate causes neuronal dysfunction and degeneration. As glutamate is a major excitatory neurotransmitter in the central nervous system (CNS), the implications of glutamate excitotoxicity are many and far-reaching. Acute CNS insults such as ischaemia and traumatic brain injury have traditionally been the focus of excitotoxicity research. However, glutamate excitotoxicity has also been linked to chronic neurodegenerative disorders such as amyotrophic lateral sclerosis, multiple sclerosis, Parkinson’s disease and others. Despite the continued research into the mechanisms of excitotoxicity, there are currently no pharmacological interventions capable of providing significant neuroprotection in the clinical setting of brain ischaemia or injury. This review addresses the current state of excitotoxic research, focusing on the structure and physiology of glutamate receptors; molecular mechanisms underlying excitotoxic cell death pathways and their interactions with each other; the evidence for glutamate excitotoxicity in acute neurologic diseases; laboratory and clinical attempts at modulating excitotoxicity; and emerging targets for excitotoxicity research.

Keywords

Excitotoxicity Glutamate Neuronal cell death Calcium Free radical Neuroprotective drugs NMDA receptor TRP channel Gap junction Sodium–calcium exchange 

References

  1. 1.
    Aarts M, Iihara K, Wei WL et al (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877PubMedGoogle Scholar
  2. 2.
    Aarts M, Liu Y, Liu L et al (2002) Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298:846–850PubMedGoogle Scholar
  3. 3.
    Abe T, Sugihara H, Nawa H et al (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361–13368PubMedGoogle Scholar
  4. 4.
    Aizenman E, Stout AK, Hartnett KA et al (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 75:1878–1888PubMedGoogle Scholar
  5. 5.
    Albers GW, Atkinson RP, Kelley RE et al (1995) Safety, tolerability, and pharmacokinetics of the N-methyl-d-aspartate antagonist dextrorphan in patients with acute stroke. Dextrorphan Study Group. Stroke 26:254–258PubMedGoogle Scholar
  6. 6.
    Albers GW, Clark WM, Atkinson RP et al (1999) Dose escalation study of the NMDA glycine-site antagonist licostinel in acute ischemic stroke. Stroke 30:508–513PubMedGoogle Scholar
  7. 7.
    Albers GW, Goldstein LB, Hall D et al (2001) Aptiganel hydrochloride in acute ischemic stroke: a randomized controlled trial. JAMA 286:2673–2682PubMedGoogle Scholar
  8. 8.
    Alvarez B, Ferrer-Sueta G, Freeman BA et al (1999) Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J Biol Chem 274:842–848PubMedGoogle Scholar
  9. 9.
    Aramori I, Nakanishi S (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells. Neuron 8:757–765PubMedGoogle Scholar
  10. 10.
    SA Areosa, F Sherriff, R McShane, (2005) Memantine for dementia. Cochrane Database Syst Rev CD003154Google Scholar
  11. 11.
    Baker AJ, Moulton RJ, MacMillan VH et al (1993) Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J Neurosurg 79:369–372PubMedGoogle Scholar
  12. 12.
    Bano D, Young KW, Guerin CJ et al (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285PubMedGoogle Scholar
  13. 13.
    PM Bath, R Iddenden, FJ Bath et al. (2001) Tirilazad for acute ischaemic stroke. Cochrane Database Syst Rev CD002087Google Scholar
  14. 14.
    Beckman JS, Ischiropoulos H, Zhu L et al (1992) Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 298:438–445PubMedGoogle Scholar
  15. 15.
    Benveniste M, Mayer ML (1993) Multiple effects of spermine on N-methyl-d-aspartic acid receptor responses of rat cultured hippocampal neurones. J Physiol 464:131–163PubMedGoogle Scholar
  16. 16.
    Besancon E, Guo S, Lok J et al (2008) Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29:268–275PubMedGoogle Scholar
  17. 17.
    Bizat N, Hermel JM, Humbert S et al (2003) In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem 278:43245–43253PubMedGoogle Scholar
  18. 18.
    Block F, Schwarz M (1996) Memantine reduces functional and morphological consequences induced by global ischemia in rats. Neurosci Lett 208:41–44PubMedGoogle Scholar
  19. 19.
    Boast CA, Gerhardt SC, Pastor G et al (1988) The N-methyl-d-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils. Brain Res 442:345–348PubMedGoogle Scholar
  20. 20.
    Bonfoco E, Krainc D, Ankarcrona M et al (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:7162–7166PubMedGoogle Scholar
  21. 21.
    Bossy-Wetzel E, Talantova MV, Lee WD et al (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41:351–365PubMedGoogle Scholar
  22. 22.
    Bradley SR, Levey AI, Hersch SM et al (1996) Immunocytochemical localization of group III metabotropic glutamate receptors in the hippocampus with subtype-specific antibodies. J Neurosci 16:2044–2056PubMedGoogle Scholar
  23. 23.
    Brorson JR, Marcuccilli CJ, Miller RJ (1995) Delayed antagonism of calpain reduces excitotoxicity in cultured neurons. Stroke 26:1259–1266PubMedGoogle Scholar
  24. 24.
    Brown AM, Kristal BS, Effron MS et al (2000) Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex. J Biol Chem 275:13441–13447PubMedGoogle Scholar
  25. 25.
    Bruno V, Battaglia G, Copani A et al (1995) Activation of class II or III metabotropic glutamate receptors protects cultured cortical neurons against excitotoxic degeneration. Eur J NeuroSci 7:1906–1913PubMedGoogle Scholar
  26. 26.
    Bruno V, Copani A, Knopfel T et al (1995) Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA-induced neuronal degeneration in cultured cortical cells. Neuropharmacology 34:1089–1098PubMedGoogle Scholar
  27. 27.
    Buchan A, Pulsinelli WA (1990) Hypothermia but not the N-methyl-d-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 10:311–316PubMedGoogle Scholar
  28. 28.
    Buchan AM, Xue D, Huang ZG et al (1991) Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. NeuroReport 2:473–476PubMedGoogle Scholar
  29. 29.
    Buller AL, Larson HC, Schneider BE et al (1994) The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition. J Neurosci 14:5471–5484PubMedGoogle Scholar
  30. 30.
    Burnashev N, Zhou Z, Neher E et al (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485(Pt 2):403–418PubMedGoogle Scholar
  31. 31.
    Cao G, Xing J, Xiao X et al (2007) Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 27:9278–9293PubMedGoogle Scholar
  32. 32.
    Castillo PE, Malenka RC, Nicoll RA (1997) Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388:182–186PubMedGoogle Scholar
  33. 33.
    Chatterton JE, Awobuluyi M, Premkumar LS et al (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798PubMedGoogle Scholar
  34. 34.
    Chavis P, Shinozaki H, Bockaert J et al (1994) The metabotropic glutamate receptor types 2/3 inhibit L-type calcium channels via a pertussis toxin-sensitive G-protein in cultured cerebellar granule cells. J Neurosci 14:7067–7076PubMedGoogle Scholar
  35. 35.
    Chinopoulos C, Gerencser AA, Doczi J et al (2004) Inhibition of glutamate-induced delayed calcium deregulation by 2-APB and La3+ in cultured cortical neurones. J Neurochem 91:471–483PubMedGoogle Scholar
  36. 36.
    Chittajallu R, Vignes M, Dev KK et al (1996) Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379:78–81PubMedGoogle Scholar
  37. 37.
    Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58:293–297PubMedGoogle Scholar
  38. 38.
    Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379PubMedGoogle Scholar
  39. 39.
    Choi DW, Yokoyama M, Koh J (1988) Zinc neurotoxicity in cortical cell culture. Neuroscience 24:67–79PubMedGoogle Scholar
  40. 40.
    Clausen F, Marklund N, Lewen A et al (2008) The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat. J Neurotrauma 25:1449–1457PubMedGoogle Scholar
  41. 41.
    Clough-Helfman C, Phillis JW (1991) The free radical trapping agent N-tert.-butyl-alpha-phenylnitrone (PBN) attenuates cerebral ischaemic injury in gerbils. Free Radic Res Commun 15:177–186PubMedGoogle Scholar
  42. 42.
    Crumrine RC, Bergstrand K, Cooper AT et al (1997) Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest. Stroke 28:2230–2236PubMedGoogle Scholar
  43. 43.
    Czyz A, Baranauskas G, Kiedrowski L (2002) Instrumental role of Na+ in NMDA excitotoxicity in glucose-deprived and depolarized cerebellar granule cells. J Neurochem 81:379–389PubMedGoogle Scholar
  44. 44.
    Davis SM, Lees KR, Albers GW et al (2000) Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31:347–354PubMedGoogle Scholar
  45. 45.
    Dawson DA, Graham DI, McCulloch J et al (1994) Anti-ischaemic efficacy of a nitric oxide synthase inhibitor and a N-methyl-d-aspartate receptor antagonist in models of transient and permanent focal cerebral ischaemia. Br J Pharmacol 113:247–253PubMedGoogle Scholar
  46. 46.
    Dawson DA, Kusumoto K, Graham DI et al (1992) Inhibition of nitric oxide synthesis does not reduce infarct volume in a rat model of focal cerebral ischaemia. Neurosci Lett 142:151–154PubMedGoogle Scholar
  47. 47.
    Dawson DA, Masayasu H, Graham DI et al (1995) The neuroprotective efficacy of ebselen (a glutathione peroxidase mimic) on brain damage induced by transient focal cerebral ischaemia in the rat. Neurosci Lett 185:65–69PubMedGoogle Scholar
  48. 48.
    Dawson VL, Dawson TM, London ED et al (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6371PubMedGoogle Scholar
  49. 49.
    Dawson VL, Kizushi VM, Huang PL et al (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 16:2479–2487PubMedGoogle Scholar
  50. 50.
    de Pina-Benabou MH, Szostak V, Kyrozis A et al (2005) Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke 36:2232–2237PubMedGoogle Scholar
  51. 51.
    Dineley KE, Devinney MJ, Zeak JA et al (2008) Glutamate mobilizes [Zn2+] through Ca2+-dependent reactive oxygen species accumulation. J Neurochem 106:2184–2193PubMedGoogle Scholar
  52. 52.
    Du S, McLaughlin B, Pal S et al (2002) In vitro neurotoxicity of methylisothiazolinone, a commonly used industrial and household biocide, proceeds via a zinc and extracellular signal-regulated kinase mitogen-activated protein kinase-dependent pathway. J Neurosci 22:7408–7416PubMedGoogle Scholar
  53. 53.
    Du Y, Bales KR, Dodel RC et al (1997) Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci USA 94:11657–11662PubMedGoogle Scholar
  54. 54.
    Dugan LL, Sensi SL, Canzoniero LM et al (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. J Neurosci 15:6377–6388PubMedGoogle Scholar
  55. 55.
    Dykens JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration. J Neurochem 63:584–591PubMedGoogle Scholar
  56. 56.
    Dykens JA, Stern A, Trenkner E (1987) Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 49:1222–1228PubMedGoogle Scholar
  57. 57.
    Enari M, Sakahira H, Yokoyama H et al (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50PubMedGoogle Scholar
  58. 58.
    Endres M, Namura S, Shimizu-Sasamata M et al (1998) Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab 18:238–247PubMedGoogle Scholar
  59. 59.
    Escott KJ, Beech JS, Haga KK et al (1998) Cerebroprotective effect of the nitric oxide synthase inhibitors, 1-(2-trifluoromethylphenyl) imidazole and 7-nitro indazole, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 18:281–287PubMedGoogle Scholar
  60. 60.
    Faddis BT, Hasbani MJ, Goldberg MP (1997) Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. J Neurosci 17:951–959PubMedGoogle Scholar
  61. 61.
    Faden AI, Demediuk P, Panter SS et al (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800PubMedGoogle Scholar
  62. 62.
    Farahani R, Pina-Benabou MH, Kyrozis A et al (2005) Alterations in metabolism and gap junction expression may determine the role of astrocytes as “Good Samaritans” or executioners. Glia 50:351–361PubMedGoogle Scholar
  63. 63.
    Fici GJ, Althaus JS, VonVoigtlander PF (1997) Effects of lazaroids and a peroxynitrite scavenger in a cell model of peroxynitrite toxicity. Free Radic Biol Med 22:223–228PubMedGoogle Scholar
  64. 64.
    Fix AS, Horn JW, Wightman KA et al (1993) Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-d-aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): a light and electron microscopic evaluation of the rat retrosplenial cortex. Exp Neurol 123:204–215PubMedGoogle Scholar
  65. 65.
    Frantseva MV, Kokarovtseva L, Perez Velazquez JL (2002) Ischemia-induced brain damage depends on specific gap–junctional coupling. J Cereb Blood Flow Metab 22:453–462PubMedGoogle Scholar
  66. 66.
    Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238PubMedGoogle Scholar
  67. 67.
    Frederickson CJ, Hernandez MD, McGinty JF (1989) Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res 480:317–321PubMedGoogle Scholar
  68. 68.
    Frerking M, Schmitz D, Zhou Q et al (2001) Kainate receptors depress excitatory synaptic transmission at CA3→CA1 synapses in the hippocampus via a direct presynaptic action. J Neurosci 21:2958–2966PubMedGoogle Scholar
  69. 69.
    Fukata Y, Adesnik H, Iwanaga T et al (2006) Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313:1792–1795PubMedGoogle Scholar
  70. 70.
    Furukawa T, Hoshino S, Kobayashi S et al (2003) The glutamate AMPA receptor antagonist, YM872, attenuates cortical tissue loss, regional cerebral edema, and neurological motor deficits after experimental brain injury in rats. J Neurotrauma 20:269–278PubMedGoogle Scholar
  71. 71.
    Gahm C, Danilov A, Holmin S et al (2005) Reduced neuronal injury after treatment with NG-nitro-l-arginine methyl ester (l-NAME) or 2-sulfo-phenyl-N-tert-butyl nitrone (S-PBN) following experimental brain contusion. Neurosurgery 57:1272–1281PubMedGoogle Scholar
  72. 72.
    Gao J, Duan B, Wang DG et al (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635–646PubMedGoogle Scholar
  73. 73.
    Geiger JR, Melcher T, Koh DS et al (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204PubMedGoogle Scholar
  74. 74.
    Globus MY, Busto R, Dietrich WD et al (1988) Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci Lett 91:36–40PubMedGoogle Scholar
  75. 75.
    Globus MY, Busto R, Martinez E et al (1990) Ischemia induces release of glutamate in regions spared from histopathologic damage in the rat. Stroke 21:III43–III46PubMedGoogle Scholar
  76. 76.
    Gonzalez-Zulueta M, Ensz LM, Mukhina G et al (1998) Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci 18:2040–2055PubMedGoogle Scholar
  77. 77.
    Guttmann RP, Baker DL, Seifert KM et al (2001) Specific proteolysis of the NR2 subunit at multiple sites by calpain. J Neurochem 78:1083–1093PubMedGoogle Scholar
  78. 78.
    Hall ED, Detloff MR, Johnson K et al (2004) Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. J Neurotrauma 21:9–20PubMedGoogle Scholar
  79. 79.
    Hall ED, Pazara KE, Braughler JM et al (1990) Nonsteroidal lazaroid U78517F in models of focal and global ischemia. Stroke 21:III83–III87PubMedGoogle Scholar
  80. 80.
    Hall ED, Yonkers PA, McCall JM et al (1988) Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg 68:456–461PubMedGoogle Scholar
  81. 81.
    Han D, Antunes F, Canali R et al (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563PubMedGoogle Scholar
  82. 82.
    Hara H, Friedlander RM, Gagliardini V et al (1997) Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 94:2007–2012PubMedGoogle Scholar
  83. 83.
    Hara MR, Agrawal N, Kim SF et al (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674PubMedGoogle Scholar
  84. 84.
    Hara Y, Wakamori M, Ishii M et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173PubMedGoogle Scholar
  85. 85.
    Heuss C, Scanziani M, Gahwiler BH et al (1999) G-protein-independent signaling mediated by metabotropic glutamate receptors. Nat Neurosci 2:1070–1077PubMedGoogle Scholar
  86. 86.
    Hicks RR, Smith DH, Gennarelli TA et al (1994) Kynurenate is neuroprotective following experimental brain injury in the rat. Brain Res 655:91–96PubMedGoogle Scholar
  87. 87.
    Hillered L, Hallstrom A, Segersvard S et al (1989) Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab 9:607–616PubMedGoogle Scholar
  88. 88.
    Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252:851–853PubMedGoogle Scholar
  89. 89.
    Hong SC, Goto Y, Lanzino G et al (1994) Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 25:663–669PubMedGoogle Scholar
  90. 90.
    Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Radic Res Commun 18:195–199PubMedGoogle Scholar
  91. 91.
    Ikonomidou C, Mosinger JL, Salles KS et al (1989) Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J Neurosci 9:2809–2818PubMedGoogle Scholar
  92. 92.
    Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1:383–386PubMedGoogle Scholar
  93. 93.
    Imai H, Graham DI, Masayasu H et al (2003) Antioxidant ebselen reduces oxidative damage in focal cerebral ischemia. Free Radic Biol Med 34:56–63PubMedGoogle Scholar
  94. 94.
    Immke DC, McCleskey EW (2003) Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37:75–84PubMedGoogle Scholar
  95. 95.
    Inoue K, Branigan D, Xiong ZG (2010) Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem 285:7430–7439PubMedGoogle Scholar
  96. 96.
    Ischiropoulos H, Zhu L, Chen J et al (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298:431–437PubMedGoogle Scholar
  97. 97.
    Jang YG, Ilodigwe D, Macdonald RL (2009) Metaanalysis of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care 10:141–147PubMedGoogle Scholar
  98. 98.
    Jia Y, Zhou J, Tai Y et al (2007) TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10:559–567PubMedGoogle Scholar
  99. 99.
    Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531PubMedGoogle Scholar
  100. 100.
    Jorgensen MB, Diemer NH (1982) Selective neuron loss after cerebral ischemia in the rat: possible role of transmitter glutamate. Acta Neurol Scand 66:536–546PubMedCrossRefGoogle Scholar
  101. 101.
    Kampfl A, Posmantur R, Nixon R et al (1996) mu-calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury. J Neurochem 67:1575–1583PubMedCrossRefGoogle Scholar
  102. 102.
    Kaneko S, Kawakami S, Hara Y et al (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101:66–76PubMedGoogle Scholar
  103. 103.
    Kiedrowski L, Czyz A, Baranauskas G et al (2004) Differential contribution of plasmalemmal Na/Ca exchange isoforms to sodium-dependent calcium influx and NMDA excitotoxicity in depolarized neurons. J Neurochem 90:117–128PubMedGoogle Scholar
  104. 104.
    Kim YH, Koh JY (2002) The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol 177:407–418PubMedGoogle Scholar
  105. 105.
    Kingston AE, O’Neill MJ, Bond A et al (1999) Neuroprotective actions of novel and potent ligands of group I and group II metabotropic glutamate receptors. Ann N Y Acad Sci 890:438–449PubMedGoogle Scholar
  106. 106.
    Koek W, Woods JH, Winger GD (1988) MK-801, a proposed noncompetitive antagonist of excitatory amino acid neurotransmission, produces phencyclidine-like behavioral effects in pigeons, rats and rhesus monkeys. J Pharmacol Exp Ther 245:969–974PubMedGoogle Scholar
  107. 107.
    Koh JY, Suh SW, Gwag BJ et al (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016PubMedGoogle Scholar
  108. 108.
    Koura SS, Doppenberg EM, Marmarou A et al (1998) Relationship between excitatory amino acid release and outcome after severe human head injury. Acta Neurochir Suppl (Wien) 71:244–246Google Scholar
  109. 109.
    Kuroda S, Tsuchidate R, Smith ML et al (1999) Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 19:778–787PubMedGoogle Scholar
  110. 110.
    Lafon-Cazal M, Pietri S, Culcasi M et al (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537PubMedGoogle Scholar
  111. 111.
    Laine R, de Montellano PR (1998) Neuronal nitric oxide synthase isoforms alpha and mu are closely related calpain-sensitive proteins. Mol Pharmacol 54:305–312PubMedGoogle Scholar
  112. 112.
    Lankiewicz S, Marc LC, Truc BN et al (2000) Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death. J Biol Chem 275:17064–17071PubMedGoogle Scholar
  113. 113.
    Lanzino G, Kassell NF (1999) Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part II. A cooperative study in North America. J Neurosurg 90:1018–1024PubMedGoogle Scholar
  114. 114.
    Lanzino G, Kassell NF, Dorsch NW et al (1999) Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part I. A cooperative study in Europe, Australia, New Zealand, and South Africa. J Neurosurg 90:1011–1017PubMedGoogle Scholar
  115. 115.
    Lau A, Arundine M, Sun HS et al (2006) Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury. J Neurosci 26:11540–11553PubMedGoogle Scholar
  116. 116.
    Lazebnik YA, Kaufmann SH, Desnoyers S et al (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347PubMedGoogle Scholar
  117. 117.
    Leach MJ, Marden CM, Miller AA (1986) Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neurochemical studies on the mechanism of action. Epilepsia 27:490–497PubMedGoogle Scholar
  118. 118.
    JY L, Cole TB, Palmiter RD et al (2000) Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J Neurosci 20:RC79Google Scholar
  119. 119.
    Lees KR, Asplund K, Carolei A et al (2000) Glycine antagonist (gavestinel) in neuroprotection (GAIN International) in patients with acute stroke: a randomised controlled trial. GAIN International Investigators. Lancet 355:1949–1954PubMedGoogle Scholar
  120. 120.
    Lees KR, Zivin JA, Ashwood T et al (2006) NXY-059 for acute ischemic stroke. N Engl J Med 354:588–600PubMedGoogle Scholar
  121. 121.
    Li J, Billiar TR, Talanian RV et al (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 240:419–424PubMedGoogle Scholar
  122. 122.
    Lin JH, Weigel H, Cotrina ML et al (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1:494–500PubMedGoogle Scholar
  123. 123.
    DR LUCAS, NEWHOUSE JP (1957) The toxic effect of sodium l-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58:193–201Google Scholar
  124. 124.
    Malgouris C, Bardot F, Daniel M et al (1989) Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischemic gerbils. J Neurosci 9:3720–3727PubMedGoogle Scholar
  125. 125.
    Marklund N, Clausen F, McIntosh TK et al (2001) Free radical scavenger posttreatment improves functional and morphological outcome after fluid percussion injury in the rat. J Neurotrauma 18:821–832PubMedGoogle Scholar
  126. 126.
    Marklund N, Lewander T, Clausen F et al (2001) Effects of the nitrone radical scavengers PBN and S-PBN on in vivo trapping of reactive oxygen species after traumatic brain injury in rats. J Cereb Blood Flow Metab 21:1259–1267PubMedGoogle Scholar
  127. 127.
    Marshall LF, Maas AI, Marshall SB et al (1998) A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 89:519–525PubMedGoogle Scholar
  128. 128.
    Martinez-Guijarro FJ, Soriano E, Del Rio JA et al (1991) Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity. J Neurocytol 20:834–843PubMedGoogle Scholar
  129. 129.
    Matsuda T, Arakawa N, Takuma K et al (2001) SEA0400, a novel and selective inhibitor of the Na+–Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 298:249–256PubMedGoogle Scholar
  130. 130.
    Mayer ML, Vyklicky L Jr (1989) The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus. J Physiol 415:351–365PubMedGoogle Scholar
  131. 131.
    Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263PubMedGoogle Scholar
  132. 132.
    McIntosh TK, Thomas M, Smith D et al (1992) The novel 21-aminosteroid U74006F attenuates cerebral edema and improves survival after brain injury in the rat. J Neurotrauma 9:33–46PubMedGoogle Scholar
  133. 133.
    McIntosh TK, Vink R, Soares H et al (1989) Effects of the N-methyl-d-aspartate receptor blocker MK-801 on neurologic function after experimental brain injury. J Neurotrauma 6:247–259PubMedGoogle Scholar
  134. 134.
    McLaughlin B, Pal S, Tran MP et al (2001) p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci 21:3303–3311PubMedGoogle Scholar
  135. 135.
    Michetti M, Salamino F, Melloni E et al (1995) Reversible inactivation of calpain isoforms by nitric oxide. Biochem Biophys Res Commun 207:1009–1014PubMedGoogle Scholar
  136. 136.
    RG Miller, JD Mitchell, M Lyon et al. (2007) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev CD001447Google Scholar
  137. 137.
    Mohr S, Zech B, Lapetina EG et al (1997) Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochem Biophys Res Commun 238:387–391PubMedGoogle Scholar
  138. 138.
    Morikawa E, Huang Z, Moskowitz MA (1992) l-Arginine decreases infarct size caused by middle cerebral arterial occlusion in SHR. Am J Physiol 263:H1632–H1635PubMedGoogle Scholar
  139. 139.
    Morikawa E, Moskowitz MA, Huang Z et al (1994) l-Arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat. Stroke 25:429–435PubMedGoogle Scholar
  140. 140.
    Morris GF, Bullock R, Marshall SB et al (1999) Failure of the competitive N-methyl-d-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel Investigators. J Neurosurg 91:737–743PubMedGoogle Scholar
  141. 141.
    Moubarak RS, Yuste VJ, Artus C et al (2007) Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27:4844–4862PubMedGoogle Scholar
  142. 142.
    Muir KW (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 6:53–60PubMedGoogle Scholar
  143. 143.
    Muir KW, Holzapfel L, Lees KR (2000) Phase II clinical trial of sipatrigine (619C89) by continuous infusion in acute stroke. Cerebrovasc Dis 10:431–436PubMedGoogle Scholar
  144. 144.
    Nadler MJ, Hermosura MC, Inabe K et al (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595PubMedGoogle Scholar
  145. 145.
    Nakagawa D, Ohshima Y, Takusagawa M et al (2001) Functional modification of cytochrome c by peroxynitrite in an electron transfer reaction. Chem Pharm Bull (Tokyo) 49:1547–1554Google Scholar
  146. 146.
    Nicholls P, Malviya AN (1968) Inhibition of nonphosphorylating electron transfer by zinc. The problem of delineating interaction sites. Biochemistry 7:305–310PubMedGoogle Scholar
  147. 147.
    Nilsson P, Hillered L, Ponten U et al (1990) Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab 10:631–637PubMedGoogle Scholar
  148. 148.
    Noh KM, Koh JY (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20:RC111PubMedGoogle Scholar
  149. 149.
    O’Neill MJ, Hicks C, Ward M (1996) Neuroprotective effects of 7-nitroindazole in the gerbil model of global cerebral ischaemia. Eur J Pharmacol 310:115–122PubMedGoogle Scholar
  150. 150.
    Ogawa A, Yoshimoto T, Kikuchi H et al (1999) Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis 9:112–118PubMedGoogle Scholar
  151. 151.
    Oguro K, Jover T, Tanaka H et al (2001) Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice. J Neurosci 21:7534–7542PubMedGoogle Scholar
  152. 152.
    Ohishi H, Ogawa-Meguro R, Shigemoto R et al (1994) Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Neuron 13:55–66PubMedGoogle Scholar
  153. 153.
    Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721PubMedGoogle Scholar
  154. 154.
    Olney JW, Sharpe LG (1969) Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 166:386–388PubMedGoogle Scholar
  155. 155.
    Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492PubMedGoogle Scholar
  156. 156.
    Ozyurt E, Graham DI, Woodruff GN et al (1988) Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 8:138–143PubMedGoogle Scholar
  157. 157.
    Park CK, Nehls DG, Teasdale GM et al (1989) Effect of the NMDA antagonist MK-801 on local cerebral blood flow in focal cerebral ischaemia in the rat. J Cereb Blood Flow Metab 9:617–622PubMedGoogle Scholar
  158. 158.
    Perraud AL, Fleig A, Dunn CA et al (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599PubMedGoogle Scholar
  159. 159.
    Persechini A, McMillan K, Masters BS (1995) Inhibition of nitric oxide synthase activity by Zn2+ ion. Biochemistry 34:15091–15095PubMedGoogle Scholar
  160. 160.
    Pignataro G, Simon RP, Xiong ZG (2007) Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain 130:151–158PubMedGoogle Scholar
  161. 161.
    Pignataro G, Tortiglione A, Scorziello A et al (2004) Evidence for a protective role played by the Na+/Ca2+ exchanger in cerebral ischemia induced by middle cerebral artery occlusion in male rats. Neuropharmacology 46:439–448PubMedGoogle Scholar
  162. 162.
    Polster BM, Basanez G, Etxebarria A et al (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454PubMedGoogle Scholar
  163. 163.
    Portera-Cailliau C, Price DL, Martin LJ (1997) Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J Comp Neurol 378:88–104PubMedGoogle Scholar
  164. 164.
    Radi R, Beckman JS, Bush KM et al (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250PubMedGoogle Scholar
  165. 165.
    Radi R, Beckman JS, Bush KM et al (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487PubMedGoogle Scholar
  166. 166.
    Radi R, Rodriguez M, Castro L et al (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95PubMedGoogle Scholar
  167. 167.
    Randall RD, Thayer SA (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 12:1882–1895PubMedGoogle Scholar
  168. 168.
    Ransom RW, Stec NL (1988) Cooperative modulation of [3H]MK-801 binding to the N-methyl-d-aspartate receptor-ion channel complex by l-glutamate, glycine, and polyamines. J Neurochem 51:830–836PubMedGoogle Scholar
  169. 169.
    Reisberg B, Doody R, Stoffler A et al (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348:1333–1341PubMedGoogle Scholar
  170. 170.
    Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 15:3318–3327PubMedGoogle Scholar
  171. 171.
    Rock DM, Macdonald RL (1992) The polyamine spermine has multiple actions on N-methyl-d-aspartate receptor single-channel currents in cultured cortical neurons. Mol Pharmacol 41:83–88PubMedGoogle Scholar
  172. 172.
    Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891PubMedGoogle Scholar
  173. 173.
    Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4:329–336PubMedGoogle Scholar
  174. 174.
    Salgo MG, Bermudez E, Squadrito GL et al (1995) Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes [corrected]. Arch Biochem Biophys 322:500–505PubMedGoogle Scholar
  175. 175.
    Salgo MG, Stone K, Squadrito GL et al (1995) Peroxynitrite causes DNA nicks in plasmid pBR322. Biochem Biophys Res Commun 210:1025–1030PubMedGoogle Scholar
  176. 176.
    Sattler R, Charlton MP, Hafner M et al (1998) Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem 71:2349–2364PubMedCrossRefGoogle Scholar
  177. 177.
    Sattler R, Xiong Z, Lu WY et al (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848PubMedGoogle Scholar
  178. 178.
    Schewe T (1995) Molecular actions of ebselen—an antiinflammatory antioxidant. Gen Pharmacol 26:1153–1169PubMedGoogle Scholar
  179. 179.
    Schmitz D, Mellor J, Frerking M et al (2001) Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA 98:11003–11008PubMedGoogle Scholar
  180. 180.
    Schrammel A, Gorren AC, Schmidt K et al (2003) S-nitrosation of glutathione by nitric oxide, peroxynitrite, and (*)NO/O(2)(*-). Free Radic Biol Med 34:1078–1088PubMedGoogle Scholar
  181. 181.
    Schulz JB, Matthews RT, Jenkins BG et al (1995) Improved therapeutic window for treatment of histotoxic hypoxia with a free radical spin trap. J Cereb Blood Flow Metab 15:948–952PubMedGoogle Scholar
  182. 182.
    el NM Seif, Peruche B, Rossberg C et al (1990) Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur J Pharmacol 185:19–24Google Scholar
  183. 183.
    Sen N, Hara MR, Ahmad AS et al (2009) GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 63:81–91PubMedGoogle Scholar
  184. 184.
    Sen N, Hara MR, Kornberg MD et al (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873PubMedGoogle Scholar
  185. 185.
    Sensi SL, Canzoniero LM, Yu SP et al (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 17:9554–9564PubMedGoogle Scholar
  186. 186.
    Sensi SL, Ton-That D, Sullivan PG et al (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc Natl Acad Sci USA 100:6157–6162PubMedGoogle Scholar
  187. 187.
    Sensi SL, Yin HZ, Carriedo SG et al (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci USA 96:2414–2419PubMedGoogle Scholar
  188. 188.
    Sheardown MJ, Nielsen EO, Hansen AJ et al (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247:571–574PubMedGoogle Scholar
  189. 189.
    Sheline CT, Behrens MM, Choi DW (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. J Neurosci 20:3139–3146PubMedGoogle Scholar
  190. 190.
    Shuaib A, Lees KR, Lyden P et al (2007) NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 357:562–571PubMedGoogle Scholar
  191. 191.
    Singleton RH, Povlishock JT (2004) Identification and characterization of heterogeneous neuronal injury and death in regions of diffuse brain injury: evidence for multiple independent injury phenotypes. J Neurosci 24:3543–3553PubMedGoogle Scholar
  192. 192.
    Snider BJ, Gottron FJ, Choi DW (1999) Apoptosis and necrosis in cerebrovascular disease. Ann N Y Acad Sci 893:243–253PubMedGoogle Scholar
  193. 193.
    Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106:675–683PubMedGoogle Scholar
  194. 194.
    Stamler JS, Simon DI, Osborne JA et al (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89:444–448PubMedGoogle Scholar
  195. 195.
    Steinberg GK, George CP, DeLaPaz R et al (1988) Dextromethorphan protects against cerebral injury following transient focal ischemia in rabbits. Stroke 19:1112–1118PubMedGoogle Scholar
  196. 196.
    Suh SW, Chen JW, Motamedi M et al (2000) Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res 852:268–273PubMedGoogle Scholar
  197. 197.
    Sun HS, Doucette TA, Liu Y et al (2008) Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke 39:2544–2553PubMedGoogle Scholar
  198. 198.
    Sun HS, Jackson MF, Martin LJ et al (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300–1307PubMedGoogle Scholar
  199. 199.
    Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446PubMedGoogle Scholar
  200. 200.
    Takahashi M, Ni JW, Kawasaki-Yatsugi S et al (1998) YM872, a novel selective alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, reduces brain damage after permanent focal cerebral ischemia in cats. J Pharmacol Exp Ther 284:467–473PubMedGoogle Scholar
  201. 201.
    Takasago T, Peters EE, Graham DI et al (1997) Neuroprotective efficacy of ebselen, an anti-oxidant with anti-inflammatory actions, in a rodent model of permanent middle cerebral artery occlusion. Br J Pharmacol 122:1251–1256PubMedGoogle Scholar
  202. 202.
    Tanabe Y, Nomura A, Masu M et al (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13:1372–1378PubMedGoogle Scholar
  203. 203.
    Tenneti L, D’Emilia DM, Troy CM et al (1998) Role of caspases in N-methyl-d-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem 71:946–959PubMedCrossRefGoogle Scholar
  204. 204.
    Tenneti L, Lipton SA (2000) Involvement of activated caspase-3-like proteases in N-methyl-d-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem 74:134–142PubMedGoogle Scholar
  205. 205.
    Thayer SA, Wang GJ (1995) Glutamate-induced calcium loads: effects on energy metabolism and neuronal viability. Clin Exp Pharmacol Physiol 22:303–304PubMedGoogle Scholar
  206. 206.
    Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927PubMedGoogle Scholar
  207. 207.
    Tonder N, Johansen FF, Frederickson CJ et al (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci Lett 109:247–252PubMedGoogle Scholar
  208. 208.
    Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature 345:347–350PubMedGoogle Scholar
  209. 209.
    Traystman RJ, Klaus JA, DeVries AC et al (2001) Anticonvulsant lamotrigine administered on reperfusion fails to improve experimental stroke outcomes. Stroke 32:783–787PubMedGoogle Scholar
  210. 210.
    Tymianski M, Charlton MP, Carlen PL et al (1993) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13:2085–2104PubMedGoogle Scholar
  211. 211.
    van der Vliet A, Hoen PA, Wong PS et al (1998) Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide. J Biol Chem 273:30255–30262PubMedGoogle Scholar
  212. 212.
    Vedia L, McDonald B, Reep B et al (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267:24929–24932Google Scholar
  213. 213.
    Vignes M, Collingridge GL (1997) The synaptic activation of kainate receptors. Nature 388:179–182PubMedGoogle Scholar
  214. 214.
    Volbracht C, Chua BT, Ng CP et al (2005) The critical role of calpain versus caspase activation in excitotoxic injury induced by nitric oxide. J Neurochem 93:1280–1292PubMedGoogle Scholar
  215. 215.
    Wada K, Chatzipanteli K, Busto R, et al (1999) Effects of L-NAME and 7-NI on NOS catalytic activity and behavioral outcome after traumatic brain injury in the rat. J Neurotrauma 16:203--212PubMedGoogle Scholar
  216. 216.
    Wahl F, Allix M, Plotkine M et al (1993) Effect of riluzole on focal cerebral ischemia in rats. Eur J Pharmacol 230:209–214PubMedGoogle Scholar
  217. 217.
    Wahl F, Renou E, Mary V et al (1997) Riluzole reduces brain lesions and improves neurological function in rats after a traumatic brain injury. Brain Res 756:247–255PubMedGoogle Scholar
  218. 218.
    Wang GJ, Thayer SA (1996) Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons. J Neurophysiol 76:1611–1621PubMedGoogle Scholar
  219. 219.
    Wang Y, Kim NS, Li X et al (2009) Calpain activation is not required for AIF translocation in PARP-1-dependent cell death (parthanatos). J Neurochem 110:687–696PubMedGoogle Scholar
  220. 220.
    Wehage E, Eisfeld J, Heiner I et al (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277:23150–23156PubMedGoogle Scholar
  221. 221.
    Williams K (1997) Interactions of polyamines with ion channels. Biochem J 325(Pt 2):289–297PubMedGoogle Scholar
  222. 222.
    Wu HY, Yuen EY, Lu YF et al (2005) Regulation of N-methyl-d-aspartate receptors by calpain in cortical neurons. J Biol Chem 280:21588–21593PubMedGoogle Scholar
  223. 223.
    Xiong ZG, Zhu XM, Chu XP et al (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698PubMedGoogle Scholar
  224. 224.
    Xue D, Slivka A, Buchan AM (1992) Tirilazad reduces cortical infarction after transient but not permanent focal cerebral ischemia in rats. Stroke 23:894–899PubMedGoogle Scholar
  225. 225.
    Yakovlev AG, Knoblach SM, Fan L et al (1997) Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 17:7415–7424PubMedGoogle Scholar
  226. 226.
    Yamaguchi T, Sano K, Takakura K et al (1998) Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke 29:12–17PubMedGoogle Scholar
  227. 227.
    Yamakura F, Taka H, Fujimura T et al (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273:14085–14089PubMedGoogle Scholar
  228. 228.
    Yokoyama M, Koh J, Choi DW (1986) Brief exposure to zinc is toxic to cortical neurons. Neurosci Lett 71:351–355PubMedGoogle Scholar
  229. 229.
    Yu SW, Andrabi SA, Wang H et al (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA 103:18314–18319PubMedGoogle Scholar
  230. 230.
    Yu SW, Wang H, Poitras MF et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263PubMedGoogle Scholar
  231. 231.
    Yue TL, Gu JL, Lysko PG et al (1992) Neuroprotective effects of phenyl-t-butyl-nitrone in gerbil global brain ischemia and in cultured rat cerebellar neurons. Brain Res 574:193–197PubMedGoogle Scholar
  232. 232.
    Zhang C, Raghupathi R, Saatman KE et al (1998) Riluzole attenuates cortical lesion size, but not hippocampal neuronal loss, following traumatic brain injury in the rat. J Neurosci Res 52:342–349PubMedGoogle Scholar
  233. 233.
    Zhang J, Dawson VL, Dawson TM et al (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263:687–689PubMedGoogle Scholar
  234. 234.
    Zhang X, Chen J, Graham SH et al (2002) Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem 82:181–191PubMedGoogle Scholar
  235. 235.
    Zhang Y, Wang H, Li J et al (2004) Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci 24:10616–10627PubMedGoogle Scholar
  236. 236.
    Zhou P, Qian L, Iadecola C (2005) Nitric oxide inhibits caspase activation and apoptotic morphology but does not rescue neuronal death. J Cereb Blood Flow Metab 25:348–357PubMedGoogle Scholar
  237. 237.
    Zingarelli B, O’Connor M, Wong H et al (1996) Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol 156:350–358PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Division of Applied and Interventional ResearchToronto Western Research InstituteTorontoCanada

Personalised recommendations